
On-line Visual Novelty Detection in Autonomous Mobile
Robots

Hugo Vieira Neto
Graduate School of Electrical Engineering and Applied Computer Science,

Federal University of Technology – Paraná, Brazil

1 Introduction

Autonomous mobile robots face great challenges in order to operate in complex dynamic environments. On one
hand, it is necessary to sense the environment in such a way that relevant information is gathered for the execution
of the desired robotic task – in this sense, some of the most useful and interesting applications require the use
of relatively high resolution vision sensors, which are potentially able to provide multi-modal environmental
information ranging from low-level colour and texture to high-level depth and motion. But on the other hand, the
limited computational resources available to an autonomous mobile robot are often not enough to process all the
massive amounts of collected visual data in real-time.

A possible solution to this problem is to enable the robot to learn continuously about its operating environ-
ment, using selective attention to filter out aspects from the environment which are likely to be relevant for the
desired task and novelty detection to highlight unusual stimuli that should be subject to higher levels of processing
and analysis. Novelty detection – the competence to identify perceptions that were never experienced before – is
a fundamental ability for autonomous mobile robots that aim at learning details from their operating environment
continuously. This is the case for tasks that involve unsupervised environment exploration and mapping, in which
knowledge is to be acquired incrementally and without supervision. Moreover, novelty detection mechanisms
also make automated inspection and surveillance tasks possible by providing the robot with the ability to pinpoint
unusual situations in its environment.

In this chapter we present variations of an on-line visual novelty detection framework that can be used in
environment exploration and inspection by autonomous mobile robots. Novelty detection tasks are fundamentally
different from usual pattern recognition problems in which the main features of interest are known beforehand.
For example, in a face recognition task one can determine beforehand that a face is roughly composed of two
eyes, a nose and a mouth in a particular geometrical arrangement – i.e. there is a model, which can be more or
less refined, to be searched for. In contrast, in novelty detection tasks there are no a priori models to be searched
for, because novelty can be anything that deviates from the usual perceptions from the environment. Arguably, the
most feasible approach to be followed to solve the novelty detection problem is to learn a model of normality of
the robot’s environment, and then use it to filter out any abnormal sensory perceptions (Tarassenko et al., 1995).
Following this approach, abnormal perceptions are conveniently defined as anything that does not fit the acquired
model of normality.
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The first successful use of novelty detection mechanisms in physical autonomous mobile robots perform-
ing exploration and inspections tasks was initially done using low-resolution sonar data (Crook et al., 2002;
Marsland et al., 2002a), following some trials using very rough monochromatic vision (Crook & Hayes, 2001;
Marsland et al., 2001). More recently, a more comprehensive framework for novelty detection using more refined
high-resolution colour vision in autonomous mobile robots, which is discussed in this chapter, was proposed in
(Vieira Neto, 2006). The main idea behind all of these approaches is to use an on-line unsupervised learning
mechanism to acquire a model of normality of the environment and then use it to highlight any unusual sen-
sory perceptions. In this work we initially focus on the use of the Grow-When-Required (GWR) neural network
(Marsland et al., 2002b) (section 3) as an on-line novelty filter for visual features. More details about this and
other available novelty detection approaches can be found in specialised surveys (Hodge & Austin, 2004; Markou
& Singh, 2003a; Markou & Singh, 2003b; Marsland, 2003).

In order to use high-resolution visual information as the main perceptual input for learning mechanisms
in general, especially if real-time operation is desired, it is almost always imperative to perform some sort of
dimensionality reduction that preserves essential features and throws away unnecessary details of the raw visual
data. One way of achieving dimensionality reduction is to model the probability distribution of the features of
interest in the image – a popular choice for this task is the use of image descriptors based on histograms (Bay
et al., 2008; Lowe, 2004; Swain & Ballard, 1991) or colour angular indexing (Finlayson et al., 1996), which can
successfully be used to represent features from the entire image frame in a global fashion.

Figure 1 shows a block diagram of a generic visual novelty detection framework that uses a global image
encoding approach in order to achieve dimensionality reduction.

Figure 1: Global visual novelty detection block diagram: a colour camera is used to acquire an image
from the environment, which is then encoded in a global feature descriptor with lower dimensionality,
which is fed to a novelty filter that determines when novel features are present in the camera’s field of
view.

The global image description approach shown in figure 1 allows the novelty detection system to determine
when novel features enter the field of view of the robot’s camera, as will be shown in section 4. However, a much
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more useful approach should not only determine when but also where novel features are localised within the field
of view of the robot’s camera, as will be shown in section 6. In this new approach, a visual attention mechanism is
used in order to select relevant image regions that are represented by local feature descriptors. Local description
of small image regions in the vicinity of interest points selected by an attention mechanism not only results in data
dimensionality reduction and allows to determine the location of important features, but also represents details
that would otherwise be lost in a global description.

A block diagram of a generic visual novelty detection framework that uses an attention-based local image
encoding approach is shown in figure 2.

Figure 2: Local visual novelty detection block diagram: the colour image acquired from the environ-
ment is subject to an attention mechanism, which selects salient regions to be encoded in local feature
descriptors, which are then fed to a novelty filter that not only determines when but also where novel
features are present within the camera’s field of view.

