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Abstract. This tutorial chapter aims to teach the main theoretical con-
cepts and explain the use of ROS Navigation Stack. This is a powerful
toolbox to path planning and Simultaneous localization and mapping
(SLAM) but its application is not trivial due to lack of comprehension
of the related concepts. This chapter will present the theory inside this
stack and explain in an easy way how to perform SLAM in any robot.
Step by step guides, example codes explained (line by line) and also both
simulated and real robot testing will be available. We will present the
requisites and the how-to’s that will make the readers able to set the
odometry, stablish reference frames and its transformations, configure
perception sensors, tune the navigation controllers and plan the path on
their own virtual or real robots.

Keywords: ROS, navigation, tutorial, real robots, virtual robots

1 Introduction

Simultaneous localization and mapping (SLAM) is an important approach that
allows the robot to acknowledge the obstacles around it and plan a path to avoid
these restrictions. This method is a merge of several approaches that allow robots
to navigate on unknown or partially known environments. ROS has a package
that performs SLAM, named Navigation Stack, however, some details of its
application are hidden, considering that the programmer has some expertise.
The unclear explanation and the many subjective aspects within the package
can lead the user to fail using the technique or, at least, consume extra effort.

This chapter aims to present the theory inside ROS Navigation Stack and
explain in an easy way how to perform SLAM in any robot. It will also ex-
plain how to use a virtual environment to apply the SLAM on virtual robots.
These robots are designed to both publish and subscribe the same information
in real and virtual environments, where all sensors and actuators of real world
are functional in virtual environment.

We begin the chapter explaining what the navigation stack is with some sim-
ple and straight-forward definitions and examples where the functionalities of
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the package are being explained in conjunction with reminders of some basic
concepts of ROS. Moreover, a global view of a system running the navigation
stack at its full potential is shown, where the core subset of this system is ex-
plained bit by bit. In addition, most of the not directly related components of
the system, like multiple machine communication, will be indicated and briefly
explained, with some tips about its implementation.

The chapter will be structured in four main topics. Firstly, an introduction
of mobile robot navigation and a discussion about simultaneous localization and
mapping will be presented, along with some discussion about transformations.

In the second section, environment, the main purpose is to let the reader
know everything he needs to configure his own virtual or real robot. Firstly, the
limitations of the navigation stack are listed together with the expected hard-
ware and software that the reader should have to follow the tutorial. Secondly,
an explanation about odometry and kinematics is given, focusing on topics like
precision of the odometry and the impact of the lack of it in the construction of
costmaps for navigation. Perception sensors are also discussed. The differences
and advantages of each of the main kinds of perception sensors, like depth sen-
sors, light detection sensors and ranging (LIDAR) sensors are also emphasized.
In addition, reference frames and its transformations are discussed, showing how
to achieve the correct merge of the sensors information. Still on the second sec-
tion, a dense and relevant subsection about the navigation stack is presented. It
is in respect to the configuration of the navigation stack to work with as many
robots as possible, trying to organize the tutorial in a way that both reach high
level of detail and generalization, granting that the reader is apt to perceive a
way to make his own robot perform SLAM. An in-depth discussion of map gen-
eration and map’s occupancy is performed. To do that, the tutorial is structured
in a step by step fashion in which all the navigation configuration files will be
analysed, examining the parameters one by one and setting them to example
values that correspond to the robots we’re using in the chapter (the Pioneer
3-AT and LX and their simulated models, Fig.1). The explanation of the whole
process in addition to the demonstration of the effects of the parameter changes
is more than enough to clear up any doubts the reader might have.

In the third section we will discuss the experiments in real and virtual envi-
ronments to prove the accuracy of the SLAM method. All steps to use a virtual
environment where the reader should be able to test his own configuration for
the navigation stack are demonstrated. Lastly, some trials are run in virtual and
real robots, to illustrate some more capabilities of the package. In this section
we will also take a glance over rviz and vrep usage.

Lastly, a brief biography of the authors will be presented, showing why this
team is able to write the tutorial chapter here presented.

2 Background

ROS has a set of resources that are useful so a robot is able to navigate through
a medium, in other words, the robot is capable of planning and following a path
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Fig. 1. Side by side are the two robots used to test the navigation stack: The Pioneer
3-AT, widely used in many research centres all over the world, is a great value choice,
whereas the Pioneer LX is a high-end option.

while it deviates from obstacles that appear on its path throughout the course.
These resources are found on the navigation stack.

One of the many resources needed for completing this task and that is present
on the navigation stack are the localization systems, that allow a robot to locate
itself, whether there is a static map available or simultaneous localization and
mapping is required. AMCL is a tool that allows the robot to locate itself in
an environment through a static map, a previously created map. The disadvan-
tage of this resource is that, because of using a static map, the environment
that surrounds the robot can not suffer any modification, because a new map
would have to be generated for each modification and this task would consume
computational time and effort. Being able to navigate only in modification-free
environments is not enough, since the robots should be able to operate in places
like industries and schools, where there is constant movement. To bypass the
lack of flexibility of static maps, two other localization systems are offered by
the navigation stack: gmapping and hector mapping.

Both gmapping and hector mapping are based on SLAM, a technique that
consists on mapping an environment at the same time that the robot is moving,
in other words, while the robot navigates through an environment, it gathers
information from the environment through his sensors and generates a map.
This way you have a mobile base able not only to generate a map of an unknown
environment as well as updating the existent map, thus enabling the use of the
device in more generic environments, not immune to changes.

The difference between gmapping and hector mapping is that the first one
takes in account the odometry information to generate and update the map and
the robot’s pose, however, the robot needs to have encoders, preventing some
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robots(e.g. flying robots) of using it. The odometry information is interesting
because they are able to aid on the generation of more precise maps, since
understanding the robot dynamics we can estimate its pose.

The dynamic behaviour of the robot is also known as kinematics. Kinematics
is influenced, basically, by the way that the devices that guarantee the robot’s
movement are assembled. Some examples of mechanic features that influence the
kinematics are: the wheel type, the number of wheels, the wheels positioning and
the angle at which they are disposed.

