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Abstract: Mobile robot applications that involve exploration and inspection of dynamic envi-
ronments benefit, and often even are dependant on reliable novelty detection algorithms. In this
paper we compare and discuss the performance and functionality of two different on-line novelty
detection algorithms, one based on incremental Principal Component Analysis and the other on
a Grow-When-Required artificial neural network. A series of experiments using visual input
obtained by a mobile robot interacting with laboratory and real-world environments demonstrate
and measure advantages and disadvantages of each approach.
Keywords: real-time computer vision, on-line novelty detection, mobile robotics.

1. Introduction

Differentiation between common and uncommon
stimuli is a desirable ability for mobile robots op-
erating in dynamic environments, since uncommon
features often carry the most useful information and
therefore deserve to be analysed in more detail. In
fact, any agent aiming at true autonomy, adaptabil-
ity to new situations and continuous operation needs
to prioritise its actions — which can be achieved with
a novelty detection mechanism using on-line unsuper-
vised learning.

From an application point of view, reliable novelty
detection systems would facilitate the implementa-
tion of automated environment exploration and in-
spection. In these tasks — differently from pattern
recognition tasks in which features of interest are al-
ready known — one commonly desires to detect any
previously unknown entity. Therefore, the feasible ap-
proach to be followed is to learn a model of normality
of the environment and use it to filter out abnormal
perceptions.

Previous work has demonstrated that the approach
of learning models of normality and using them later
to highlight abnormalities is very effective for mobile
robots that use sonar readings as perceptual input
(Marsland et al., 2002). This work resulted in the de-
velopment of the Grow-When-Required (GWR) neu-
ral network, a self-organising learning mechanism that
is able to classify stimuli as novel or not through the
use of a model of habituation.

The GWR network has shown to work well with
low-dimensional input data, such as a vector of sonar
measurements. However, in the past few years we
have been interested in investigating the scalability of
the GWR approach to another rather different sensor
modality, vision. Our interest in using vision for nov-

elty detection purposes comes from the much wider
range of information about the environment this sen-
sor can provide.

A major difficulty that comes with vision is to se-
lect which aspects of the data are important to be
encoded, as it is normally undesirable to process high-
dimensional data directly due to restrictions in com-
putational resources. In previous studies, a mecha-
nism of attention that selects salient locations within
the image frame (Itti et al., 1998) so that some image
encoding can be performed in their vicinity was suc-
cessfully employed (Vieira Neto and Nehmzow, 2004,
Nehmzow and Vieira Neto, 2004). The purpose of
the image encoding stage was to reduce dimension-
ality of input data to the GWR-based novelty filter
while trying to preserve discriminability between dif-
ferent classes of features as much as possible.

Designing the image encoding stage is not trivial
because it is not always clear to the designer which
elements of the data are the most relevant. It would
be more desirable to select which parts are the most
important in a bottom-up approach and hence our
interest in the Principal Component Analysis (PCA)
algorithm. PCA consists of projecting the data onto
principal axes — the axes in which variance is max-
imised — obtained from the data itself.

The standard PCA algorithm is usually computed
in batch mode and needs all the input data to be avail-
able at once, making it unsuitable for on-line learning
systems. Recently, however, an algorithm for incre-
mental computation of PCA was introduced by Artač
et al. (Artač et al., 2002), which has an embedded
novelty detection mechanism.

In this paper we report experiments using novelty
filters based on the incremental PCA and GWR net-
work approaches and compare their performances in
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Figure 1: The visual novelty detection framework: salient

image patches are selected within the images acquired

from the environment and then either of the novelty filters

is used to indicate the presence of novelty.

laboratory and real-world environments. Figure 1
shows a block diagram that illustrates the framework
in which both methods were tested.

In order to generate the input for the novelty filters
we have used a visual attention mechanism to select
smaller image patches within the input frame. We
briefly describe the attention mechanism in the next
section, followed by both techniques used for novelty
detection. Finally, we present in detail the experimen-
tal setup in which trials were conducted and discuss
the results obtained.