There are several choices for the selective attention mechanism (Bay et al., 2008; Kadir & Brady, 2003;
Lowe, 2004; Mikolajczyk & Schmid, 2004; Itti et al., 1998), which aims at selecting interest points around
which the local descriptive information content is maximised according to some criteria. However, a particularly
interesting selective attention mechanism in the context of the local visual novelty detection framework presented
in figure 2 is the saliency map model (Itti et al., 1998) (section 5), which combines different visual features in
multiple scales in order to obtain a general indication of visual saliency at each image location. The concept of
assessing saliency – the property to stand out from the background – is very convenient for the identification of
uncommon features, which is precisely what is desired in novelty detection tasks. In this local image description
approach, the saliency map model acts as the first selection stage of candidate unusual regions within single image
frames that will be subject to further analysis by the novelty filter itself in a more general sense.
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One final aspect, investigated in section 8, is the possibility of achieving both image description and nov-
elty detection within a single algorithm. As explained earlier, some sort of dimensionality reduction of the raw
visual data is often necessary to allow real-time operation of the learning mechanisms involved in novelty detec-
tion. The low-dimensionality image description to be used should ideally preserve essential features and discard
unnecessary details of the visual data. However, “essential features” and “unnecessary details” are not always
clear to the designer of such a system and therefore a bottom-up approach that autonomously extracts relevant in-
formation from the raw data itself seems to be much more convenient. In this sense, a very interesting mechanism
that allows both bottom-up dimensionality reduction of raw visual data and novelty detection is the incremental
Principal Component Analysis algorithm for on-line visual learning and recognition (Artač et al., 2002) (sec-
tion 7). This approach yields a bottom-up description that allows image reconstruction, which provides the user
with visual information of which aspects were acquired in the model of normality of the environment, something
that was not possible when using the previously discussed top-down image description approaches.

The remaining sections of this chapter describe details of the algorithms used in all variations of the on-line
visual novelty detection framework in discussion and also show practical results of their use in the experimental
setup described in section 2. Section 3 describes the GWR neural network and how it can be used as a novelty
filter. A demonstration of the performance of a visual novelty detection approach using the GWR neural network
and global image descriptors in a physical mobile robot follows in section 4. Next, the description of the saliency
map model of visual attention is given in section 5, followed by a demonstration in section 6 of the performance
of the same visual novelty detection approach, but now using local image descriptors. Section 7 describes how
incremental PCA can be used alternatively as a visual novelty filter with autonomous image representation, whose
performance is then demonstrated in section 8. Finally, conclusions are drawn in section 9.

2 Experimental Setup

In order to demonstrate the performance of the visual novelty detection framework in discussion, experiments
were devised and conducted in a controlled laboratory scenario. Every experimental round consists of two stages:
an exploration (learning) phase, in which a physical mobile robot is used to acquire a model of normality of the
operating environment, followed by an inspection (application) phase, in which the acquired model is then used
to highlight any abnormal perceptions that may be encountered by the robot in the same operating environment.

During the learning phase, images are acquired while the robot navigates around a “baseline” environ-
ment – an empty arena delimited by cardboard boxes. These images are encoded in order to generate input
feature vectors and train the learning mechanism (GWR neural network or incremental PCA algorithm) that later
will be used as novelty filter. The expected outcome is that the amount of novelty detected during the exploration
phase continuously decreases as a result of learning. During the application phase, novel objects are deliberately
placed within the robot’s operating environment and new images are acquired during navigation in order to test
the performance of the trained novelty filter. It is expected that peaks in the novelty measure now appear only
when a new object appears in the field of view of the robot’s camera.

Figure 3 depicts the experimental setup used for the laboratory experiments that follow in this chapter. The
colour vision system of the Magellan Pro mobile robot shown in figure 3a was used to generate visual stimuli
while navigating in the square arena delimited by cardboard boxes shown in figure 3b. The cardboard boxes act
as walls that limit the robot’s trajectory and visual world – only the walls of the arena and the floor are within
the camera’s field of view. Figure 3c also shows the top view of the trajectory followed by the robot inside the
arena with its corners numbered from one to four. Novel objects were placed in the corners of the arena so that
the performance of the novelty filter could be assessed.
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Figure 3: Experimental setup: (a) Magellan Pro mobile robot; (b) robot arena made of cardboard
boxes; (c) top view of the trajectory followed by the robot (represented by a circle with a line indicating
its front) inside the arena delimited by the cardboard boxes (represented by rectangles).

3 The GWR Neural Network

The GWR neural network (Marsland et al., 2002a; Marsland et al., 2002b) is a self-organising neural network that
consists of a clustering layer of nodes and a single output node. Clustering nodes consist of model weight vectors
that represent centres of clusters in input space, associated to radial basis activation functions that determine the
receptive field of each cluster. The synapses which connect nodes in the clustering layer to the output node are
subject to a model of habituation, which is a reduction in response to inputs that are repeatedly presented – the
more a clustering node fires, the weaker its output synapse becomes.

The habituation rule of the synaptic efficacy of clustering nodes to the output node is given by the following
first-order differential equation:

τ
dh(t)

dt
= α[h0−h(t)]−S(t), (1)

where h0 is the initial value of the synaptic efficacy h(t), S(t) is the stimulus, and τ and α are time constants that
control the habituation rate and recovery rate, respectively. S(t) = 1 causes habituation (reduction in synaptic
efficacy) and S(t) = 0 causes dishabituation (recovery of synaptic efficacy).

Typically, τ = 3.33, α = 1.05, h0 = 1 and S = 1, which results in synaptic efficacy ranging from ap-
proximately 0.05 (meaning complete habituation) to 1 (meaning complete dishabituation). As synaptic efficacy
is bounded, it can be used neatly as a measurement of the degree of novelty for any particular input – higher
synaptic efficacies correspond to higher degrees of novelty.

Learning of the GWR network is performed using a winner-take-all approach. Every time that an input
vector is presented to the network, each node in the clustering layer will have higher or lower activation depending
on how well its weight vector matches the input. However, only the best matching node fires in response to a
given input, inhibiting all other clustering nodes. Then, the weights of the winner clustering node are adapted and
so are the weights of each of its topological neighbours, although to a lesser extent than the winner node.