However, as much useful as the odometry information can be, it isn’t immune
to faults. The faults are caused by the lack of precision on the capitation, fric-
tion, slip, drift and other factors, and, with time, they may accumulate, making
inconsistent data and prejudicing the maps formation, that tend to be distorted
under these circumstances.

Other indispensable data to generate a map are the sensors‘ distance read-
ings, for the reason that they are responsible in detecting the external world and,
this way, serve as reference to the robot. Nonetheless, the data gathered by the
sensors must be adjusted before being used by the device. These adjustments are
needed because the sensors measure the environment in relation to themselves,
not in relation to the robot, in other words, a geometric conversion is needed. To
make this conversion simpler, ROS offers the TF tool, which makes it possible
to adjust the sensors positions in relation to the robot and, this way, adequate
the measures to the robot‘s navigation.

3 ROS Environment

Before we begin setting up the environment in what we will work, it’s very
important to be aware of the limitations of the navigation stack, so we’re able to
adapt our hardware. There are four main limitations in respect to the hardware:

– The stack was built aiming to address only differential drive and holonomic
robots, although it is possible to use some features with another types of
robots, which won’t be covered here.

– The navigation stack assumes that the robot receives a twist type message
[1] with X,Y and Theta velocities and is able to control the mobile base to
achieve these velocities. If your robot is not able to do so, you can adapt your
hardware or just create a ros node that converts the twist message provided
by the navigation stack to the type of message that best suits your needs.

– The environment information is gathered from a LaserScan message type
topic. If you have a planar laser, such as a Hokuyo URG or a SICK Laser,
it should be very easy to get them to publish their data, all you need to
do is install the hokuyo node, sicktoolbox or similar packages, depending
on your sensor. Moreover, it is possible to use other sensors, as long as you
can convert their data to the LaserScan type. In this chapter, we will use
converted data from Microsoft Kinect’s depth sensor.

– The navigation stack will perform better with square or circular robots,
whereas it is possible to use it with arbitrary shapes and sizes. Unique sizes



ROS Navigation: concepts and tutorial 5

and shapes may cause the robot to have some issues in restricted spaces. In
this chapter we will be using a custom footprint that is an approximation of
the robot.

If your system complies with all the requirements, it is time to move for the
software requirements, which are very few and easy to get.

– You should have ROS Hydro or Indigo to get all the features, such as layered
costmaps, that are a Hydro+ feature. From here, we assume you are using
a Ubuntu 12.04 with ROS Hydro.

– You should have the navigation stack installed. In the full desktop version
of ROS it is bundled, but depending on your installation it might be not
included. Don’t worry with that for now, it’s just good to know that if some
node is not launching it may be because the package you’re trying to use is
not installed.

– As stated on the hardware requirements, you might need some software to
get your system navigation ready:
• If your robot is not able to receive a twist message and control its velocity

as demanded, one possible solution is to use a custom ROS node to
transform the data to a more suitable mode.

• You need to have drivers able to read the sensor data and publish it in a
ROS topic. If you’re using a sensor different from a planar laser sensor,
such as a depth sensor, you’ll most likely also need to change the data
type to LaserScan through a ROS node.

Now that you now all you need for navigation, it is time to begin getting those
things. In this tutorial we’ll be using Pioneer 3-AT and Pioneer LX and each
of them will have some particularities in the configuration that will help us
to generalize the settings as much as possible. We’ll be using Microsoft’s Kinect
depth sensor in the Pioneer 3-AT and the Sick S300 laser rangefinder that comes
built-in in the Pioneer LX.

3.1 Configuring the Kinect Sensor

The Kinect is a multiple sensor equipment, equipped with a depth sensor, an rgb
camera and microphones. First of all, we need to get those features to work by
installing the drivers, which can be found in the ros package openni camera[2].
You can get openni camera source code from its git repository, available on
the wiki page, or install the stack with a linux terminal command using apt-
get(RECOMMENDED). To do so, open your terminal window and type:

1 $ sudo apt-get install ros-<rosdistro>-openni-camera

Remember to change ”<rosdistro>” to your ros version(i.e. ’hydro’ or ’in-
digo’). We’ll also need a ROS publisher to use the sensor data, and that pub-
lisher is found in the openni launch[3] package. Again, you can get the source
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code from their git repository at the package wiki page or you can get the
built package by opening the Ubuntu terminal and typing the following com-
mand(RECOMMENDED):

1 $ sudo apt-get install ros-<rosdistro>-openni-launch

In the same way, not forgetting to change ”<rosdistro>” to your ros version.
With all the software installed, it’s time to power on the hardware.

Depending on your application plugging Kinect’s USB Cable to the computer
you’re using and the AC Adapter to the wall socket can be enough, however
needing a wall socket to use your robot is not a great idea. The AC Adapter
converts the AC voltage (i.e. 100V@60Hz) to the DC voltage needed to power
up the kinect (12V), therefore the solution is exchanging the AC adapter for a
12V battery. The procedure for doing this is explained briefly in the following
topics:

– Cut the AC adapter off, preferably near the end of the cable.
– Strip a small end to each of the two wires(white and brown) inside of the

cable.
– Connect the brown wire to the positive(+) side of the 12V battery and the

white wire to the negative(-). You can do this connection by soldering [4] or
using connectors, such as crimp[5] or clamp[6] wire connectors.

Be aware that the USB connection is enough to blink the green LED in front of
the Kinect and it doesn’t indicate that the external 12V voltage is there. You can
also learn a little more about this procedure by reading the ”Adding a Kinect
to an iRobot Create/Roomba” wiki page[7].