2. Visual attention

The high dimensionality of visual data imposes serious
constraints to real-time processing, especially when
using mobile robots with restricted computational re-
sources. It is therefore prohibitive to process an entire
image frame, even when using low resolution — the
use of some sort of dimensionality reduction scheme
that preserves important and distinctive features of
the visual data is needed before any higher level pro-
cessing can be done.

Also, images acquired from a mobile robot are
subject to several geometrical transformations result-
ing from changes in perspective. Hence, the näıve
approach of comparing entire image frames directly
would most definitely not work properly, leading to
the misclassification of known features as novel due
to simple image transformations.

In this work we have used the saliency map
(Itti et al., 1998) as a mechanism of visual attention
to select distinctive regions in the input image frame
(152 × 120 pixels in size). The saliency map is a
bottom-up model and comprises the combination of
several multi-scale feature maps in intensity, colour
and orientation of visual features, allowing the de-
tection of conspicuous locations within the image
frame that are generally robust to geometric trans-

formations. Further details of the implementation of
the saliency map used in this work can be found in
(Vieira Neto and Nehmzow, 2004).

We have used the nine highest values of the saliency
map for each input frame to select the most “inter-
esting” image regions so that image patches can be
extracted from their vicinity. The image patches used
in the experiments reported here were 24×24 pixels in
size. As we have used RGB colour images, the result-
ing input vectors for the two alternative novelty filters
being compared have 24×24×3 = 1728 elements. In-
put vectors were normalised before being fed to the
novelty filters to even out lighting conditions.

As in this work the similarity between image
patches is computed in a pixel-by-pixel basis using
Euclidean distance, it is important to have the image
patches aligned as much as possible to minimise er-
rors. The saliency map has an important role in this
task as the location of salient points tend to be very
stable and therefore minimises image patch misregis-
tration.

The present implementation handles trans-
lation effects only, but other algorithms allow
invariance to scale and rotation (Lowe, 2004),
and also invariance to affine transformations
(Mikolajczyk and Schmid, 2002). In this paper,
generalisation with respect to scaling, rotation
and affine transformations is achieved by means of
the acquisition of several vectors for geometrically
transformed versions of the same visual features.

3. Novelty filters

3.1 The GWR network

The Grow-When-Required (GWR) is an artificial neu-
ral network that was especially designed for the task
of on-line novelty detection (Marsland et al., 2002).
It combines a clustering mechanism and a model of
habituation to decide if a determined input is novel
and therefore needs to be incorporated to the current
model. A summary of the operation of the GWR net-
work is given in Algorithm 1.

The network is initialised with two unconnected
nodes, whose weights are set to the first two input
vectors. As further input vectors are presented to the
network, the algorithm is able to decide which rep-
resent novel features, based on how well they match
existing habituated nodes, building and exploiting a
topological map of the input space.

In previous work we have used the GWR net-
work for visual novelty detection using local colour
histograms as inputs, and assessed its performance
quantitatively (Vieira Neto and Nehmzow, 2004,
Nehmzow and Vieira Neto, 2004). In the experi-
ments reported here, we used normalised raw image
patches in order to compare performance and func-
tionality fairly with the alternative novelty detection
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Algorithm 1: GWR network novelty detection.
The parameters used were: aT = 0.9, hT = 0.3,
η = 0.1, ε = 0.1, τ = 3.33, α = 1.05, h0 = 1,
S(t) = 1 and agemax = 20.
Input: current set of nodes A, current set of

connections C, new input vector x.
Output: updated set of nodes A, updated set of

connections C, novelty indication N .