The GWR neural network has the ability to add nodes to its clustering structure by identifying new input
stimuli through the habituation model. Given an input vector, both the winner node activation and habituation are
used to a determine if a new clustering node should be allocated in order to represent the input space better. The
network is first initialised with two completely dishabituated nodes (c1 and c2) in its clustering map M:

M = {c1,c2}. (2)

The weight vectors for these two initial clustering nodes can be initialised with the first two input vectors
presented to the network. At first there are no topological connections between the clustering nodes and therefore
the connection set C is initialised to the empty set:
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C = /0. (3)

From the third input vector onwards, the best matching node s (winner node) and second best matching
node t are found by computing the Euclidean distance from the input vector x to each clustering node:

s = argmin
i∈M
‖ x−wi ‖, (4)

t = arg min
i∈M/{s}

‖ x−wi ‖, (5)

where wi is the weight vector of node i, with i covering all the existing nodes in the current map M.
If there is an existing connection between clustering nodes s and t, its age is set to zero (the age of a

connection corresponds to how many iterations of the algorithm have elapsed since the connection was created),
otherwise a new connection between clustering nodes s and t is created with age zero:

C =C∪{(s, t)}. (6)

Activation of the clustering nodes is computed using the following radial basis function:

ai = exp(−‖x−wi‖2). (7)

Both activation and habituation values of the winner node are used to decide whether a given input is
considered novel or not. Every time that both activation and habituation values are below predefined thresholds
aT and hT , respectively, a new node r is added to the clustering layer:

M = M∪{r}, (8)

whose weight vector wr is set to the average between the winner weight vector ws and the input vector x.
After inserting a new node, it is necessary to update the network topology by removing the connection

between nodes s and t:
C =C/{(s, t)} (9)

and by inserting connections between nodes r and s, and between nodes r and t:

C =C∪{(r,s),(r, t)}. (10)

Then, the winner node and all of its topological neighbours have their output synapses habituated according
to equation 1, and their cluster centres are adapted according to the following learning rule:

∆wi = ε(x−wi), (11)

where ε is the learning rate (0 < ε < 1).
The learning and habituation rates of the neighbour nodes – ε j and τ j, respectively – are made proportional

to the ratio between winner and neighbour node activations (Vieira Neto & Nehmzow, 2004), so that neighbour
nodes have their weights adapted to a lesser extent than the winner node and also habituate in a slower rate.

The final step of the GWR network learning iteration consists of incrementing the age of every existing
connection, and checking for nodes that no longer have any neighbours or connections whose age is greater than
a predefined threshold agemax to be removed.

A summary of the use of the GWR network as a novelty filter is given in algorithm 1.
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Algorithm 1: GWR neural network novelty detection. Typical parameters: aT = 0.9, hT = 0.3, η= 0.1,
ε = 0.1, τ = 3.33, α = 1.05, h0 = 1, S = 1 and agemax = 20.

Input: current set of nodes A, current set of connections C, new input vector x.
Output: updated set of nodes A, updated set of connections C, novelty indication N.

1 Find the best and second best matching nodes s and t to the new input vector x: s = argmin
i∈A
‖ x−wi ‖,

t = arg min
i∈A/{s}

‖ x−wi ‖, where wi is the weight vector of node i.

2 if there is a connection between nodes s and t then set the connection’s age to zero: age(s,t) = 0 else create a new
connection between nodes s and t: C⇐C∪{(s, t)}, age(s,t) = 0.

3 Compute the activation of the best matching node: as = exp(− ‖ x−ws ‖).
4 Test if the activation and habituation values of the best matching node characterise novelty:

if as < aT and hs < hT then
5 Add a new node r: A⇐ A∪{r}.

6 Set the weight vector of the new node r: wr =
1
2
(x+ws).

7 Remove the connection between nodes s and t: C⇐C/{(s, t)}.
8 Create connections between nodes r and s and between nodes r and t: C⇐C∪{(r,s),(r, t)}, age(r,s) = 0,

age(r,t) = 0.
9 Indicate novelty detected: N = 1.

10 else indicate no novelty detected: N = 0.
11 Compute the activation of the best matching node’s neighbour nodes, i.e. nodes with connections to the best

matching node: a j = exp(− ‖ x−w j ‖).
12 Adapt the weight vector of the best matching node: ws⇐ ws + ε(x−ws)

13 Adapt the weight vectors of the neighbour nodes: w j⇐ w j +
ηa j

as
[ε(x−w j)].

14 Habituate the best matching node: hs⇐ hs +
α(h0−hs)−S

τ
.

15 Habituate the neighbour nodes: h j⇐ h j +
ηa j
as

[
α(h0−h j)−S]

τ

]
.

16 Increment the age of connections to the best matching node.
17 Remove any connections with age(s, j) > agemax.
18 Remove any nodes without neighbours.

4 Global Image Descriptors and Visual Novelty Detection

The first experiment to be shown using visual input to a GWR neural network involves the use of global image
descriptors based on colour statistics. The idea is to use a simple and fast image encoding technique to reduce the
dimensionality of the input visual data (160 × 120 pixels), so that it can be efficiently processed by the novelty
filter. In this initial experiment, the performance of colour angles as global image descriptors is analysed – colour
angular indexing (Finlayson et al., 1996) provides a very compact colour constant representation based on the
characteristics of the colour distribution within the image frame, in the form of angles between colour vectors r, g
and b that contain all pixel values of the red, green and blue channels, respectively, of the input image in scanning
order.

The first step in order to compute the colour angles is to obtain zero-mean colour vectors r0, g0 and b0 by
subtracting the corresponding average pixel value of each original colour vector:
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r0 = r− r̄, (12)

g0 = g− ḡ, (13)

b0 = b− b̄, (14)

where r̄, ḡ and b̄ are the average pixel values of the original colour vectors r, g and b, respectively.
The next step is to normalise the zero-mean colour vectors to unitary length by dividing each one by their

respective norm:
rN =

r0

‖r0‖
, (15)

gN =
g0

‖g0‖
, (16)

bN =
b0

‖b0‖
, (17)

where rN , gN and bN are the normalised zero-mean colour vectors.
Colour channel covariances are equivalent to dot products, which in this case geometrically correspond to

the cosine of the angles between the corresponding unitary length colour vectors. These angles are invariant to
changes in illumination and can be computed by the inverse cosine of colour vector dot products:

φrg = arccos(〈rN ,gN〉), (18)

φgb = arccos(〈gN ,bN〉), (19)

φrb = arccos(〈rN ,bN〉), (20)

where 〈i, j〉 denotes the dot product of vectors i and j.
The interesting aspect of this colour representation is that changes in sampled illumination due to robot

motion result in a rotation of the colour channel vectors of the image. As the angles between these vectors
remain the same in spite of any rotation, the resulting descriptors are robust to illumination changes. However,
colour angles cannot discriminate shades of grey because in this particular case colour angles always result in
φrg = φgb = φrb = 0. In order to solve this problem, intensity information was included in the image descriptor as
an additional element, resulting in feature vectors of four dimensions. The normalised intensity standard deviation
σI is a relative measurement that was used with success in (Vieira Neto, 2006):

σI =
2

ImaxN

√
N

∑
n=1

(I(n)− Ī)2, (21)

where I(n) are the image intensity values, Ī is the mean intensity value, Imax is the maximum intensity value and
N is the total number of pixels in the image.