Now that we have the software and the hardware prepared, some testing is
required. With the kinect powered on, execute the following command on the
Ubuntu terminal:

1 $ roslaunch openni launch openni.launch

The software will come up and a lot of processes will be started along with the
creation of some topics. If your hardware is not found for some reason, you may
see the message ”No devices connected.... waiting for devices to be connected”.
If this happens, please verify your hardware connections(USB and power). If
that does not solve it, you may try to remove some modules from the Linux
Kernel that may be the cause of the problems and try again. The commands for
removing the modules are:

Once the message of no devices connected disappears, you can check some
of the data supplied by the Kinect in another Terminal window(you may open
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1 $ sudo modprobe -r gspca kinect $ sudo modprobe -r gspca main

multiple tabs of the terminal by pressing CTRL+SHIFT+T) by using one or
more of these commands:

1 $ rosrun image view disparity view image:=/camera/depth/disparity
2 $ rosrun image view image view image:=/camera/rgb/image color
3 $ rosrun image view image view image:=/camera/rgb/image mono

The first one will show a disparity image, while the second and third com-
mands will show the RGB camera image in color and in black and white respec-
tively.

At last, we need to convert the depth image data to a LaserScan message.
Fortunately, we have yet another package to do this for us, the depthimage to l
aserscan package. As we’ve done with the other packages, we can check out the
wiki page[8] and get the source code from the git repository or we can simply
get the package with apt-get:

1 $ sudo apt-get install ros-<rosversion>-depthimage-to-laserscan

With this last installation, you should have all the software you need for
Kinect utilization with navigation purposes, although there’s a lot of other soft-
ware you can use with it. We’d like to point out two of these packages that can
be very valuable at your own projects:

– kinect aux[9]: this package allows to use some more features of the kinect,
such as the accelerometer, tilt, and LED. It can be used along with the
openni camera package and it’s also installed with a simple apt-get com-
mand.

– Natural Interaction - openni tracker[10]: One of the most valuable
packages for using with the kinect, this package is able to do skeleton tracking
functionalities and opens a huge number of possibilities. It’s kind of tough
to install and the installation can lead to problems sometimes, so we really
recommend you to do a full system backup before trying to get it to work.
First of all, install the openni tracker package with an apt-get, as stated on
the wiki page. After that, you have to get these recommended versions of the
files(the official openni website is no longer in the air, so it can be a tough
job):
• NITE-Bin-Linux-x86-v1.5.2.23.tar.zip
• OpenNI-Bin-Dev-Linux-x86-v1.5.7.10.tar.bz2
• SensorKinect093-Bin-Linux-x86-v5.1.2.1.tar.bz2
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The first two files (NITE and Openni) can be installed following the cyphy
people mapping[11] tutorial and the last file should be installed by:

• Unpacking the file

1 $ tar -jxvf SensorKinect093-Bin-Linux-x86-v5.1.2.1.tar.bz2

• Changing the permission of the setup script to allow executing.

1 $ sudo chmod a+x install.sh

• Installing.

1 $ sudo ./install.sh

Now that we have all software installed we should pack it all together in a
single launch file, to make things more independent and don’t need to start a
lot of packages manually when using the kinect. Here’s an example of a com-
plete launch file for starting the kinect and all the packages that make its data
navigation-ready:

<launch>

<include file="$(find openni_launch)/launch/openni.launch"

/>

<node respawn="true" pkg="depthimage_to_laserscan" type="

depthimage_to_laserscan" name="laserscan">

<remap from="image" to="/camera/depth/image" />

</node>

</launch>

As you can see and you might be already used to because of the previous
chapters, the ROS launch file is running one node and importing another launch
file: openni.launch, imported from the openni launch package. Analysing the
code in a little more depth:

– The first and sixth lines are the launch tag, that delimits the content of the
launch file;

– The second line includes the openni.launch file from the openni launch pack-
age, responsible for loading the drivers of the kinect, getting the data, and
publishing it to ROS topics;
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– The third line starts the package depthimage to laserscan with the ”laser-
scan” name. It also sets the respawn parameter to true, in case of failures.
This package is responsible for getting a depth image from a ROS topic,
converting it to a LaserScan message and publishing it to another topic;

– The fourth line is a parameter for the depthimage to laserscan. By de-
fault, the package gets the depth image from the /image topic, but the
openni launch publishes it in the /camera/depth/image topic, and that is
what we are saying to the package.

There’s still the transform(tf) missing, but we will discuss that later, because
the configuration is very similar to all sensors.

3.2 SICK S300 Laser Sensor

The pioneer LX comes bundled with a SICK S300 laser sensor and we’ll describe
here how to get its data, since the process should be very similar to other laser
rangefinder sensors. The package that supports this laser model is sicks300, that
is currently only supported by the fuerte and groovy versions of ROS. We are
using a fuerte installation of ROS in this robot, so it’s no problem for us, but it
must be adapted if you wish to use it with hydro or indigo. For our luck, it was
adapted and it is available at STRANDS git repository[12]. The procedure for
getting it to work is:

– Cloning the repository, by using the command git clone https://github.com
/bohlender/sicks300.git (the URL will change depending on your version);

– Compile the files. For rosbuild versions, use rosmake sicks300 sicks300 and
for catkinized versions, use catkin make.

– Run the files by using the command rosrun sicks300 sicks300 driver. It should
work with the default parameters, but, if it doesn’t, check if you have con-
figured the baudrate parameter correctly(the default is 500000 and for the
pioneer LX, for example, it is 230400).

The procedure should be very similar for other laser sensors and the most
used packages, sicktoolbox wrapper, hokyuo node and urg node, are very well
documented on the ROS wiki. Its noteworthy that there is another option for
reading pioneer LX laser sensor data: cob sick s300 package.

