
Control of Mobile Robots Using ActionLib

Higor Barbosa Santos, Marco Antônio Simões Teixeira,
André Schneider de Oliveira, Lúcia Valéria Ramos de Arruda
and Flávio Neves Jr.

Abstract Mobile robots are very complex systems and involve the integration of
various structures (mechanical, software and electronics). The robot control system
must integrate these structures so that it can perform its tasks properly. Mobile robots
use control strategies for many reasons, like velocity control of wheels, position con-
trol and path tracking. These controllers require the use of preemptive structures.
Therefore, this tutorial chapter aims to clarify the design of controllers for mobile
robots based on ROS ActionLib. Each controller is designed in an individual ROS
node to allow parallel processing by operating system. To exemplify the controller
design using ActionLib, this chapter will demonstrate the implementation of two
different types of controllers (PID and Fuzzy) for position control of a servo motor.
These controllers will be available on GitHub. Also, a case study of scheduled fuzzy
controllers based on ROSActionLib for a magnetic climber robot used in the inspec-
tion of spherical tanks will be shown.

Keywords ROS · Mobile robots · Control · ActionLib
1 Introduction

Mobile robots have great versatility because they’re free to run around their applica-
tion environment. However, this is only possible because this kind of robot carries
a great variety of exteroceptive and interoceptive sensors to measure its motion and

H.B. Santos (B) · M.A.S. Teixeira · A.S. de Oliveira · L.V.R. de Arruda · F. Neves Jr.
Federal University of Technology—Parana, Av. Sete de Setembro, 3165 Curitiba, Brazil
e-mail: higorsantos@alunos.utfpr.edu.br

M.A.S. Teixeira
e-mail: marcoteixeira@alunos.utfpr.edu.br

A.S. de Oliveira
e-mail: andreoliveira@utfpr.edu.br

L.V.R. de Arruda
e-mail: lvrarruda@utfpr.edu.br

F. Neves Jr.
e-mail: neves@utfpr.edu.br

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_5

161

andreoliveira@utfpr.edu.br

162 H.B. Santos et al.

Fig. 1 Interface of ActionLib. Source [1]

interact with environment around it. Several of these information are used to robot’s
odometry or environment mapping. Thus, these signals are the robot’s sense about
its motion and its way to correct it.

Robot control is a complex and essential task which must be performed during all
navigation. Several kinds of controllers can be applied (like proportional-integral-
derivative, predictive, robust, adaptive and fuzzy). The implementation of the robot
control is very similar and can be developed with the use of ROS Action Protocol by
ActionLib. ActionLib provides a structure to create servers that execute long-running
tasks and interacts with clients by specific messages [1].

The proposed chapter aims to explain how to create ROS controllers using the
ActionLib structure. This chapter is structured in five sections.

In the first section, we will carefully discuss the ActionLib structure. This section
introduces the development of preemptive tasks with ROS. The ActionLib works
with three main messages, as can be seen in Fig. 1. Goal message is the desired
value for controller, like its target or objective. Feedback message is the measure
of controlled variable which usually is updated by means of a robot sensor. Result
message is a flag that indicates when the controller reaches its goal.

The second section will demonstrate the initial requirements for the creation of a
controller using ActionLib package.

The third section will present an implementation of a classic Proportional-Deriva-
tive-Integrative (PID) control strategy with the use of ActionLib. This section aims
to introduce a simple (but powerful) control structure that can be applied to many
different purposes, like position control, velocity control, flight control, adhesion
control and among others. It’ll be shown how to create your own package, set the
action message, structure the server/client code, compile the created package and,
finally, show the experimental results of the PID controller.

In the fourth section will be present a design of a fuzzy controller. The con-
troller is implemented using ActionLib and an open-source fuzzy library. The fuzzy
logic enables the implementation of a control without the knowledge of the system
dynamics model.

Finally, last section will show a study case of an ActionLib based control for the
second-generation of a climbing robotwith four steerablemagneticwheels [2], called

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 163

Fig. 2 Autonomous inspection robot (AIR-2)

as Autonomous Inspection Robot 2nd generation (AIR-2), as shown in Fig. 2. AIR-2
is a robot fully compatible with ROS and it has a mechanical structure designed to
provide high mobility when climbs on industrial storage tanks. The scheduled fuzzy
controllers were designed to manage the speed of AIR-2.

2 ActionLib

Mobile robots are very complex, they havemany sensors and actuators that help them
get around and locate in an unknown environment. The control of the robot isn’t an
easy task and it should have a parallel processing. The mobile robot must handle
several tasks at same time, so the preemption is an important feature to robot control.
Often, the robot control is multivariable, that’s means multiple-input multiple-output
systems (MIMO). Therefore, developing an algorithm with these characteristics is
hard.