The experiment starts with an exploration phase, in which the robot is used to acquire a model of normality
of the environment. In this work, exploration was always conducted in five consecutive loops around the empty
arena, with the robot being stopped and repositioned at the starting point in every loop. This procedure was used
in order to ensure that the robot’s trajectory would be as similar as possible for every loop, resulting in consistent
data for qualitative comparisons between loops.

Images were acquired at one frame per second, resulting in a total of 50 images per loop around the
arena. A global descriptor using colour angles and normalised intensity standard deviation was computed for
every acquired image frame and fed as input vector to a GWR neural network with the typical parameter values
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discussed in section 3. During exploration, learning was enabled to allow the GWR network to acquire a model
of normality of the operating environment.

Figure 4 shows the novelty graphs for each of the five consecutive exploration loops around the empty
arena. Novelty graphs are used for qualitative performance assessment, in which the novelty measurements
provided by the novelty filter are plotted against the image frame number, in a similar fashion to what was done
in (Marsland et al., 2002a) using sonar scans. In these graphs, each frame number essentially corresponds to a
certain position and orientation of the robot in the environment because the navigation behaviour that was used is
highly repeatable (Vieira Neto, 2006).
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Figure 4: Exploration of the empty arena as normal environment, using global colour angles as image
encoding scheme. The graphs show that the amount of novelty gradually decreases as the GWR neural
network habituates on repeated stimuli. Complete habituation is achieved by the end of the second
exploration loop.

Because the images were acquired at one frame per second, the horizontal axis of the novelty graphs in
figure 4 can also be interpreted as time in seconds. It can be noticed that the amount of novelty measured during
the exploration phase declined over time as the robot repeatedly explored its environment and progressively
habituated to it, as expected. The efficiency of learning during the exploration phase can be graphically assessed
through inspection of the novelty graphs in multiple rounds of training – in this case, the GWR neural network was
completely habituated to the environment by the end of the second loop. After training, the model of normality
acquired by the GWR network had six nodes, each containing a prototype colour descriptor learnt from the
explored environment.

Once the GWR neural network network is trained, the acquired environmental model of normality can be
used in the inspection phase to highlight any unusual visual features in the arena. During the inspection phase,
a new object is introduced in the normal environment in order to test the system’s ability to highlight abnormal
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perceptions – the measurement of novelty is expected to be high only in places where the new object can be
sensed by the robot. The inspection phase of the experiment was also carried out in five loops around the arena,
but with the learning mechanism disabled so that unusual features in the environment could be highlighted every
time that they were sensed.

In this experiment, an orange ball was deliberately placed as the novel object in one of the corners of the
the arena and the robot was used to inspect it. The ball was selected not only because it had a good contrast to the
normal environmental colour features, but also because it did not interfere with the robot’s trajectory around the
arena. Learning of the GWR network was disabled during inspection, so that consistency in novelty indications
could be verified over different loops around the arena. The results obtained for the inspection phase of the arena
containing the ball as novel object are shown in figure 5.
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Figure 5: Inspection of the arena with an orange ball as novel object, using global colour angles as
image encoding scheme. Locations where the ball was in the camera’s field of view are indicated
by dotted arrows on the top of the figure. The graphs show that the novel stimulus is correctly and
consistently identified by the system in every inspection loop.

The set of frames where the orange ball appeared in the camera’s field of view are indicated by dotted
arrows on the top of figure 5 – these frames correspond to locations where high values for the novelty measure
were expected to happen, as the ball appeared nearly always in the same image frames in each loop. It can be
noticed clearly from the inspection novelty graphs shown that the ball was correctly and consistently highlighted
as the novel stimulus in every inspection loop.

With the experiment using global image descriptors just shown, one can notice that a novelty filter is able
to detect when novel visual features enter the field of view of the robot’s camera. However, in order to be able
also to determine where the novel features are localised within the image frame, local image descriptors should
be used together with a selective visual attention mechanism, as will be discussed in the following sections.
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5 The Saliency Map Model of Visual Attention

A simplified architecture for the computation of the saliency map model of visual attention (Itti et al., 1998),
which consists in the construction of multi-scale feature maps, is presented in figure 6. Gaussian and oriented
Gabor pyramids are constructed by successive filtering and subsampling of the input image, and then combined
into feature maps that enable the detection of local variations in intensity, colour and orientation.

Figure 6: Simplified saliency map block diagram: multi-scale Gaussian and oriented Gabor pyramids
are constructed from the input image and then combined into feature maps that yield a single saliency
map, which indicates the location of unusual features within the image.

The first step in the extraction of early visual features is to obtain an intensity channel (I) from the original
red (R), green (G) and blue (B) channels of the input image:

I =
1
3
(R+G+B). (22)

After that, intensity normalised channels r, g and b are computed in order to decouple hue from intensity,
but only at those locations where I is larger than 1/10 of the maximum intensity Imax:

r =
{

R/I, if I > Imax/10;
0, otherwise

(23)

g =

{
G/I, if I > Imax/10;

0, otherwise
(24)

b =

{
B/I, if I > Imax/10.