3.3 Transforms

As explained on the background section, the transforms are a necessity for the
navigation stack to understand where the sensors are located in relation to the
center of the robot(base link). We will publish a transform between the Pioneer
3-AT base link and the kinect sensor laser link(the center of the kinect sensor)
as example, given that this procedure is equal for any type of sensor. The first
thing in order to use transforms is getting the distances you need. You’ll have
to measure three-dimensional coordinates in respect to the center of the robot
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and will also need to get the angles between the robot pointing direction and the
sensor pointing direction. Our kinect sensor is aligned with the robot pointing
direction on the yaw and its z coordinate is also aligned with the robot center(and
that’s the usual case for most of the robots), therefore we have to measure only
the x and y distances between the sensor and the robot centers. The x distance
for our robot is 35cm(0.35m) and our height distance(y) is 10cm(0.1m). There are
two standard ways to publish the angle values on transforms: using quaternion or
yaw/pitch/roll. The first one, using quaternion, will respect the following order:

1 static transform publisher x y z qx qy qz qw frame id child frame id
period in ms

Where qx, qy, qz and qw are the versors in the quaternion representation of
orientations and rotations. The second way of publishing angles, using yaw/rol-
l/pitch and the one we will be using, is published in the following order:

1 static transform publisher x y z yaw pitch roll frame id child frame id
period in ms

The common parameters for both quaternion and yaw/row/pitch represen-
tations are:

– x, y and z are the offset representation, in meters, for the three-dimensional
distance between the two objects;

– frame id and child frame id are the unique names that will bound the trans-
formations to the object to which they relate. In our case, frame id is the
base link of the robot and child frame id is the laser link of the sensor.

– period in ms is the time between two publications of the tf. It is possible
to calculate the publishing frequency by calculating the reciprocal of the
period.

In our example, for the Pioneer 3-AT and the Kinect, we have to include, in
the XML launcher(just write this line down at a new launch file, we’ll indicate
further in the text where to use it), the following code to launch the tf node:

1 <node pkg=”tf” type=”static transform publisher”
name=”Pioneer3AT laserscan tf” args=”0.1 0 0.35 0 pi/2 pi/2 base link
camera link 100” />

If you have some doubts on how to verify the angles you measured, you
can use rviz to check them, by including the laser scan topic and verifying the
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rotation of the obtained data. If you don’t know how to do that yet, check the
tests section of the chapter, which includes the rviz configuration.

3.4 Creating a package

At this point, you probably already have some XML files for launching nodes
containing your sensors initialization and for initializing some packages related
to your platform(robot powering up, odometry reading, etc...). To organize these
files and make your launchers easy to find with ros commands, let’s create a pack-
age containing all your launchers. To do that, go to your src folder, inside your
catkin workspace, and create a package with the following commands(commands
valid for catkinized versions of ROS):

1 $ cd /̃catkin ws/src
2 $ catkin create pkg packageName std msgs rospy roscpp move base msgs

These two commands are sufficient for creating a folder containing all the
files that will make ros find the package by its name. Copy all your launch files
to the new folder, namesake to your package, and then compile the package, by
going to your workspace folder and issuing the compile command:

1 $ cd /̃catkin ws
2 $ catkin make

That’s all you need to do. From now on, remember to put your launch and
config files inside this folder. You may also create some folder, such as launch and
config, provided that you specify these sub-paths when using find for including
launchers in other launchers.

3.5 The Navigation Stack - System Overview

Finally, all the pre-requisites for using the navigation stack are met. Thus, it is
time to begin studying the core concepts of the navigation stack, as well as their
usage. Since the overview of the Navigation stack concepts was already done in
the Background section, we can jump straight to the system overview, which is
done in Figure 2. Let’s analyse the items block by block in the following sections.

AMCL and map server The first two blocks that we can focus on are the op-
tional ones, responsible for the static map usage: amcl and map server. map server
contains two nodes: map server and map saver. The first one, namesake to the
package, as the name indicates, is a ROS node that provides static map data as
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Fig. 2. Overview of a typical system running the navigation stack. Figure Source: ROS
WIKI.

a ROS Service, while the second one, map saver, saves a dynamically generated
map to a file. AMCL does not manage the maps, it is actually a localization sys-
tem that runs on a known map. This localization system is based on the Monte
Carlo localization approach: it randomly distributes the particles in a known
map, representing the possible robot locations, and then uses a particle filter to
determine the actual robot pose.

gmapping Gmapping, as well as amcl, is a localization system, but unlike amcl,
it runs on an unknown environment, performing Simultaneous Localization and
Mapping(SLAM). It creates a 2D occupancy grid map using the robot pose and
the laser data(or converted data, i.e. Kinect data).

Sensors and controller These blocks of the system overview are in respect to
the hardware-software interaction and, as indicated, are platform specific nodes.
The odometry source and the base controller blocks are specific to the robot
you’re using, since the first one is usually published using the wheel encoders
data and the second one is the responsible for taking the velocity data from the
cmd vel topic and assuring that the robot reproduces these velocities.

Local and Global costmaps The local and global 2D costmaps are the topics
containing the information that represents the projection of the obstacles in a
2D plane(the floor), as well as a security inflation radius, an area around the ob-
stacles that guarantee that the robot will not collide with any objects, no matter
what is its orientation. While the global costmap represents the whole environ-
ment(or a huge portion of it), the local costmap is, in general, a scrolling window
that moves in the global costmap in relation to the robot current position.
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Local and Global planners The local and global planners do not work the
same way. The global planner takes the current robot position and the goal and
traces the trajectory of lower cost in respect to the global costmap. However, the
local planner has a more interesting task: it works over the local costmap, and,
since the local costmap is smaller, it usually has more definition, and therefore is
able to detect more obstacles than the global costmap. Thus, the local planner
is responsible for creating a trajectory rollout over the global trajectory, that
is able to return to the original trajectory with the fewer cost. Just to make it
clear, move base is a package that contains the local and global planners and is
responsible for linking them to achieve the nav goal.