Robot control covers various functions of a robot. For example, obstacle avoid-
ance is very important for the autonomous mobile robots. Therefore, [3] proposed a
fuzzy intelligent obstacle avoidance controller for a wheeled mobile robot. Balanc-
ing robot is another relevant aspect in robotics, said that, [4] designed a cascaded
PID controller for movement control of a two wheel robot. On the other hand, [5]
presented an adhesion force control for a magnetic climbing robot used in the inspec-
tion of storage tanks. Therefore, the robot control is essential to ensure its operation,
either navigation or obstacle avoidance.

The ROS has libraries that help in the implementation of control, like ros_control.
Other library is ActionLib that enables to create servers to execute long-running
tasks and clients that interact with servers. Given these features, the development of
a controller using this library becomes easy. On the other hand, ros_control package
is hard to be used, it presents a control structure that requires many configurations
for implementation of a specific controller, for example, a fuzzy controller.

andreoliveira@utfpr.edu.br

164 H.B. Santos et al.

Fig. 3 Client-server interaction. Source [1]

The Actionlib provides a simple application for client sends goals and server
executes goals. The server executes long-running goals that can be preempted. Client-
server interaction using ROS Action Protocol is shown in Fig. 3.

The client-server interaction in ActionLib is provided by messages that are dis-
played in Fig. 1. The messages are:

• goal: client sends goal to the server;
• cancel: client sends the cancellation of the goal to the server;
• status: server notifies the status of the goal for the client;
• feedback: server sends goal information to the client;
• result: server notifies the client when the goal was achieved.

Thus, the ActionLib package is a powerful tool for the design of controllers in
robotics. In the next section, the initial configuration of ROS Workspace will be
presented for the use of ActionLib package.

3 ROS Workspace Configuration

For implementation of the controller it’s necessary that ROS Indigo is properly
installed. It’s available at:

http://wiki.ros.org/indigo/Installation/Ubuntu
The next step is the ROS Workspace configuration. If it isn’t configured on your

machine, it’ll be necessary create it:

1 $ mkdir -p /home/user/catkin_ws/src
2 $ cd /home/user/catkin_ws/src
3 $ catkin_init_workspace

The catkin_init_workspace command sets the catkin_ws folder as yourworkspace.
After, youmust build theworkspace. For this, you need to navigate to yourworkspace
folder and then type the command catkin_make, as shown below.

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 165

Fig. 4 PID control

1 $ cd /home/user/catkin_ws/
2 $ catkin_make

To add the workspace to your ROS environment, you need to source the generated
setup file:

1 $ source /home/user/catkin_ws/devel/setup.bash

After workspace configuration, we can start creating a PID controller using
ActionLib, which it’ll be shown in the next section.

4 Creating a PID Controller Using ActionLib

There’re various types of algorithm used to robot control. But the PID control is more
used, due to its good performance for linearized systems and easy implementation.
The PID controller is a control loop feedback widely used in various applications, in
Fig. 4 can be seen its diagram. The Eq.1 shows the PID equation:

u(t) = Kpe(t) + Ki

∫ t

0
e(τ) dτ + Kd

d

dt
e(t) (1)

e(t) = r(t) − y(t) (2)

where u(t) is output, Kp is proportional gain, e(t) is error (difference between set-
point r(t) and process output y(t), as shown in Eq.2), Ki is integral gain and Kd is
derivative gain. The controller calculates the error and by adjusting the gains (Kp,
Ki and Kd), the PID seeks to minimize it.

In this section, it’ll be shown thePIDcontrol implementation usingActionLib. The
PID will control the angle of a servo motor. The servo motor was simulated in robot
simulator V-REP. The V-REP is simulator based on distributed control architecture,
it allows the modeling of robotic systems similar to the reality [6].

The controller has been implemented in accordance with Fig. 4, in which the
setpoint is the desired angle (goal) and the feedback is provided by encoder servo.

The PID controller is available onGitHub and can be installed on your workspace:

andreoliveira@utfpr.edu.br

166 H.B. Santos et al.

1 $ source /opt/ros/indigo/setup.bash
2 $ cd /home/user/catkin_ws/src
3 $ git clone https://github.com/air-lasca/tutorial_controller
4 $ cd ..
5 $ catkin_make
6 $ source /home/user/catkin_ws/devel/setup.bash

The following will be shown its creation step-by-step.

4.1 Steps to Create the Controller

1st step: Creating the ActionLib package Once the workspace is created and con-
figured, let’s create package using ActionLib:

1 $ cd /home/user/catkin_ws/src/
2 $ catkin_create_pkg tutorial_controller actionlib
3 message_generation roscpp rospy std_msgs actionlib_msgs

The catkin_create_package command creates a package named tutorial_
controller which depends on actionlib,message_generation, roscpp, rospy, std_msgs
and actionlib_msgs. Posteriorly, if you need other dependencies just add them in
CMakelist.txt. This will be detailed in fifth step.

After creating the package, we need to define the message that is sent between
the server and client.
2nd step: Creating the action messages Continuing steps to create the controller,
you must set the action messages. The action file has three parts: goal, result and
feedback. Each section of action file is separated by 3 hyphens (- - -).