0, otherwise
(25)
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Four broadly tuned colour channels for red (R), green (G), blue (B) and yellow (Y) are then computed
using the following equations:

R = max{0,r− (g+b)/2}, (26)

G = max{0,g− (r+b)/2}, (27)

B = max{0,b− (r+g)/2}, (28)

Y = max{0,−2B−|r−g|}. (29)

The intensity channel I and the broadly tuned colour channels R, G, B and Y are used to construct Gaussian
pyramids (Burt & Adelson, 1983) I(σ), R(σ), G(σ), B(σ) and Y(σ), respectively (σ ∈ [0,σmax]). The intensity
channel I is also used to construct oriented Gabor pyramids (Greenspan et al., 1994) O(σ,θ) in four orientations
(θ ∈ {0◦,45◦,90◦,135◦}).

Centre-surround linear operations similar to receptive fields found in neurons along the visual pathway of
mammals are used to obtain feature maps, which are implemented as the difference between a fine centre scale
c∈ [cmin,cmax] and a coarser surround scale s= c+δ, with δ∈ [δmin,δmax]. Across-scale difference (denoted by	)
is obtained by bilinear interpolation from the coarse scale to the fine scale and subsequent pixelwise subtraction.

The first type of feature map is related to local intensity contrast, detected by neurons sensitive to bright
centres and dark surrounds or vice-versa. Both types of sensitivity are simultaneously obtained by the use of
rectification:

I (c,s) = |I(c)	 I(s)|. (30)

The second type of feature map accounts for colour double-opponency, which is detected by neurons
whose centres are excited by one colour and inhibited by another, while the opposite excitation relationship holds
for the surrounds. Colour feature maps are computed for red/green and blue/yellow double-opponent pairs:

R G(c,s) = |(R(c)−G(c))	 (R(s)−G(s))|, (31)

BY (c,s) = |(B(c)−Y(c))	 (B(s)−Y(s))|. (32)

The third type of feature map is concerned with local orientation contrast between centre and surround
scales. Orientation feature maps are computed separately for every orientation:

O(c,s,θ) = |O(c,θ)	O(s,θ)|. (33)

In order to combine feature maps with different dynamic ranges into a single saliency map it is necessary
to use a normalisation operator N (.) (Itti et al., 1998; Vieira Neto, 2006). Otherwise, salient features that are
strongly present in a few maps may be masked by noise or less salient features that appear more frequently. The
use of the normalisation operator ultimately results in giving more weight to unusual features in the scope of the
input image frame and therefore makes the saliency map an excellent choice for the task of selecting candidate
regions to be processed by a novelty filter.

Feature maps for each feature – intensity, colour and orientation – are then combined in three conspicuity
maps at scale cmin. The conspicuity maps are obtained by computing across-scale addition (denoted by⊕), which
consists of resampling each feature map to scale cmin and subsequent pixelwise addition:

Ī =
cmax⊕

c=cmin

c+δmax⊕
s=c+δmin

N (I (c,s)), (34)

C̄ =
cmax⊕

c=cmin

c+δmax⊕
s=c+δmin

[N (R G(c,s))+N (BY (c,s))], (35)



Hugo Vieira Neto

Ō = ∑
θ∈{0◦,45◦,90◦,135◦}

N

(
cmax⊕

c=cmin

c+δmax⊕
s=c+δmin

N (O(c,s,θ))

)
. (36)

Finally, the three conspicuity maps are normalised and averaged to yield the final saliency map:

S =
1
3
(N (Ī )+N (C̄ )+N (Ō)) (37)

Figure 7 shows an example of saliency map obtained for a typical image acquired from the environment
used for the experiments discussed in this chapter. It can be noticed that the most salient region of the image
corresponds to an orange ball, followed by dark objects printed on the cardboard boxes that compose the walls of
the environment.
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Figure 7: Saliency map example: (a) input image; (b) saliency map highlighting the most salient
features in the input image; (c) 3D saliency surface visualisation; (d) 3D saliency warped input image.

The highest values in the saliency map correspond to the most salient locations within the input image,
which can also be ranked according to their magnitudes. More precise localisation of local maxima in the saliency
map may be obtained by interpolation to subpixel accuracy using a second order Taylor expansion (Vieira Neto,
2006).

A summary of the operations performed to compute the saliency map is given in algorithm 2.
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Algorithm 2: Saliency map model of visual attention. Typical parameters: cmin = 2, cmax = 4, δmin = 3,
δmax = 4, σmax = 8 and Imax = 255.

Input: input image colour channels R, G and B.
Output: saliency map S.

1 Compute an intensity image from the input image colour channels: I =
1
3
(R+G+B).

2 Normalise R, G and B colour channels by I in order to decouple hue from intensity: r =
R
I

, g =
G
I

, b =
B
I

.

Normalisation is applied only at locations where I >
Imax

10
.

3 Compute four broadly-tuned colour channels: R = r− 1
2
(g+b) for red, G = g− 1

2
(r+b) for green,

B = b− 1
2
(r+g) for blue and Y =−2B−|r−g| for yellow. Negative values are set to zero.

4 Construct a Gaussian pyramid I(σ) from I, with scales σ ∈ [0,σmax].
5 Construct four Gaussian pyramids R(σ), G(σ), B(σ) and Y(σ) from R, G, B and Y.
6 Construct four oriented Gabor pyramids O(σ,θ) from I(σ), with preferred orientations θ ∈ {0◦,45◦,90◦,135◦}.
7 Compute a set of centre-surround difference feature maps for the intensity channel: I (c,s) = |I(c)	 I(s)|, with

c ∈ [cmin,cmax] and s = c+δ, δ ∈ [δmin,δmax].
8 Compute two sets of centre-surround difference feature maps for double-opponent colour channels:

R G(c,s) = |(R(c)−G(c))	 (R(s)−G(s))| and BY (c,s) = |(B(c)−Y(c))	 (B(s)−Y(s))|.
9 Compute four sets of centre-surround difference feature maps for the orientation channels:

O(c,s,θ) = |O(c,θ)	O(s,θ)|.
10 Compute the conspicuity map for intensity from across-scale combinations of the set of intensity feature maps:

Ī =
cmax⊕

c=cmin

c+δmax⊕
s=c+δmin

N (I (c,s)), where N (.) is a normalisation operator.