3.6 The Navigation Stack - Getting it to work

At last, it is time to write the code for the full launcher. It is easier to do this
with an already written code, such as the one that follows:

<launch>

<master auto="start"/>

<!-- PLATFORM SPECIFIC -->

<node pkg="p2os_driver" type="p2os_driver" name="

p2os_driver" >

<param name="port" value="/dev/ttyUSB0" />

<param name="pulse" value="1.0" />"

</node>

<node pkg="rostopic" type="rostopic" name="enable_robot"

args="pub /cmd_motor_state p2os_driver/MotorState 1"

respawn="true">

</node>

<!-- TRANSFORMS -->

<node pkg="tf" type="static_transform_publisher" name="

Pioneer3AT_laserscan_tf" args="0.1 0 0.35 0 pi/2 pi/2

base_link camera_link 100" />

<!-- SENSORS CONFIGURATION -->

<arg name="kinect_camera_name" default="camera" />

<param name="/$(arg kinect_camera_name)/driver/

data_skip" value="10" />

<param name="/$(arg kinect_camera_name)/driver/

image_mode" value="5" />

<param name="/$(arg kinect_camera_name)/driver/

depth_mode" value="5" />

<include file="$(find course_p3at_navigation)/myKinect.

launch" />
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<!-- NAVIGATION -->

<node pkg="gmapping" type="slam_gmapping" respawn="false"

name="slam_gmapping" output="screen">

<param name="map_update_interval" value="2.0"/>

<param name="maxUrange" value="6.0"/>

<param name="iterations" value="1"/>

<param name="linearUpdate" value="0.25"/>

<param name="angularUpdate" value="0.262"/>

<param name="temporalUpdate" value="-1.0"/>

<param name="particles" value="300"/>

<param name="xmin" value="-50.0"/>

<param name="ymin" value="-50.0"/>

<param name="xmax" value="50.0"/>

<param name="ymax" value="50.0"/>

<param name="base_frame" value="base_link"/>

</node>

<node pkg="move_base" type="move_base" respawn="false"

name="move_base" output="screen">

<rosparam file="$(find course_p3at_navigation)/

sg_costmap_common_params_p3at.yaml" command="

load" ns="global_costmap" />

<rosparam file="$(find course_p3at_navigation)/

sg_costmap_common_params_p3at.yaml" command="

load" ns="local_costmap" />

<rosparam file="$(find course_p3at_navigation)/

sg_local_costmap_params.yaml" command="load" />

<rosparam file="$(find course_p3at_navigation)/

sg_global_costmap_params.yaml" command="load" /

>

<rosparam file="$(find course_p3at_navigation)/

becker_base_local_planner_params.yaml" command=

"load" />

<param name="base_global_planner" type="string"

value=" navfn/NavfnROS" />

<param name="controller_frequency" type="double"

value="6.0" />

</node>

</launch>
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As you can see the code is divided by commentaries in four sections: PLAT-
FORM SPECIFIC, TRANSFORMS, SENSORS CONFIGURATION and NAV-
IGATION.

PLATFORM SPECIFIC This first section of the code is relative to the
nodes you have to run so your robot is able to read the information in the
/cmd vel topic and translate this information into the respective real velocities
to the robot’s wheels. In the case here represented, for the Pioneer 3-AT, two
nodes are run: p2os driver[13] and an instance of the rostopic[14] node. The first
one, p2os driver, is a ROS node specific for some Pioneer robots, including the
Pioneer 3-AT, able to control the motors in accordance to the information it
receives from the ros topics /cmd vel and /cmd motor state. /cmd vel has the
velocities information and /cmd motor state tells the package if the motors are
enabled. That is the reason the rostopic node should be run: it publishes a true
value to the /cmd motor state topic so the p2os driver knows that the motor
should be enabled. p2os driver also publishes some useful data, like sonar sensor
data, transformations, battery state and more.

TRANSFORMS As discussed in the transforms section, you should create a
transform between the robot’s base link and the sensor laser link. Here is the
place we recommend it to be put, although it can be launched in a separate
launch file or in any particular order in this launch file. Any other transforms
you may have should be put here too.

SENSORS CONFIGURATION This section of the code was left to initialize
all the nodes regarding the sensors powering up and configuration. The first four
lines of this section contain some configurations of the kinect sensor:

– 1)The first line changes the camera name to kinect camera name;
– 2)The second lines sets it to drop 10 frames of the kinect for each valid one,

outputting at 2 or 3Hz instead of 30Hz;
– 3)The third and fourth lines are in respect to the resolution, where we have

selected 320x240 QVGA 30Hz for the image and 30Hz QVGA for the depth
image. The available options for image mode are:
• 2: (640x480 VGA 30Hz)
• 5: (320x240 QVGA 30Hz)
• 8: (160x120 QQVGA 30Hz)

And for the depth image mode:
• 2: (VGA 30Hz)
• 5: (QVGA 30Hz)
• 8: (QQVGA 30Hz)

It is noteworthy that these parameters configurations for the kinect, although
recommended, are optional, since the default values will work. Besides the pa-
rameter configuration, there is also the line including the kinect launcher that we
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wrote at the ”Configuring the Kinect Sensor” section, which powers the sensor
up and gets its data converted to laser data. If you’re using any other kind of
sensor, like a laser sensor, you should have your own launcher include here. Fi-
nally, if you odometry sensors aren’t configured yet(in our case, the p2os driver
is responsible for this) you may do this here.

NAVIGATION Understanding which nodes you should run, why and what
each of them do is the main focus of this chapter. To get our Pioneer 3-AT
navigating, we’re using two navigation nodes(gmapping and move base) and
a lot of parameters. As explained before, gmapping is a localization system,
while move base is a package that contains the local and global planners and
is responsible for linking them to achieve the nav goal. Therefore, let’s start
explaining the gmapping launcher, the localization system we are using, since
we have odometry available and our map is unknown(we will not use any static
maps). For that, each parameter will be analysed at once, as follows:

– map update interval: time(in seconds) between two updates of the map. Ide-
ally, the update would be instantaneous, however, it would cost too much
for the CPU to do that. Therefore, we use a interval, for which the default
is 5 seconds.

– maxUrange: the maximum range for which the laser issues valid data. Data
farther from this distance will be discarded.

– iterations: the number of iterations of the scanmatcher.
– linearUpdate, angularUpdate and temporalUpdate: thresholds for a scan

request. temporalUpdate asks for a new scan whenever the time passed
since the last scan exceeds the time indicated in the parameter, while lin-
earUpdate and angularUpdate ask for scan when the robot translates or
rotates(respectively) the amount specified in the parameters.

– particles: sets the number of particles used in the filter.
– xmin, ymin, xmax and ymax: these four coordinates form, together, the map

size.
– base frame: indicates the frame that corresponds to the mobile base in the

transform tree.