The goal message is the setpoint of controller, it is sent from the client to the
server. Yet, the result message is sent from the server to the client, it tells us when
the server completed the goal. It would be a flag to indicate that the controller has
reached the goal, but for the control has no purpose. While, the feedback message is
sent by the server to inform the goal of incremental progress for the client. Feedback
would be the information from the sensor used in control.

Then, to create the action messages, you must create a folder called action in your
package.

1 $ cd /home/user/catkin_ws/src/tutorial_controller
2 $ mkdir action

After creating the folder, you must create an .action file (Tutorial.action) in
action’s folder of your package. The first letter of the action name should be upper-
case. This information is placed in the .action file:

1 #Define the goal
2 float64 position
3 ---

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 167

4 #Define the result
5 bool ok
6 ---
7 #Define a feedback message
8 float64 position

The goal and feedback are defined as float64. The goal will receive the desired
position of a servo motor and feedback will be used to send the information acquired
from the encoder servo. The result is defined as bool, but it won’t be used in control.
This action file will be used in the controllers examples shown in this chapter.

The action messages are generated automatically from the .action file.
3rd step: Create the action client In src folder of your package, create Controller-
Client.cpp, it’ll be client of ActionLib. Firstly, we’ll include the necessary libraries
of ROS, action message and action client.

1 #include <ros/ros.h>
2 #include <tutorial_controller/TutorialAction.h>
3 #include <actionlib/client/simple_action_client.h>
4 #include "std_msgs/Float64.h"

The tutorial_controller/TutorialAction.h is the action message library. It’ll access
the messages created in the .action file.

The actionlib/server/simple_action_client.h is the action library used from imple-
menting simple action client. If necessary, you can include other libraries.

Continuing the code, the client class must be set. The action client constructor
defines the topic to publish the messages. So, you need specific the same topic name
of your server, in this example, pid_control was used.

6 class ControllerClient
7 {
8 public:
9 ControllerClient(std::string name):
10

11 //Set up the client. It’s publishing to topic "
pid_control", and is set to auto-spin

12 ac("pid_control", true),
13

14 //Stores the name
15 action_name(name)
16 {
17 //Get connection to a server
18 ROS_INFO("%s Waiting For Server...", action_name.c_str());
19

20 //Wait for the connection to be valid
21 ac.waitForServer();
22

23 ROS_INFO("%s Got a Server...", action_name.c_str());
24

25 goalsub = n.subscribe("/cmd_pos", 100, &ControllerClient::
GoalCallback, this);

26 }

andreoliveira@utfpr.edu.br

168 H.B. Santos et al.

The ac.waitForSever() causes the client waits for the server to start before contin-
uing. Once the server has started, the client informs that established communication
with it. Then, define a subscriber (goalsub) to provide the setpoint of the control.

The doneCb function is called every time that goal completes. It provides state of
action server and result message. It’ll only be called if the server has not preempted,
because the controller must run continuously.

28 void doneCb(const actionlib::SimpleClientGoalState& state,
const tutorial_controller::TutorialResultConstPtr& result){

29 ROS_INFO("Finished in state [%s]", state.toString().c_str());
30 ROS_INFO("Result: %i", result->ok);
31 };

The activeCb is called every time the goal message is active, in other words, it’s
called each new goal received by client.

33 void activeCb(){
34 ROS_INFO("Goal just went active...");
35 };

The feedbackCb is called every time the server sends the feedback message to the
action client.

38 void feedbackCb(const tutorial_controller::
TutorialFeedbackConstPtr& feedback){

39 ROS_INFO("Got Feedback of Progress to Goal: position: %f",
feedback->position);

40 };

GoalCallback is a function that transmits the goal of the topic /cmd_goal to the
action server.

42 void GoalCallback(const std_msgs::Float64& msg){
43 goal.position = msg.data;
44

45 ac.sendGoal(goal, boost::bind(&ControllerClient::doneCb, this
, _1, _2),

46 boost::bind(&ControllerClient::activeCb, this),
47 boost::bind(&ControllerClient::feedbackCb, this, _1));
48 };

The private variables of action client: n is a NodeHandle, ac is an action client
object, action_name is a string to set the client name, goal is the message that is used
to publish goal to server (set in .action file) and goalsub is a subscriber to get the
goal and pass to the action server.

50 private:
51 actionlib::SimpleActionClient<tutorial_controller::

TutorialAction> ac;
52 std::string action_name;
53 tutorial_controller::TutorialGoal goal;
54 ros::Subscriber goalsub;

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 169

55 ros::NodeHandle n;
56 };

Begin action client:

58 int main (int argc, char **argv){
59 ros::init(argc, argv, "pid_client");
60

61 // create the action client
62 // true causes the client to spin its own thread
63 ControllerClient client(ros::this_node::getName());
64

65 ros::spin();
66

67 //exit
68 return 0;
69 }

4th step: Create the action serverTherefore, the action client is finished.Now, create
action server named ControllerServer.cpp in your src folder. Initially, it’s necessary
include the libraries of ROS, action message and action server. Procedure similar
will be made at the client.