11 Compute the conspicuity map for colour from across-scale combinations of the two sets of double-opponent

colour feature maps: C̄ =
cmax⊕

c=cmin

c+δmax⊕
s=c+δmin

[N (R G(c,s))+N (BY (c,s))].

12 Compute the conspicuity map for orientation from across-scale combinations of the four sets of orientation

feature maps: Ō = ∑
θ∈{0◦,45◦,90◦,135◦}

N

(
cmax⊕

c=cmin

c+δmax⊕
s=c+δmin

N (O(c,s,θ))

)
.

13 Compute the saliency map from the conspicuity maps for intensity, colour and orientation:

S =
1
3
(N (Ī )+N (C̄ )+N (Ō)).

14 Search the saliency map for maxima (salient locations).

It should be noted that the final saliency map can be biased by giving a higher weight for any particular
feature in equation 37. By doing so, one can easily render colour features more salient than intensity or orientation
features, for example. More weight can also be given to a particular scale or orientation in equations 34, 35 or
36. This is an important detail because it makes possible to use top-down biasing if some a priori information
is available about the features of interest for a given application. For instance, if it is known beforehand that
blue vertical lines are important to be detected in a certain exploration or inspection task, the saliency map can be
easily biased and give more weight to the relevant feature maps (blue/yellow double-opponent colour channel and
90◦ orientation channel). The saliency map architecture also offers flexibility to be extended in order to include
other visual features, such as flicker and motion (Dhavale & Itti, 2003), if the application requires so.
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6 Local Image Descriptors and Visual Novelty Detection

Although statistical descriptors of visual features can be powerful in many applications, their use in a global
fashion weakens the ability to capture and represent small details present in the visual field. Statistical represen-
tations in general tend to dilute the contribution of features that appear less frequently in the sea of more common
features. Visual features that occupy small areas relative to the size of the entire image will have small contri-
butions to a global statistical descriptor – such small features would be probably disregarded by higher levels of
processing as if they were noise.

As small details are often relevant for novelty detection tasks, global representations in general seem not
to be a good solution for the image description problem. Furthermore, a novelty filter that highlights when an
image frame contains some novel visual features is not as useful as a novelty filter that also locates where these
novel features are within the image frame, something that is plausible when local image descriptors are used.

The experiment to be presented now uses colour statistics at selected locations rather than global colour
statistics, which means obtaining several image descriptors from different regions of the image. The approach
followed here is to use the saliency map model to select a fixed number of salient regions in order to encode
multiple local feature vectors per image frame, using the same image descriptors based on colour angles and
the novelty filter based on the GWR neural network, as was done in the experiment involving global image
descriptors.

A saliency map was computed for each input frame and the nine most salient points found were used to
establish the centre of image patches of 24×24 pixels in size. Each of the selected image patches had correspond-
ing image descriptors based on colour angles and normalised intensity standard deviation computed, which were
individually fed to a GWR neural network with the same parameters as before. The same two-stage experimental
procedure involving exploration and inspection phases that was adopted in the earlier experiment was followed
once more.

Using this approach, the GWR network completely habituated on the environment after the fourth explo-
ration loop, acquiring 21 nodes to represent its model of normality. From this information, it can be noticed
that the environment was represented in much more detail when using local descriptors – the size of the trained
network is more than three times larger than previously and the time necessary for proper training was doubled
(see section 4).

The novelty graphs referring to the exploration phase using local image descriptors are not shown here, but
rather the ones referring to two inspection trials, one of them involving the same orange ball as before (figure 8)
and also another one involving an inconspicuous grey box (figure 9). Because nine feature vectors were generated
and classified for each input frame, the novelty graphs for qualitative assessment of results had to be adapted – for
experiments using local image descriptors, the novelty graphs depict the average measurement of novelty given
by the GWR network in each frame.

As can be visualised in figure 8, the use of local descriptors allows correct detection of the image frames in
which the orange ball was present, as in the previous experiment using global image descriptors. Very few false
novelties were detected, while the image frames in which the ball appears were clearly identified as having high
levels of novelty – this is indicated by the novelty graphs at the left. Moreover, because a local image encoding
procedure is now in use with a selective attention mechanism, it is also possible to generate output images indicat-
ing which features of the environment are considered salient and, among those, which are considered novel. The
use of local descriptors made the localisation of novel features possible, as illustrated with the four output image
frames at the right, in which the orange ball was largely present within the camera’s field of view during the first
inspection loop. In the image frames shown in figure 8, the numbers indicate the most salient locations in ascend-
ing order (0 corresponds to the most salient location), whose corresponding image patches were highlighted with
white circles when considered to be encompassing novel visual features.
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Figure 8: Inspection of the arena with an orange ball as novel object, using local colour angles as
image encoding scheme. Locations where the ball was in the camera’s field of view are indicated by
dotted arrows on the top of the figure. The graphs at the left show that the novel stimulus is correctly
and consistently identified by the system in every inspection loop. The images at the right show the
corresponding frames in the first loop with circles highlighting the regions considered as novel.

A second inspection trial involved a grey box which is much less conspicuous than the orange ball used
previously. In this second trial, the orange ball was removed from the arena and then the grey box was placed in
a different corner of the arena than the one where the ball used to be.

The novelty graphs at the left of figure 9 show that the novelty filter was also able to determine consistently
which image frames contained the novel features introduced in the environment for this new inspection round,
i.e. the grey box. The frames in which the grey box appeared in the camera’s field of view (after the robot turned
the first corner of the arena) are indicated with dotted arrows.

The grey box was clearly identified, as shown by the four output image frames at the right of figure 9,
which were generated during the first inspection loop. Very few unexpected (i.e. false) indications of novelty
occurred in other places of the environment.