Find the best and second best matching nodes s1

and t: s = arg min
i∈A(n)

‖ x−wi ‖,

t = arg min
i∈A(n)/{s}

‖ x−wi ‖, where wi is the

weight vector of the node i.
If there is a connection between s and t, set its2

age to zero, otherwise create it: C = C ∪ {(s, t)}.
Compute the activity of the best matching node:3

as = exp(− ‖ x−ws ‖).
Test if the activity and habituation values of the4

best matching node characterise novelty:
if as < aT and hs < hT then

Add a new node: A = A ∪ {r}.5

Set the weight vector of the new node:6

wr = (x + ws)/2.
Create connections between the new node7

and the best and second best matching
nodes: C = C ∪ {(r, s), (r, t)}.
Remove the connection between the best and8

second best matching nodes: C = C/{(s, t)}.
Indicate novelty detected: N = 1.9

end10

else Indicate no novelty detected: N = 0.11

Compute the activity of the best matching node’s12

neighbours (nodes with connections to the best
matching node): an = exp(− ‖ x−wn ‖).
Adapt the positions of the best matching node13

and its neighbours: ws = ws + ε(x−ws),
wn = wn + ηan

as
ε(x−wn).

Age connections to the best matching node:14

age(s,n) = age(s,n) + 1.
Habituate the best matching node and its15

neighbours: τ dhs(t)
dt = α[h0 − hs(t)]− S(t),

as

ηan
τ dhn(t)

dt = α[h0 − hn(t)]− S(t).
Remove any nodes without any neighbours.16

Remove any connections with age greater than17

agemax.

algorithm based on incremental PCA.

3.2 Incremental PCA

Principal Component Analysis (PCA) is a very use-
ful tool for dimensionality reduction that allows re-
construction of the original data with minimal loss of
information. It is based on projecting the input data
onto its principal axes and is usually computed off-

line, as the standard algorithm requires that all data
samples are available a priori, making it unsuitable
for applications that demand on-line learning.

However, a method for the incremental compu-
tation of PCA recently introduced by Artač et al.
(Artač et al., 2002) makes simultaneous learning and
recognition possible. Their technique allows the
original data to be discarded immediately after the
eigenspace is updated, storing only the (reduced di-
mension) data projected onto it.

In this work we employ the method proposed by
Artač et al. to perform on-line novelty detection, us-
ing the magnitude of the residual vector, i.e. the RMS
error between original data and the reconstruction of
its projection onto the current eigenspace, to classify
the input as novel or not. Algorithm 2 summarises
how this approach is implemented.

Algorithm 2: Incremental PCA novelty detec-
tion.
Input: current mean vector µ(n), current

eigenvectors U(n), current projected
vectors A(n), new input vector x,
residual threshold rT .

Output: updated mean vector µ(n+1), updated
eigenvectors U(n+1), updated projected
vectors A(n+1), novelty indication N .

Compute the projection of the new input vector1

using the current basis: a = U(n)T(x− µ(n)).
Compute the reconstruction of the new input2

vector: y = U(n)a + µ(n).
Compute the residual vector (orthogonal to3

U(n)): r = x− y.
Test if the magnitude of the residual vector is4

large enough to characterise novelty:
if ‖ r ‖> rT then

Append residual vector as a new basis vector:5

U′ =
[

U(n) r
‖r‖

]
.

Append projected vector:6

A′ =
[

A(n) a
0 ‖ r ‖

]
.

Perform batch PCA on A′, obtaining its7

mean vector µ′′ and eigenvectors U′′.
Update projected vectors using the new basis:8

A(n+1) = U′(A′ − µ′′11×n+1).
Update eigenvectors: U(n+1) = U′U′′.9

Update mean vector: µ(n+1) = µ(n) + U′µ′′.10

Indicate novelty detected: N = 1.11

end12

else Indicate no novelty detected: N = 0.13

The algorithm is made completely incremental by
initialising the eigenspace and projected vectors as fol-
lows: µ(1) = x(1), U(1) = 0M×1 and A(1) = 0, where
x(1) is the first input vector and 0M×1 denotes an
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M ×1 matrix of zeros, M being the dimensionality of
the input.