1 #include <ros/ros.h>
2 #include <tutorial_controller/TutorialAction.h>
3 #include <actionlib/server/simple_action_server.h>
4 #include "std_msgs/Float64.h"
5 #include "geometry_msgs/Vector3.h"
6 #include "sensor_msgs/JointState.h"
7 #include <math.h>

So, we need to set the server class. The action server constructor starts the server.
Also, it defines subscriber (feedback loop’s control), publisher (PID output), PID
limits and initiates the control variables.

9 class ControllerServer{
10 public:
11 ControllerServer(std::string name):
12 as(n, "pid_control", boost::bind(&ControllerServer::

executeCB, this, _1), false),
13 action_name(name)
14 {
15 as.registerPreemptCallback(boost::bind(&ControllerServer

::preemptCB, this));
16

17 //Start the server
18 as.start();
19

20 //Subscriber current positon of servo
21 sensorsub = n2.subscribe("/sensor/encoder/servo", 1, &

ControllerServer::SensorCallBack, this);
22

23 //Publisher setpoint, current position and error of
control

andreoliveira@utfpr.edu.br

170 H.B. Santos et al.

24 error_controlpub = n2.advertise<geometry_msgs::Vector3>("
/control/error", 1);

25

26 //Publisher PID output in servo
27 controlpub = n2.advertise<std_msgs::Float64>("/motor/

servo", 1);
28

29 //Max e Min Output PID Controller
30 float max = M_PI;
31 float min = -M_PI;
32

33 //Initializing PID Controller
34 Initialize(min,max);
35 }

In the action constructor, an action server is created. A sensor subscriber (sensor-
sub) and a controller output publisher (controlpub) are created to the control loop.

The preemptCB informs that the current goal has been canceled by sending a new
goal or action client canceled the request.

37 void preemptCB(){
38 ROS_INFO("%s got preempted!", action_name.c_str());
39 result.ok = 0;
40 as.setPreempted(result, "I got Preempted!");
41 }

A pointer to the goal message is passed in executeCB function. This function
defines the rate of the controller. You can set the frequency in the rate argument
of your control. Inside the while, the function of the controller should be called,
as shown in line 60. It’s passed to the controller setpoint (goal→position) and the
feedback sensor (position_encoder).

43 void executeCB(const tutorial_controller::TutorialGoalConstPtr&
goal){

44 prevTime = ros::Time::now();
45

46 //If the server has been killed, don’t process
47 if(!as.isActive()||as.isPreemptRequested()) return;
48

49 //Run the processing at 100Hz
50 ros::Rate rate(100);
51

52 //Setup some local variables
53 bool success = true;
54

55 //Loop control
56 while(1){
57 std_msgs::Float64 msg_pos;
58

59 //PID Controller
60 msg_pos.data = PIDController(goal->position,
61 position_encoder);
62

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 171

63 //Publishing PID output in servo
64 controlpub.publish(msg_pos);
65

66 //Auxiliary Message
67 geometry_msgs::Vector3 msg_error;
68

69 msg_error.x = goal->position;
70 msg_error.y = position_encoder;
71 msg_error.z = goal->position - position_encoder;
72

73 //Publishing setpoint, feedback and error control
74 error_controlpub.publish(msg_error);
75

76 feedback.position = position_encoder;
77

78 //Publish feedback to action client
79 as.publishFeedback(feedback);
80

81 //Check for ROS kill
82 if(!ros::ok()){
83 success = false;
84 ROS_INFO("%s Shutting Down", action_name.c_str());
85 break;
86 }
87

88 //If the server has been killed/preempted, stop processing
89 if(!as.isActive()||as.isPreemptRequested()) return;
90

91 //Sleep for rate time
92 rate.sleep();
93 }
94

95 //Publish the result if the goal wasn’t preempted
96 if(success){
97 result.ok = 1;
98 as.setSucceeded(result);
99 }
100 else{
101 result.ok = 0;
102 as.setAborted(result,"I Failed!");
103 }
104 }

Initialize is a function that sets the initial parameters of a controller. It defines the
PID controller output limits and gains.

105 void Initialize(float min, float max){
106 setOutputLimits(min, max);
107 lastError = 0;
108 errSum = 0;
109

110 kp = 1.5;
111 ki = 0.1;
112 kd = 0;

andreoliveira@utfpr.edu.br

172 H.B. Santos et al.

113 }

The setOutputLimits function sets the control limits.

115 void setOutputLimits(float min, float max){
116 if (min > max) return;
117 minLimit = min;
118 maxLimit = max;
119 }

The Controller function implements the PID equation (Eq.1). It can be used to
design your control algorithm.