The impact of using a local approach for image encoding was clearly positive from a qualitative perspec-
tive, as the mechanism of attention offers a clear contribution to the efficient representation of visual data by
splitting a relatively large image frame into several small image patches with high information contents (salient
regions). In the next sections, an alternative approach to perform bottom-up local image representation and nov-
elty detection simultaneously in a single algorithm based on incremental PCA is considered, discarding the need
of specialised top-down image descriptors like the one based in colour angular indexing that was used until this
moment.
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Figure 9: Inspection of the arena with a grey box as novel object, using local colour angles as image
encoding scheme. Locations where the box was in the camera’s field of view are indicated by dot-
ted arrows on the top of the figure. The graphs at the left show that the novel stimulus is correctly
and consistently identified by the system in every inspection loop. The images at the right show the
corresponding frames in the first loop with circles highlighting the regions considered as novel.

7 Incremental Principal Component Analysis

Principal Component Analysis can be used as a method for dimensionality reduction in which the input data is
projected onto principal axes – the axes along which the variance of the input distribution is maximised. This
operation is reversible and allows optimal reconstruction of the original input data.

Standard PCA consists in solving an eigensystem for the covariance matrix C of normalised input vectors:

CU = UΛ, (38)

C =
1
n

n

∑
i=1

(xi−µ)(xi−µ)T, (39)

µ =
1
n

n

∑
i=1

xi, (40)

where n is the number of input vectors xi, µ is the mean vector, U contains the eigenvectors and Λ contains their
corresponding eigenvalues.

The eigenvectors that correspond to non-zero eigenvalues span a subspace of up to the original m dimen-
sions of the input vectors, but in order to achieve dimensionality reduction of the input data, only eigenvectors
corresponding to the arbitrarily chosen k < m largest eigenvalues are selected to be included in a reduced eigen-
model. The original m-dimensional input vectors can therefore be projected onto the k-dimensional subspace
spanned by this reduced eigenmodel:
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ai = UT(xi−µ), (41)

where ai are the projected vectors.
The process can be reversed, reconstructing the input vectors from the projected vectors with minimal

squared error:
yi = Uai +µ, (42)

where yi are the reconstructed input vectors.
Standard PCA requires that all data samples are available a priori for batch processing, but incremental

computation of PCA is also possible (Skočaj & Leonardis, 2003; Artač et al., 2002; Hall et al., 1998), making
it suitable for applications that demand on-line learning. This work is based on the incremental PCA algorithm
originally proposed in (Hall et al., 1998), which assumes that an initial eigenmodel – composed by a mean vector
µ and an eigenvector set U – is already available. The algorithm discussed here also includes a set of projected
vectors A in the eigenmodel, in order to enable simultaneous learning and recognition (Artač et al., 2002).

When a new input vector x is available, the set of eigenvectors is updated by appending a new orthogonal
basis vector and then applying a rotational transformation (Hall et al., 1998). The new basis vector is obtained
by projecting the new input vector onto the current eigenspace (equation 41) and using its reconstruction (equa-
tion 42) to compute the residual vector r = x−y.

The normalised residual vector is orthogonal to the current eigenspace and therefore is a natural choice for
the new basis vector:

U′ =
[

U r
‖r‖

]
. (43)

A major contribution made in (Artač et al., 2002) was to allow projected vectors to be stored and updated,
so that the original input vectors can be discarded. Adding a new eigenvector and a new projected vector to the
eigenmodel results in increasing the dimensionality of the appended set of projected vectors:

A′ =
[

A a
z ‖r‖

]
, (44)

where z is a row vector of zeroes.
Performing batch PCA on the appended set of projected vectors A′ yields a mean vector η and a rotation

matrix R that will be used to update the eigenspace (Skočaj & Leonardis, 2003):

U = U′R, (45)

µ⇐ µ+U′η, (46)

A = RT(A′−ηo), (47)

where o is a row vector of ones.
It is possible to discard eigenvectors whose corresponding eigenvalues are below some threshold, which

yields dimensionality reduction of the projected data at the cost of some loss of information. A small percentage
of the largest eigenvalue is normally used as the threshold to determine which eigenvectors to keep.

The algorithm is made completely incremental by initialising the eigenspace and projected vectors as
follows: µ = x1, U = z and A = 0, where x1 is the first input vector and z denotes a column vector of zeroes with
the dimensionality of the input.

In section 8, incremental PCA is used as an alternative method to perform on-line novelty detection. The
magnitude of the residual vector – effectively the RMS error between original data and the reconstruction of its
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projection onto the current eigenspace – is used to decide if a given input is novel and should be added to the
eigenmodel. In practice, if the magnitude of the residual vector is above some threshold rT , the corresponding
input vector is considered not to be well represented by the current eigenmodel and therefore must constitute
novelty (Vieira Neto & Nehmzow, 2005).

A summary of the use of the incremental PCA algorithm as a novelty filter is given in algorithm 3.

Algorithm 3: Incremental PCA novelty detection.
Input: current mean vector µ, current eigenvectors U, current projected vectors A, new input vector x, residual

threshold rT .
Output: updated mean vector µ, updated eigenvectors U, updated projected vectors A, novelty indication N.

1 Compute the projection of the new input vector using the current basis: a = UT(x−µ).
2 Compute the reconstruction of the new input vector from its projection: y = Ua+µ.
3 Compute the residual vector (orthogonal to U): r = x−y.
4 Test if the magnitude of the residual vector is large enough to characterise novelty:

if ‖ r ‖> rT then
5 Append normalised residual vector: U′ =

[
U r

‖r‖

]
.

6 Append projected new input vector: A′ =
[

A a
0 ‖ r ‖

]
.

7 Perform batch PCA on A′, obtaining its mean vector η and eigenvectors R.
8 Update eigenvectors: U = U′R.
9 Update mean vector: µ⇐ µ+U′η.

10 Update projected vectors: A = RT(A′−ηo), where o is a row vector of ones.
11 Indicate novelty detected: N = 1.

12 else indicate no novelty detected: N = 0.