In this approach, dimensionality reduction is
achieved by exploiting the fact that the number of
eigenvectors in the model are likely to be less in
number than the dimensionality of the input vectors
(24 × 24 × 3 = 1728). If all eigenvectors are kept
in the model, perfect reconstruction of the original
data is achieved. This functionality allows the user to
reconstruct the input image patches from the stored
projected vectors and have a perfect notion of which
aspects of the environment were learnt.

Further dimensionality reduction can be achieved
by keeping only the eigenvectors corresponding to the
k < n largest eigenvalues in the model at the expense
of losses in reconstruction (and possibly in the recog-
nition rate of the system). The selection of eigen-
vectors can be done while computing the batch PCA
during learning (step 7 in Algorithm 2). In this work
we have set the threshold for the magnitude of the
residual vector as rT = 0.2 and we kept only eigen-
vectors whose corresponding eigenvalues were larger
than 1% of the largest eigenvalue.

4. Experiments

In order to compare the performance of the afore-
mentioned novelty detection mechanisms we have de-
signed a series of experiments consisting of two differ-
ent phases: an exploration phase in which the robot
learns a visual model of normality for its operating
environment; and an inspection phase in which the
learnt model is used to highlight any abnormal visual
feature that may appear in the environment.

A bounded square arena was built with cardboard
boxes, where a Magellan Pro mobile robot was used to
collect images while navigating using a simple obsta-
cle avoidance behaviour. Later, the same robot and
navigation strategy were used to collect images in a
real corridor at the University of Essex. Although
both novelty filters being compared here are able to
run in real-time, the images were collected for off-line
processing in order to make fair comparisons by using
the same dataset for both methods.

4.1 Quantitative Assessment

For the purpose of assessing the performance of each
novelty detection method — GWR and IPCA — we
first generated a baseline, a “ground truth” by la-
belling each pixel in each image frame manually as
“novel” or “not novel” (any image patch selected
by the mechanism of visual attention containing at
least 10% of highlighted pixels was then labelled as
“novel”).

This yielded 2 × 2 contingency tables that re-
lated the two categories “novelty present” and
“novelty not present” with the two responses
“novelty detected” and “novelty not detected”

(Vieira Neto and Nehmzow, 2005).
Once the contingency table was constructed, we

first ascertained that the mechanism under investiga-
tion yielded a statistically significant correlation be-
tween ground truth and system response, using a χ2

analysis. The strength of that association was then
quantified, using both Cramer’s V and the uncer-
tainty coefficient U (Nehmzow, 2000)1.

To put performance into relation to cost, we also
compared the size of the models acquired by the two
approaches.

Every round of the exploration or inspection phases
consisted of five consecutive loops around the arena
(2250 input samples, corresponding to 9 salient re-
gions per image frame in a total of 250 frames) or
three journeys along the corridor (1350 input samples,
corresponding to 9 salient regions per image frame in
a total of 150 frames).

4.2 Results

The first round of experiments comprised of the robot
exploring the empty arena in order to build a model of
normality for it. After that, the robot inspected the
arena when two different objects (one at each time)
were introduced into the arena: a very conspicuous
orange football and a much less conspicuous grey box.
The results obtained for both approaches are given in
Table 1.

Novelty Filter GWR IPCA
Learnt model 4 vectors 35 vectors

V = 0.94 V = 0.90Orange ball
U = 0.85 U = 0.82
V = 0.75 V = 0.86Grey box
U = 0.59 U = 0.70

Table 1: Experiment 1 - exploration of the empty arena

and inspection of the arena containing a novel object (or-

ange football or grey box).