121 float PIDController(float setpoint, float PV) {
122 ros::Time now = ros::Time::now();
123 ros::Duration change = now - prevTime;
124

125 float error = setpoint - PV;
126

127 errSum += error*change.toSec();
128 errSum = std::min(errSum, maxLimit);
129 errSum = std::max(errSum, minLimit);
130

131 float dErr = (error - lastError)/change.toSec();
132

133 //Do the full calculation
134 float output = (kp*error) + (ki*errSum) + (kd*dErr);
135

136 //Clamp output to bounds
137 output = std::min(output, maxLimit);
138 output = std::max(output, minLimit);
139

140 //Required values for next round
141 lastError = error;
142 prevTime = now;
143

144 return output;
145 }

Sensor callback is a subscriber that provides sensor information, e.g., position or
wheel velocity of a robot. In this case, it receives the position of the servo motor
encoder.

148 void SensorCallBack(const sensor_msgs::JointState& msg){
149 position_encoder = msg.position[0];
150 }

The protected variables of action server:

152 protected:
153 ros::NodeHandle n;
154 ros::NodeHandle n2;
155

156 //Subscriber

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 173

157 ros::Subscriber sensorsub;
158

159 //Publishers
160 ros::Publisher controlpub;
161 ros::Publisher error_controlpub;
162

163 //Actionlib variables
164 actionlib::SimpleActionServer<tutorial_controller::

TutorialAction> as;
165 tutorial_controller::TutorialFeedback feedback;
166 tutorial_controller::TutorialResult result;
167 std::string action_name;
168

169 //Control variables
170 float position_encoder;
171 float errSum;
172 float lastError;
173 float minLimit, maxLimit;
174 ros::Time prevTime;
175 float kp;
176 float ki;
177 float kd;
178 };

Finally, the main function creates the action server and spins the node. The action
will be running and waiting to receive goals.

180 int main(int argc, char** argv){
181 ros::init(argc, argv, "pid_server");
182

183 //Just a check to make sure the usage was correct
184 if(argc != 1){
185 ROS_INFO("Usage: pid_server");
186 return 1;
187 }
188

189 //Spawn the server
190 ControllerServer server(ros::this_node::getName());
191

192 ros::spin();
193

194 return 0;
195 }

5th step: Compile the created package To compile your controller, it’ll be need to
add a few things toCMakeLists.txt. Firstly, you need to specify the necessary libraries
to compile the package. If you require any other library that wasn’t mentioned when
creating your package, you can add it to find_package() and catkin_package().

1 find_package(catkin REQUIRED COMPONENTS
2 actionlib
3 actionlib_msgs
4 message_generation

andreoliveira@utfpr.edu.br

174 H.B. Santos et al.

5 roscpp
6 rospy
7 std_msgs
8)
9

10 find_package(
11 CATKIN_DEPENDS actionlib actionlib_msgs message_generation

roscpp rospy std_msgs
12)

Then, specify the action file to generate the messages.

1 add_action_files(
2 DIRECTORY action
3 FILES Tutorial.action
4)

And specify the libraries that need .action.

1 generate_messages(
2 DEPENDENCIES
3 actionlib_msgs std_msgs
4)

Include directories that your package needs.

1 include_directories(${catkin_INCLUDE_DIRS})

The add_executable() creates the executable of your server and client. The tar-
get_link_libraries() includes libraries that can be used by action server and client
at build and/or execution. The macro add_dependencies() creates a dependency
between the messages generated by the server and client with your executables.

1 add_executable(TutorialServer src/ControllerServer.cpp)
2 target_link_libraries(TutorialServer ${catkin_LIBRARIES})
3 add_dependencies(TutorialServer ${

tutorial_controller_EXPORTED_TARGETS} ${
catkin_EXPORTED_TARGETS})

4

5 add_executable(TutorialClient src/ControllerClient.cpp)
6 target_link_libraries(TutorialClient ${catkin_LIBRARIES})
7 add_dependencies(TutorialClient ${

tutorial_controller_EXPORTED_TARGETS} ${
catkin_EXPORTED_TARGETS})

Additionally, the package.xml file must include the following dependencies:

1 <build_depend>actionlib</build_depend>
2 <build_depend>actionlib_msgs</build_depend>
3 <build_depend>message_generation</build_depend>
4 <run_depend>actionlib</run_depend>
5 <run_depend>actionlib_msgs</run_depend>
6 <run_depend>message_generation</run_depend>

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 175

Fig. 5 PID controller server

Fig. 6 PID controller client

Now, just compile your workspace:

1 $ cd /home/user/catkin_ws/
2 $ catkin_make

And refresh your ROS environment:

1 $ source /home/user/catkin_ws/devel/setup.bash

So your PID controller is ready to be used.
6th step: Run the controller Once compiled, your package is ready for use. To run
your package, open terminal and start ROS:

1 $ roscore

After the ROS starts, you must start the server in new terminal, as shown in Fig. 5.
So, in a new terminal, start the client, as demonstrated in Fig. 6.
PID Controller client waits for the server and notifies you when the connection is

established between them.
An alternative to rosrun is roslaunch. To use roslaunch command, you need to

create a folder named launch in your package.