As to move base, it bases its path planning techniques on the current location
and the nav goal. In the node launcher code, we have the usual syntax to launch
a node, followed by a list of seven parameters, five of which are rosparams. The
params are two:

– 1) base global planner is a parameter for selecting the plugin(dynamically
loadable classes). The plugin we use is the default for 1.1+ series, so we put
this statement here just to ensure we’ve selected the correct one.

– 2) controller frequency is a parameter that fixes the rate(in Hz) at which the
control loop will run and velocity commands will be issued.

The rosparam, in turn, are files that contain more parameters for the move base,
and which are done this way to keep the files organized and easy to read. Thus, we
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will take advantage of this fact and analyze the parameter files separately. First,
let’s begin looking at the costmap common params file, the one that contains
parameters that apply for both the local and global costmaps:

obstacle_range: 5.0

raytrace_range: 6.0

max_obstacle_height: 1.0

min_obstacle_height: 0.05

footprint: [ [0.3302, -0.0508], [0.254, -0.0508], [0.254, -0.254],

[-0.254, -0.254], [-0.254, 0.254], [0.254, 0.254], [0.254,

0.0508], [0.3302, 0.0508] ]

#robot_radius: 0.35

inflation_radius: 0.35 #0.2

footprint_padding: 0

transform_tolerance: 1.0

map_type: costmap

cost_scaling_factor: 100 #10.0

#observation_sources: laser_scan_sensor

#laser_scan_sensor: {sensor_frame: camera_link, data_type:

LaserScan, topic: scan, marking: true, clearing: true}

observation_sources: pointcloud_sensor

pointcloud_sensor: {sensor_frame: camera_link, data_type:

PointCloud2, topic: /camera/depth/points, marking: true,

clearing: true}

As you may know, the sharp(#) represents a commented line or value, and
does not affect the results. This way, let’s present the meaning of each of the
params used in the costmap common parameters file:

– obstacle range and raytrace range: obstacle range relates to the maximum
distance(in meters) that will be considered when taking the obstacle data and
putting it to the costmap, while raytrace range is the maximum distance(also
in meters) that will be considered when taking the free space around the
robot and putting it to the costmap.

– max obstacle height and min obstacle height: these parameters set the area
that will consider the sensor data as valid data. The most common is setting
the min height near the ground height and the max height slightly greater
than the robot’s height.

– robot radius and inflation radius: when you’re considering your robot as cir-
cular, you can just set the robot radius parameter to the radius(in meters) of
your robot and you get a circular footprint. Although, even if you don’t have
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a circular robot, it is important to set the inflation radius to the ”maximum
radius” of your robot, so the costmap creates a inflation around obstacles
and the robot doesn’t collide, no matter what is it direction when getting
close to obstacles.

– footprint and footprint padding: when you want a most precise representa-
tion of your robot, you have to comment the robot radius parameter and
create a custom footprint, as we did, considering [0,0] as the center of your
robot. footprint padding is summed at each of the footprint points, both at
the x and y coordinates, and we don not use it here, so we setted it to zero.

– transform tolerance: sets the maximum latency accepted so the system knows
that no link in the transform tree is missing. This parameter must be set in
an interval that allows certain tolerable delays in the transform publication
and detects missing transforms, so the navigation stack stops in case of flaws
in the system.

– map type: just here to enforce we are using a costmap.
– cost scaling factor: this parameter sets the scaling factor that applies over

the inflation. This parameter can be adjusted so the robot has a more ag-
gressive or conservative behaviour near obstacles.
e−cost scaling factor×(distance from obstacle−inscribed radius)×

(costmap 2d::INSCRIBED INFLATED OBSTACLE−1)

– observation sources: This last parameter is responsible for choosing the source
of the sensor data. We can both use here point cloud, as we’re using for the
kinect, or laser scan, as the commented lines suggest and as may be used for
a hokuyo or sick laser sensor. Along with the laser type, is very important to
set the correct name of the subscribed topic, so the navigation stack takes
the sensor data from the correct location.

Now that we have set all the costmap common parameters, we must set
the parameter specific to the local and global costmaps. We will analyse them
together, since most of the parameters are very similar. First, let’s take a look
at the files. For the global costmap we have:

global_costmap:

global_frame: /map

robot_base_frame: base_link

update_frequency: 1.0

publish_frequency: 1.0 #0

static_map: false

width: 50 #3.4

height: 50 #3.4

origin_x: -25 #-1.20 is the actual position; -0.95 is the old

one, for the frond wheel at the marker

origin_y: -25 #-1.91

resolution: 0.1

And for the local:

local_costmap:
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global_frame: /odom

robot_base_frame: base_link

update_frequency: 5.0

publish_frequency: 10.0

static_map: false

rolling_window: true

width: 3.0

height: 3.0

resolution: 0.025

As you can see, both of them start with a tag specifying the costmap to
which they relate. Then, we have the following common parameters:

– global frame: indicates the frame for the costmap to operate in.
– robot base frame: indicates the transformation frame of the robot’s base link.
– update frequency and publish frequency: The frequency(in Hz) for map up-

date and for publication of the display data.
– static map: indicates whether the system uses or not a static map.
– width and height: width and height of the map, in meters.
– resolution: resolution of the map in meters per cell. This parameter is usually

higher in smaller maps(local).

Aside from these common parameters, there’s the definition of the map size
along with the choosing between rolling window map or not. For the global map,
we adopted the fixed map(there’s no need to set rolling windows to false, since
it is the default), therefore we need to declare the x and y initial positions of the
robots in respect to the map window. For the local costmap, we use a rolling
window map and the only parameter we have to set is the rolling window to
true.

Lastly, we have the base local planner parameters file. The base local planner
treats the velocity data according to its parameters so the base controller receives
coherent data. Thus, the base local planner parameters are platform specific.
Let’s take a look at the configuration for the Pioneer 3-AT:

TrajectoryPlannerROS:

max_vel_x: 0.5

min_vel_x: 0.1

max_rotational_vel: 0.5

max_vel_theta: 0.5

min_vel_theta: -0.5

min_in_place_rotational_vel: 0.5

min_in_place_vel_theta: 0.5

escape_vel: -0.1

acc_lim_th: 0.5

acc_lim_x: 0.5
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acc_lim_y: 0.5

holonomic_robot: false

Again, we should analyse the most important parameters separately.