Both systems produced a statistically significant
correlation between system response and ground truth
( χ2 analysis, p < 0.01). It can be noticed from Ta-
ble 1 that the strengths of association obtained for
both systems are similar. The GWR network model
consists of only 4 vectors (with the 1728 original di-
mensions) while the incremental PCA model consists
of 35 vectors (with 33 compressed dimensions).

Figure 2 visually depicts the results obtained for
frames where the orange football and the grey box ap-
peared, respectively. For the particular image frames
shown in Figure 2, results were exactly the same for
both approaches.

1Both V and U are close to 0 for very weak associations,
and 1 for perfect associations. The closer U and V are to
1, the better the performance of the novelty detector under
investigation.
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(a)

(b)

Figure 2: Results obtained with the visual novelty detec-

tion mechanism in experiment 1: (a) the orange football

as new object; and (b) the grey box as new object. White

circles designate image patches labelled as novel by the

system, while numbers indicate salient locations within

the image frame, which were then evaluated for possible

novelty by the respective novelty filter.

Obviously, we needed to establish that the task of
novelty detection was actually achieved by our nov-
elty filters, rather than the saliency map, which was
merely employed to make a pre-selection of image
patches to be evaluated for possible novelty. We there-
fore conducted a second round of experiments. This
time the robot had explored the arena containing the
conspicuous orange football and inspected it with the
inclusion of the inconspicuous grey box in two differ-
ent situations: first in a different location and then in
the same location as the ball.

Both GWR and PCA were able to detect the novel
object successfully in each situation, regardless of the
presence or not of the much more salient — but al-
ready known — orange ball in the same image frame.
This is illustrated in Figure 3, which shows the re-
sponse of the incremental PCA algorithm.

Both GWR and PCA produced statistically signif-

Figure 3: Results obtained with the visual novelty detec-

tion mechanism in experiment 2: the grey box is correctly

detected as novel regardless of the presence of the much

more salient but already known orange football. The out-

put shown is the one provided by the incremental PCA

approach, as the GWR-based approach only labelled re-

gion 0 as novel.

icant correlations between ground truth and system
response (χ2 analysis, p < 0.01), the strengths of as-
sociation obtained for this round of experiments are
given in Table 2 and show a slight superiority of the
incremental PCA approach in this situation.

Novelty Filter GWR IPCA
Learnt model 18 vectors 45 vectors

Grey box (different V = 0.76 V = 0.82
location as ball) U = 0.58 U = 0.63
Grey box (same V = 0.50 V = 0.65
location as ball) U = 0.21 U = 0.37

Table 2: Experiment 2 - exploration of the arena contain-

ing the orange football (“not novel”) and inspection of the

arena containing a novel object (grey box in the same lo-

cation as the ball and in a different location as the ball).

A third round of experiments was conducted in
a similar fashion as the previous one, but reversing
known and novel objects: this time the robot explored
the arena containing the grey box and inspected it
with the inclusion of the orange football. Again, two
instances were analysed: the orange ball in the same
location as the grey box and also in a different loca-
tion in the arena.

Both approaches were able to detect the orange ball
as the novel entity correctly. Again, system responses
were significantly correlated with ground truth (χ2

analysis p < 0.01), the strengths of association ob-
tained are given in Table 3.

Figure 4 shows an example of output obtained dur-
ing the third round of experiments (for the particular
image frame shown, results were exactly the same for
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Novelty Filter GWR IPCA
Learnt model 11 vectors 47 vectors

Orange ball (different V = 0.86 V = 0.88
location as box) U = 0.69 U = 0.80

Orange ball (same V = 0.92 V = 0.83
location as box) U = 0.81 U = 0.72

Table 3: Experiment 3 - exploration of the arena contain-

ing the grey box and inspection of the arena containing a

novel object (orange football in the same location as the

box and in a different location as the box).