1 $ cd /home/user/catkin_ws/src/tutorial_controller
2 $ mkdir launch

After creating the folder, create a launch file (tutorial.launch) in the directory
launch of your package. In the launch file put the following commands:

1 <launch>
2 <node pkg="tutorial_controller" type="TutorialServer" name="TutorialServer"

output="screen"/>
3 <node pkg="tutorial_controller" type="TutorialClient" name="TutorialClient"

output="screen"/>
4 </launch>

andreoliveira@utfpr.edu.br

176 H.B. Santos et al.

To roslaunch works, it’s necessary add roslaunch package in find_package() of
CMakeLists.txt:

1 find_package(
2 catkin REQUIRED
3 COMPONENTS actionlib actionlib_msgs roslaunch
4)

And add below line of the find_package() in CMakeLists.txt:

1 roslaunch_add_file_check(launch)

Thus, CMakeLists.txt would look like this:

1 cmake_minimum_required(VERSION 2.8.3)
2 project(tutorial_controller)
3

4 find_package(catkin REQUIRED COMPONENTS
5 actionlib
6 actionlib_msgs
7 message_generation
8 roscpp
9 rospy
10 std_msgs
11 roslaunch
12)
13

14 roslaunch_add_file_check(launch)
15

16 add_action_files(
17 DIRECTORY action
18 FILES Tutorial.action
19)
20

21 generate_messages(
22 DEPENDENCIES
23 actionlib_msgs std_msgs
24)
25

26 catkin_package(
27 CATKIN_DEPENDS actionlib actionlib_msgs message_generation

roscpp rospy std_msgs
28)
29

30 include_directories(${catkin_INCLUDE_DIRS})
31

32 add_executable(TutorialServer src/ControllerServer.cpp)
33 target_link_libraries(TutorialServer ${catkin_LIBRARIES})
34 add_dependencies(TutorialServer ${

tutorial_controller_EXPORTED_TARGETS} ${
catkin_EXPORTED_TARGETS})

35

36 add_executable(TutorialClient src/ControllerClient.cpp)
37 target_link_libraries(TutorialClient ${catkin_LIBRARIES})

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 177

38 add_dependencies(TutorialClient ${
tutorial_controller_EXPORTED_TARGETS} ${
catkin_EXPORTED_TARGETS})

Save the CMakeLists file. So, you can compile the workspace:

1 $ cd /home/user/catkin_ws/
2 $ catkin_make

Don’t forget to add the workspace to your ROS environment:

1 $ source catkin_ws/devel/setup.bash

Now, to run your package, you just need this command:

1 $ roslaunch tutorial_controller tutorial.launch

Please note that roslaunch starts ROS automatically, as shown in Fig. 7. Therefore,
the roscore command isn’t required before running the controller.

With rqt_graph command, you can see all the topics published and interation
between the nodes in ROS.

Fig. 7 Roslaunch running PID controller

andreoliveira@utfpr.edu.br

178 H.B. Santos et al.

Fig. 8 Interaction between nodes of PID controller

1 $ rqt_graph

The rqt_graph package provides a GUI plugin for visualizing the ROS compu-
tation graph [7]. You can visualize the topics used for communication between the
client and server. Exchanging messages between the client and server are shown in
Fig. 8.

The rqt_plot package provides a GUI plugin to plot 2D graphics of the ROS topics
[8]. Open new terminal and enter the following command:

1 rqt_plot /control/error/x /control/error/y

The variable x is the controller setpoint and y is feedbacked signal (sensor infor-
mation). In Fig. 9 is shown the rqt_plot plugin.

In case you need, the variable z is the controller error and it can be added in the
rqt_plot. Just add the topic /control/error/z in rqt_plot via command:

1 rqt_plot /control/error/x /control/error/y /control/error/z

Or add the error topic directly in the rqt_plot GUI. Just enter the desired topic, as
in the Fig. 10, and click on the + symbol so that it add more information to plot.

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 179

Fig. 9 rqt_plot

Fig. 10 Add the error topic in rqt_plot

andreoliveira@utfpr.edu.br

180 H.B. Santos et al.

Fig. 11 PID control servo’s position

4.2 Experimental Result of PID Controller

For the controller validation, 4 different setpoints were sent to the controller.
The Fig. 11 presents the results of servo position PID control using ActionLib,

the control shows a good response.

5 Creating a Fuzzy Controller Using ActionLib

In this section, the implementation of a Fuzzy control usingActionLibwill be shown.
The fuzzylite librarywas used to design the fuzzy logic control. The fuzzylite is a free
and open-source fuzzy library programmed in C++ formultiple platforms (Windows,
Linux, Mac, iOS, Android) [9].