– min vel x and max vel x: The minimum and maximum velocities(in meter-
s/second) allowed when sending data to the mobile base. The minimum ve-
locity should be great enough to overcome friction. The maximum velocity
adjust is good for limiting the robot’s velocity in narrow environments.

– max rotational vel and min in place rotational vel: limits for the rotational
velocities, the difference is that rotational vel is the maximum rotation ve-
locity when the mobile base is also moving forward or backward, while
in place rotational vel is the minimum rotation vel so the robot can over-
come friction and turn without having to move forward or backward.

– min vel theta and max vel theta: the minimum and maximum rotational
velocities(in radians/second).

– min in place vel theta: alike min in place rotational vel, but in radians per
second.

– escape vel: this speed delimits the driving speed during escapes(in meters
per second). Its noteworthy that this value should be negative for the robot
to reverse.

– acc lim x, acc lim y and acc lim theta: accelerations limits. They are the x,y
and rotational acceleration limits respectively, wherein the first two are in
meters per squared second and the last is radians per squared second.

– holomic robot: this is a boolean responsible to choose between holonomic and
non-holonomic robots, so the base local planner can issue velocity commands
as expected.

Finally, we have a basic set up, contemplating all the usual parameters that
you have to configure and some more. There is a small chance that some param-
eter is missing for your configuration, therefore it is a good idea to do a quick
check in the base local planner[15] and costmap 2d [16] wiki pages.

The way that we have presented does not use layers, although ROS Hydro+
supports this feature. Porting these files to this new approach of costmaps is not
a hard task, and that’s what we will cover now.

3.7 Layered Costmaps

For this approach, we use the launchers and the configuration files from the
previous package. First, we create a package named p3at layer navigation, as
stated on the creating a package section. Then, we copy all files from the previous
package but the package.xml and CMakelists.txt files to the folder of the newly
created package. For the base local planner, nothing should be modified, since
the planning will not be affected in any way when exploding the maps in layers.
The common costmaps file is the one that will be affected the most, and here is
one example costmap common params.yaml file that illustrates this:
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robot_base_frame: base_link

transform_tolerance: 1.0

robot_radius: 0.35

footprint: [ [0.3302, -0.0508], [0.254, -0.0508], [0.254, -0.254],

[-0.254, -0.254], [-0.254, 0.254], [0.254, 0.254], [0.254,

0.0508], [0.3302, 0.0508] ]

inflater:

robot_radius: 0.35

inflation_radius: 0.35

obstacles:

observation_sources: pointcloud_sensor

pointcloud_sensor:

data_type: PointCloud2

topic: camera/depth/points

min_obstacle_height: 0.2

max_obstacle_height: 2.0

marking: true

clearing: true

z_voxels: 8

z_resolution: 0.25

max_obstacle_height: 2.0

As you can see in the file, the parameters don’t change much, the difference
is that they are organized in a different way: there are some parameters that
are common for all costmaps and there are some parameters that are common
between layers. In this example, we create two layers: a inflater layer, that con-
siders a circular robot with 35cm of radius, and, therefore, an inflation radius
of 35cm so it doesn’t collide with anything; a obstacles layer, that takes the
pointcloud data(if you are using a laser, please change that here) and passes this
data to the costmap.

The two other files have a slight modification: you should specify the layers
they are using by using the plugins mnemonic, as shown for the global costmap
configuration file:

global_frame: map

robot_base_frame: base_link

update_frequency: 1.0

publish_frequency: 1.0

static_map: false

width: 50

height: 50
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origin_x: -25 #-1.20 is the actual position; -0.95 is the old one,

for the frond wheel at the marker

origin_y: -25 #-1.91

resolution: 0.1

plugins:

- {name: obstacles, type: "costmap_2d::VoxelLayer"}

- {name: inflater, type: "costmap_2d::InflationLayer"}

The local costmap should have the same plugins statement at the end. More-
over, you can add any extra layers you want. The structure of the topics will
change a little bit, since the footprint is now inside the layers and the costmaps
are divided in multiple topics. You can get to know a little more about this
organization in the Using rviz section.

4 Starting with a Test

Before we begin the testing, we must find a way to visualize the navigation in
action. That can be done through the software rviz, that allows us, amongst
other things, to visualize the sensor data in a comprehensive way and to check
the planned paths as they are generated. The execution of rviz is often in a
computer different from the one that operates on the robot, so you may use
multiple machines that share the same ROS topics and communicate.

4.1 Using rviz

To run rviz, simply issue the following command:

1 $ rosrun rviz rviz

The interface of rviz depends on your version, but the operation should be
very similar. It is way easier to configure rviz with navigations stack up and
running, although it is possible to do so without it. In this tutorial we will
only cover the configuration steps when the navigation stack launcher is already
implemented, so make sure you have launched all the nodes needed for navigation
and just then launched rviz. After launching rviz, you should add the topics you
wish to display. First, let’s do an example by adding the PointCloud 2 from the
kinect, as shown in figure 3.

As you can see in figure 3, there are four steps for adding a new topic when
navigation stack is already running:

– 1) Click on the button ”add” at the bottom left-hand side of the screen;
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Fig. 3. Steps for adding new information for rviz to display.

– 2) Choose the tab ”By topic” on the windows that appears. This is only
possible when the topics are available, so if you don’t have the navigation
stack running you will have to choose the info in the tab ”By display type”
and manually insert the topic names and types.

– 3) Select the topic and its message type on the central frame of the win-
dow. In this example, we are selecting the PointCloud2 data that the kinect
provides on the /camera/depth registered/points topic.

– 4) Write a meaningful display name in the textbox, so you don’t forget what
the data is representing in the future.

– 5) Confirm the addition by pressing ”Ok”.