Figure 4: Results obtained with the visual novelty detec-

tion mechanism in experiment 3: the orange football is

correctly detected as novel regardless of the presence of

the already known grey box.

both methods).
Finally, a fourth round of experiments was con-

ducted in a corridor at the University of Essex. The
robot explored the empty corridor and inspected it
with the inclusion of three different objects at differ-
ent times: a black rubbish bag, a dark brown bin and
a yellow wooden board. Table 4 gives the results ob-
tained in this round of experiments.

Novelty Filter GWR IPCA
Learnt model 48 vectors 80 vectors

V = 0.65 V = 0.67Black bag
U = 0.39 U = 0.42
V = 0.66 V = 0.53Brown bin
U = 0.44 U = 0.28
V = 0.70 V = 0.86Yellow board
U = 0.42 U = 0.74

Table 4: Experiment 4 - exploration of the empty corri-

dor and inspection of the corridor containing a novel ob-

ject (black rubbish bag, dark brown bin or yellow wooden

board).

Again, both methods were able to identify novel
objects correctly, and produced a statistically signifi-
cant correlation between system response and ground

truth (χ2 analysis, p < 0.01). Table 4 gives V and U
for this experiment.

Figure 5 shows examples of the output provided
by the novelty filters, all novel features are correctly
identified.

4.3 Discussion

In all experiments the novelty detectors produced a
statistically significant correlation between system re-
sponse and actual ground truth. In other words, they
both worked as desired. Tables 1, 2, 3 and 4 illustrate
the strength of this correlation.

Although the strength of the association measured
by Cramer’s V and the uncertainty coefficient U are
not all that close to 1 in some situations, the results
have to be understood as “very conservative” for two
reasons.

First, if the consistency of novelties detected be-
tween successive image frames is taken into account,
it is possible to rule out most false positives (novelty
detected but not present). And second, most false
negatives (novelty present but not detected) can be
eliminated using the fact that a single image patch
within the new object labelled as new is enough to
characterise the entire object as novel. Nevertheless,
the values of V and U serve well to the purpose of
comparing performance.

Results given by both systems are similar in per-
formance, although the size of the models acquired
by each one are very different for the set of parame-
ters used: in experiment 1 the GWR net needed only
four vectors while incremental PCA used 35; in exper-
iment 2 the GWR net acquired a total of 18 vectors
and incremental PCA 45; in experiment 3, 11 vectors
were acquired by the GWR net and 47 by incremental
PCA; and finally, in experiment 4, the GWR net ac-
quired 48 vectors against 80 vectors acquired by incre-
mental PCA. Throughout all experiments, therefore,
the incremental PCA algorithm proved to be more
expensive in terms of memory and computing power.

The smaller amount of vectors learnt by the GWR
had always the original input dimensionality (1728
elements), while the dimensionality of the vectors ac-
quired by incremental PCA varied from 12 to 33 di-
mensions. However, every dimension of the projected
vectors acquired by the incremental PCA approach
corresponds to an eigenvector with 1728 elements, re-
sulting in the allocation of more memory. Also, on av-
erage, the GWR-based novelty filter performed twice
as fast as the incremental PCA algorithm.

Dimensionality issues become important when we
consider that the Euclidean metric was used to de-
termine similarity between vectors. When Euclidean
distance is used, a small difference between two high-
dimensional vectors tend to be large in value, mak-
ing it difficult to establish thresholds of similarity for
high-dimensional spaces, as it is the case with the vec-
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(a)

(b)

(c)

Figure 5: Results obtained with the visual novelty detec-

tion mechanism in experiment 4: (a) the black rubbish bag

as new object; (b) the dark brown bin as new object; and

(c) the yellow wooden board as new object. The output

shown in (a) and (b) was identical for both approaches,

but the output shown in (c) was provided by the incre-

mental PCA approach, as the GWR-based approach did

not label region 4 as novel.