QtFuzzyLite 4 is a graphic user interface for fuzzylite library, you can implement
your fuzzy controller using this GUI. Its goal is to accelerate the implementation
process of fuzzy logic controllers by providing a graphical user interface very useful
and functional allowing you to easily create and directly interact with your controllers
[9]. This GUI is available at:

http://www.fuzzylite.com/download/fuzzylite4-linux/.
In the Fig. 12 can be seen the graphic user interface, QtFuzzyLite 4.
In QtFuzzyLite, you can then export the C ++ code to your controller, as shown

in Fig. 13.
The Fuzzy controller uses the same application example used in the PID control.

In Fig. 14 the fuzzy control diagram of position servo motor can be seen, where β is
setpoint, βs is encoder servo information and u is fuzzy output.

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 181

Fig. 12 QtFuzzyLite 4 GUI

Fig. 13 Export fuzzy to C++ in QtFuzzyLite 4

andreoliveira@utfpr.edu.br

182 H.B. Santos et al.

Fig. 14 Fuzzy controller for a servo motor

Fig. 15 Membership functions for the servo fuzzy controller of a error and change of error and b
angle increment

The Servo Fuzzy Controller designed for the linear and orientationmotion control
is presented in Fig. 15. The inputs are ‘e’ (angle error) and ‘ce’ (angle change of error),
and the output u is angle increment (u[k] = u[k] + u[k − 1]).

The rules for fuzzy controller are shown in Table1.
The Fuzzy controller is available on GitHub and can be installed on your

workspace:

1 $ source /opt/ros/indigo/setup.bash
2 $ cd /home/user/catkin_ws/src
3 $ git clone https://github.com/air-lasca/tutorial2_controller

Table 1 Rule table e N Z P

ce

N NB NS Z

Z NS Z PS

P Z PS PB

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 183

5.1 Steps to Create the Controller

The creation of Fuzzy controller follows the same steps of the PID. But it has some
peculiarities that will be presented below.
1st step: Creating the ActionLib package Create the package:

1 $ cd /home/user/catkin_ws/src/
2 $ catkin_create_pkg tutorial2_controller actionlib

message_generation roscpp rospy std_msgs actionlib_msgs

2nd step: Creating the action messages The action file will be the same used by
PID controller, but the action’s name will be different: FuzzyControl.action.
3rd step: Create action client The structure of the client will be the same PID client,
it will be changed the client’s name (FuzzyClient.cpp), action (FuzzyControl.action),
topic (fuzzy_control) and package (tutorial2_controller).
4th step: Create the action server The server will be named FuzzyServer.cpp, but
you will need to include the fuzzylite library.

1 #include <ros/ros.h>
2 #include <tutorial2_controller/FuzzyControlAction.h>
3 #include <actionlib/server/simple_action_server.h>
4

5 #include "std_msgs/Float64.h"
6 #include "geometry_msgs/Vector3.h"
7 #include "sensor_msgs/JointState.h"
8 #include <math.h>
9

10 //Fuzzylite library
11 #include "fl/Headers.h"
12 using namespace fl;

The changes mentioned in creating the Fuzzy client should also be made. And the
control algorithm will also change, just copy it in the FuzzyServer.cpp available on
GitHub.
5th step: Compile the created package Before you compile the fuzzy controller
package, you must copy the libfuzzylite library to your /usr/lib/. Then, add the
fuzzylite’s source files (fl folder) in the include directory of your package. The lib-
fuzzylite.so file and fl folder can be downloaded from the link:

https://github.com/air-lasca/tutorial2_controller.
The CMakeLists.txt and package.xml follow the instructions specified in the PID

controller. Only, in the CMakeLists.txt, you’ll need to add the include folder and add
the libfuzzylite library, because the server needs to be built.

1 include_directories(${catkin_INCLUDE_DIRS} include)
2

3 target_link_libraries(FuzzyServer ${catkin_LIBRARIES}
libfuzzylite.so)

Then, you can compile the package.

andreoliveira@utfpr.edu.br

184 H.B. Santos et al.

Fig. 16 Fuzzy controller server

Fig. 17 Fuzzy controller client

Fig. 18 Getting fuzzy goal information

1 $ cd /home/user/catkin_ws/
2 $ catkin_make
3 $ source /home/user/catkin_ws/devel/setup.bash

6th step: Run controller To run the package, open a terminal and start the ROS.

1 $ roscore

Start the server in new terminal. In the Fig. 16, Fuzzy Controller server waits the
client.

And start the client in new terminal (Fig. 17).
In Fig. 18 the goal information can be seen: type of message, publisher and sub-

scriber.
The Fig. 19 shows the exchange of messages between the server and client.
You can also use the roslaunch to start the controller.