The process is equal for all kinds of topics, so a list of the most common
topics(note: depending if you changed some topic names, some things on the list
may differ) should be enough to understand and add all the topics you need.
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NAME TOPIC MESSAGE TYPE
ROBOT FOOT-
PRINT

/local costmap/robot footp
rint

geometry msgs/PolygonSt
amped

LOCAL COSTMAP /move base/local costmap
/costmap

nav msgs/GridCells

OBSTACLES LAYER /local costmap/obstacles nav msgs/GridCells
INFLATED OBSTA-
CLES LAYER

/local costmap/inflated ob
stacles

nav msgs/GridCells

STATIC MAP /map nav msgs/GetMap or nav
msgs/OccupancyGrid

GLOBAL PLAN /move base/TrajectoryPla
nnerROS/global plan

nav msgs/Path

LOCAL PLAN /move base/TrajectoryPla
nnerROS/local plan

nav msgs/Path

2D NAV GOAL /move base simple/goal geometry msgs/PoseStamp
ed

PLANNER PLAN /move base/NavfnROS/pl
an

nav msgs/Path

LASER SCAN /scan sensor msgs/LaserScan
KINECT POINT-
CLOUD

/camera/depth registered/
points

sensor msgs/PointCloud2

It is interesting to know a little more about topics that you haven’t heard
about, because every topic listed here is very valuable at checking the navigation
functionalities at some point. Therefore, lets do a brief explanation at each of
the topics:

– ROBOT FOOTPRINT: These message is the displayed polygon that rep-
resents the footprint of the robot. Here we are taking the footprint from the
local costmap, but it is possible to use the footprint from the global costmap
and it is also possible to take the footprint from a layer, for example, the
footprint may be available at the /move base/global costmap/obstacle laye
r footprint/footprint stamped topic.

– LOCAL COSTMAP: If you’re not using a layered approach, your local c
ostmap in its whole will be displayed in this topic.

– OBSTACLES LAYER: One of the main layers when you’re using a layered
costmap, containing the detected obstacles.

– INFLATED OBSTACLES LAYER: One of the main layers when you’re
using a layered costmap, containing areas around detected obstacles that
prevent the robot from crashing with the obstacles.

– STATIC MAP: When using a pre-built static map it will be made available
at this topic by the map server.

– GLOBAL PLAN: This topic contains the portion of the global plan that
the local plan is considering at the moment.

– LOCAL PLAN: Display the real trajectory that the robot is doing at the
moment, the one that will imply in commands to the mobile base through
the /cmd vel topic.
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– 2D NAV GOAL: Topic that receives navigation goals for the robot to
achieve. If you want to see the goal that the robot is currently trying to
achieve you should use the /move base/current goal topic.

– PLANNER PLAN: Contains the complete global plan.
– LASER SCAN: Contains the laser scan data. Depending on your config-

uration this topic can be a real reading from your laser sensor or it can be a
converted value from another type of sensor.

– KINECT POINTCLOUD: This topic, shown in the example, is a cloud of
points, as the name suggests, that forms, in space, the depthimage captured
by the kinect. If you are using a laser sensor, this topic will not be available.

These are the most used topics, however you may have a lot more depending
on your setup and in what you want to see. Besides, just the local costmap and
the most used layers of it were presented, but you may want to see the global
costmap and its layers, in addition to another layers that you may use. Explore
the topics you have running with the rviz and you may find more useful info.

4.2 Multiple Machines Communication

It is possible that you have to use more than one computer at the same time when
navigating with a robot. Usually, two computers are used: one is mounted on
the mobile base and is responsible for getting sensor data and passing velocities
commands to the robot, while the other is responsible for heavy processing and
monitoring.

To get the machines working together you must specify names for both ma-
chines in the /etc/hosts file on your system. The usual hosts file is similar to:

IPAddress Hostname
127.0.0.1 localhost
192.168.1.101 robot

192.168.1.100 masterpc

You have to choose a name for both the machines(here we chose robot and
masterpc) and add to both the /etc/hosts files the entries for them. The entry
on the /etc/hosts must have the IP of the machine in the wireless lan they share
and the name you picked(two new entries per file, one for itself and other for the
other PC). After that, you should set the ROS MASTER URI variables. In the
master machine, it should be:

1 $ export ROS MASTER URI=http://localhost:11311

In the other machine, you should type:
Test your configuration this way, and if the configurations work, add the

export lines to the end of the /.bashrc file of both computers, so every time a
terminal window is opened these commands are issued.
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1 $ export ROS MASTER URI=http://othermachine:11311

4.3 Real tests on Pioneer 3-AT

Finally, it is time to see the robot navigating. Launch your navigation file
and then run rviz. If you made all the correct configuration for the naviga-
tion stack and for rviz you should be able to see your robot footprint, pose and
the costmaps. Try selecting the 2D Nav goal at the top of the screen in rviz, click
and hold at some point on the map and then choose the direction, so the robot
knows where to go and in what position it should stop. A global path would be
generated, as well as a local, and you should see them indicated by green lines.
You can see an example of the robot navigating on figures 4 and 5.

Fig. 4. Example of the Pioneer 3-AT navigating in a room.

As you can see in the pictures, a global plan is drawn from the start point
to the finish point and a local plan is being drawn along the way, trying to
follow the global path without crashing. Conducting the tests we have found
that the robot does not works so great without AMCL working. Although, in
theory, the gmapping is self-sufficient and AMCL is only used for static maps,
we have found that, in practice, the robots get lost easily when using gmapping
only, that being because the odometry errors. Gmapping bases its mapping and
localization on the odometry and the odometry errors make it confused. When
you create the map with gmapping and send it to the AMCL node, it trusts the
map and adapts the odometry, and we have found that this use produces much
better results. In order to do that, you have to modify your launcher file, adding
the AMCL launcher in the navigation section. The code snippet will look like
this:
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Fig. 5. Example of the Pioneer 3-AT navigating in another room.

<launch>

<node name="amcl" pkg="amcl" type="amcl">

<param name="odom_frame_id" value="odom"/>

<param name="base_frame_id" value="base_link"/>

<param name="global_frame_id" value="map"/>

</node>

</launch>

Pay attention to the attribution of the right topic names and frame ids.
AMCL has a lot of other parameters, but, for our use here, the default parameters
were enough.
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