tors acquired by the GWR network.
However, the PCA algorithm offers some advan-

tages over the GWR mechanism. Initially, in the in-
cremental PCA approach similarity between inputs
is performed by the residual error in reconstruction
from the projected space. Moreover, if a direct com-
parison of projected vectors is to be made, substi-
tution of the Euclidean distance by the Mahalanobis
distance can be easily implemented in the incremen-
tal PCA approach once the covariance matrix of the
stored projected vectors is available as a sub-product
of the method (step 7 in Algorithm 2). The Maha-
lanobis distance normalises the contribution of vector
elements according to the covariance matrix of the
data:

dxy =
√

(x− y)TC−1(x− y) (1)

where dxy is the Mahalanobis distance between the
column vectors x and y and C is the covariance ma-
trix of the data. Euclidean distance corresponds to
the special case where C is the identity matrix.

Another advantage of the incremental PCA ap-
proach is the ability to reduce dimensionality auto-
matically, allowing optimal reconstruction of the orig-
inal input image patch from the inverse transforma-
tion of the corresponding projected vector. Therefore,
the user can evaluate which parts of the environment
were actually learnt by the system. Figure 6 shows
the reconstructed image patches that were acquired
during experiment 2. It can be noticed that the recon-
struction of the stored vectors in the GWR network
resulted in averaged image patches resulting from the
learning procedure (step 13 in Algorithm 1).

(a)

(b)

Figure 6: Reconstructed image patches acquired during

experiment 2: (a) GWR network; and (b) incremental

PCA.

The GWR network, however, has the advantage
of building a topological map for the stored vec-
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tors, through connections between similar patterns.
We have experimented with increasing the number of
stored vectors in the GWR approach by raising the ac-
tivation threshold aT in order to acquire a number of
vectors as close as possible to the number of vectors
acquired by the incremental PCA. This resulted in
better reconstruction of the stored vectors, but also
noticeably decreased the overall performance of the
GWR-based system. As one would expect, the num-
ber of false negatives decreased, but on the other hand
the number of false positives increased immensely. We
attribute this effect to the use of Euclidean distance
in a high-dimensional space.

5. Summary and Conclusion

We have compared the performance and functionality
of two on-line novelty detection methods: one that
uses an incremental PCA approach and another based
on the GWR neural network. The incremental PCA
approach provides slightly better overall performance,
while offering advantages of embedded dimensional-
ity reduction and good reconstruction ability, which
is extremely useful in assessing which parts of the en-
vironment were actually learnt by the system, at the
cost of higher memory and computing power require-
ments.

The difficulty in evaluating similarity between
inputs in high dimensions using Euclidean dis-
tance normally forces the system designer to use
an additional preprocessing stage, such as the use
of colour statistics (Vieira Neto and Nehmzow, 2004,
Nehmzow and Vieira Neto, 2004), for dimensionality
reduction when using the GWR network. On the
other hand, the GWR approach offers the functional-
ity of constructing a topological relationship between
inputs. Future investigations aim at combining the
embedded dimensionality reduction feature of the in-
cremental PCA with the topological construction al-
gorithm of the GWR network using the Mahalanobis
distance as a measure of similarity between patterns.

Considering the overall system functionality, the at-
tention mechanism plays an important role in gen-
eralisation by providing image patches that are ro-
bust to translations and therefore reducing the num-
ber of stored vectors. Alternatives for the atten-
tion model that also offer invariance to scale and
rotation (Lowe, 2004), and also affine transforma-
tions (Mikolajczyk and Schmid, 2002) may improve
the generalisation ability of the system, helping to re-
duce the number of stored vectors. Extensions to the
incremental PCA algorithm that make it robust to
occlusions (Skočaj and Leonardis, 2003) are also at-
tractive for future investigations.

A final contribution of this paper is the introduction
of a method to evaluate the performance of novelty de-
tection systems based on contingency table analysis.
A quantitative assessment can be made by the compu-

tation of Cramer’s V and the uncertainty coefficient
U , while the statistical significance of the association
between system response and actual novelty status
can be made by χ2 analysis.
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