1 $ roslaunch tutorial2_controller fuzzycontrol.launch

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 185

Fig. 19 Interaction between nodes of fuzzy controller

Fig. 20 Fuzzy control servo’s position

5.2 Experimental Results of Fuzzy Controller

The results of servo position Fuzzy control are demonstrated in Fig. 20. The fuzzy
controller didn’t present overshoot in its response curve, even though it had a con-
siderable response time due to the delay of the encoder.

andreoliveira@utfpr.edu.br

186 H.B. Santos et al.

6 Scheduled Fuzzy Controllers for Omnidirectional Motion
of an Autonomous Inspection Robot

The scheduled fuzzy controller of AIR-2 is based on the linear velocities ẋG and
ẏG and angular velocity θ̇G , as presented in Eq.3. According to the inputs, switcher
(MUX) will choose which controller should be activated. if inputs are the linear
velocities, linear motion controller will be activated. Already, when input is only
angular velocity, the orientation controllerwill be enabled.Andwhen inputs are linear
and angular velocities, the free motion controller will be activated. The scheduled
controllers can be seen in Fig. 21. The experimental results were simulated using
V-REP. The control was implement with ActionLib and fuzzylite library.

ξG =
⎡
⎣ẋG
ẏG
θ̇G

⎤
⎦ (3)

The feedback loop of each controller is related to each control variable. The linear
velocities ẋR and ẏR of AIR-2 give feedback to linear motion and the angular velocity
θ̇R ofAIR-2 provides feedback to orientationmotion.While, linear velocities ofAIR-
2 and angular velocity β̇R of servo motors give feedback to free motion, due to side
slip constraint, AIR-2 can’t reorient while moving.

Each motion controller (linear, orientation and free motion) is composed of 8
Fuzzy controllers, inwhich 4 controllers performvelocity control of brushlessmotors
and other 4 controllers are responsible by angle control of servo motors.

Fig. 21 Scheduled fuzzy controllers of AIR-2

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 187

Fig. 22 AIR-2 path in the LPG sphere

Fig. 23 Desired and obtained ẋ

A path with five different setpoints is generated for experimental results, which
can be seen in Fig. 22.

In first, second and third setpoint, the AIR-2 has been set with linear motion, the
setpoint was, respectively, ẋ , ẏ and ẋ + ẏ. The fourth was a free motion with ẋ and
θ̇ . And the fifth setpoint was orientation motion, that means only θ̇ .

The low response time of brushless and servo motors produce overshoots that can
be seen Figs. 23 and 24. It’s caused by sampling frequency of encoders in V-REP.

The Fig. 25 shows the response controller to the θ̇ . It has a small oscillation, due
data provided by the IMU, even filtered, these data present a great noise. Even so, the
control of angular velocity features a good response. In free motion, the high delay of

andreoliveira@utfpr.edu.br

188 H.B. Santos et al.

Fig. 24 Desired and obtained ẏ

Fig. 25 Desired and obtained θ̇

controller is caused by reorientation wheels. It’s necessary to stop brushless motors
and servo motors orientate. The servo motors of front and rear are positioned at 90
degrees and left and right are positioned at zero degrees. So, the brushless motors
are actuated to control the angular velocity of the AIR-2.

The overshoots and the delay times presented in the speed control don’t influence
the inspection, since inspection robot operating velocities are low.

The experimental results can be seen in a YouTube video available at the link
below:

https://youtu.be/46EKARdyP0w.

andreoliveira@utfpr.edu.br

Control of Mobile Robots Using ActionLib 189

7 Conclusion

The ActionLib has proved that the package can be used to implement controllers,
exhibited good results as shown in the examples. Easy design of the package allows
you to make any adjustments to your control, it allows even implement new control
algorithms. The main disadvantage of ActionLib is non-real time, but its preemptive
features allow almost periodic execution of the controller.

References

1. Wiki, R. 2016. Actionlib. http://wiki.ros.org/actionlib/.
2. Veiga, R., A.S. de Oliveira, L.V.R. Arruda, and F.N. Junior. 2015. Localization and navigation

of a climbing robot inside a LPG spherical tank based on dual-lidar scanning of weld beads. In
Springer Book onRobotOperating System (ROS): TheComplete Reference. NewYork: Springer.

3. Ren, L., W. Wang, and Z. Du. 2012. A new fuzzy intelligent obstacle avoidance control strat-
egy for wheeled mobile robot. In 2012 IEEE International Conference on Mechatronics and
Automation, 1732–1737.

4. Pratama, D., E.H. Binugroho, and F. Ardilla. 2015. Movement control of two wheels balancing
robot using cascaded PID controller. In International Electronics Symposium (IES), 94–99.

5. de Oliveira, A., L. de Arruda, F. Neves, R. Espinoza, and J. Nadas. 2012. Adhesion force control
and active gravitational compensation for autonomous inspection in lpg storage spheres. In
Robotics Symposium and Latin American Robotics Symposium (SBR-LARS), 2012 Brazilian,
232–238.

6. Robotics, C. 2016. Coppelia robotics v-rep: Create. compose. simulate. any robot. http://www.
coppeliarobotics.com/.

7. Wiki, R. 2016. rqt_graph. http://wiki.ros.org/rqt_graph.
8. Wiki, R. 2016. rqt_plot. http://wiki.ros.org/rqt_plot.
9. Rada-Vilela, J. 2014. Fuzzylite: a fuzzy logic control library. http://www.fuzzylite.com.

andreoliveira@utfpr.edu.br