8 Autonomous Image Representation and Visual Novelty Detection

The experiments using colour statistics as image descriptors within the discussed visual novelty detection frame-
work have yielded successful results so far. However, image encoding based solely on colour statistics does not
hold enough information to reconstruct the original image. If one examines the weights of the GWR network
nodes to analyse which visual aspects of the environment were acquired during learning, the best information that
can be retrieved is the relative amount of different colours present in a given region of the environment.

In the experiments to be presented now, an image encoding procedure that allows image reconstruction
is exploited, so that examination of the acquired normality model provides valuable visual information about
which aspects of the environment were actually learnt. In order to achieve this, raw image patches selected by the
visual attention mechanism are normalised and used directly as input vectors to the incremental PCA algorithm
described in section 7.

Using RGB image patches with 24× 24 pixels in size results in input vectors with 24× 24× 3 = 1728
dimensions, which were normalised to unit length in order to even out lighting conditions. An input space of
such relatively high dimensionality may in fact not be entirely necessary to represent the acquired visual data
appropriately. Incremental PCA autonomously provides dimensionality reduction by exploiting the fact that the
number of eigenvectors in the acquired model is likely to be less than the number of dimensions of the input
vectors. Further reduction in dimensionality can be achieved by keeping only the eigenvectors corresponding
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to the largest eigenvalues in the model, at the expense of losses in reconstruction and possibly in the overall
recognition rate of the system. If all eigenvectors are kept in the model, perfect reconstruction of the original
visual data is achieved.

The experiments of this section use the same two-stage experimental procedure adopted in the earlier
experiments, which involves five exploration loops around the environment for the acquisition of the model of
normality by the incremental PCA algorithm and five inspection loops for testing the obtained novelty filter.
During exploration, the residual error threshold of the incremental PCA algorithm was set to rT = 0.25 and only
eigenvectors whose corresponding eigenvalues were larger than 1% of the largest eigenvalue in the model were
kept.

Most of the eigenspace updates (indications of novelty) during the exploration phase happened in the
beginning of the first loop around the arena, becoming less frequent as the environment was explored. At the
end of the learning process, the incremental PCA algorithm acquired 35 model vectors with 33 dimensions,
representing a data compression factor of more than 98%. However, a mean vector and 33 eigenvectors with the
original 1728 dimensions were also stored in the model.

Figure 10 shows the faithful reconstruction of the 35 model vectors acquired during the exploration of the
environment, which provide visual feedback of which aspects of the environment were captured.

Figure 10: Environmental model acquired by the incremental PCA algorithm for the empty arena. A
total of 35 image patches acquired from the environment were faithfully reconstructed.

From the reconstructions in figure 10, it is clear that the model captured a detailed representation of the
environment, which mostly consists of inscriptions and objects printed on the cardboard boxes that constitute the
walls of the arena, and the edges between these boxes.

The acquired model of normality was then used as novelty filter during the inspection phase of the experi-
ment, which was conducted in two trials, each having a different novel object deliberately placed in the arena – the
same orange ball and grey box used in previous experiments were used once again. Learning of the incremental
PCA algorithm was disabled during the inspection phase so that the novel objects could be repeatedly detected in
different inspection loops, following the same procedure as in previous experiments.

The first trial of five inspection loops around the arena containing the orange ball as the novel object
yielded the results shown in figure 11. The novelty graphs at the left show that incremental PCA was able to
detect the orange ball consistently in every inspection loop with very few false indications of novelty. The four
output image frames at the right show the situations during the first inspection loop in which regions containing
parts of the ball were highlighted as having novel features.

A second inspection trial was conducted, now with the orange ball being removed and the orange box
being placed in a different corner of the arena – results are shown in figure 12. Once more, the incremental PCA
approach was able to detect the novel object correctly and consistently, as shown by the novelty graphs at the left.
There were very few spurious novelty indications, particularly at the end of the fourth and fifth inspection loops.
At the right, output image frames show four of the five situations during the first loop in which regions partially
containing the novel features were correctly highlighted with white circles.
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Figure 11: Inspection of the arena with an orange ball as novel object, using incremental PCA as
image encoding and novelty detection scheme. Locations where the ball was in the camera’s field
of view are indicated by dotted arrows on the top of the figure. The graphs at the left show that the
novel stimulus is correctly and consistently identified by the system in every inspection loop. The
images at the right show the corresponding frames in the first loop with circles highlighting the regions
considered as novel.

A final experiment was conducted, in which the robot once again explored the arena, this time with the
conspicuous orange ball already present in one of its corners, and inspected it afterwards with the inclusion of
the inconspicuous grey box next to the ball, i.e. in the same corner of the arena. The incremental PCA algorithm
acquired 45 model vectors with 32 dimensions after this new exploration phase. The image reconstructions
obtained are shown in figure 13, clearly illustrating that features from the orange ball were included in the new
model of normality.

The fact that the grey box was placed next to the ball during the inspection phase obviously affects the
response of the attention mechanism because the two objects of interest are present at the same time in some of
the image frames, competing for saliency. However, the grey box was correctly identified as the novel object
even in the presence of the more conspicuous but already known orange ball, which was ignored by the novelty
filter. Figure 14 shows two examples of output image frames that illustrate the response of the novelty filter, one
of them with salient region 0 containing novel features that were actually missed by the system.

The experiments in this section show that novelty filters based on incremental PCA are an interesting
alternative to novelty filters based on the GWR neural network. Also, the use of raw image patches as input to the
novelty filter allows faithful image reconstruction from the vector models acquired, adding the extra functionality
of visual feedback of which aspects of the environment were actually learnt during the exploration phase.
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Figure 12: Inspection of the arena with a grey box as novel object, using incremental PCA as image
encoding and novelty detection scheme. Locations where the box was in the camera’s field of view are
indicated by dotted arrows on the top of the figure. The graphs at the left show that the novel stimulus
is correctly and consistently identified by the system in every inspection loop. The images at the right
show the corresponding frames in the first loop with circles highlighting the regions considered as
novel.

Figure 13: Environmental model acquired by the incremental PCA algorithm for the arena containing
the orange ball. A total of 45 image patches acquired from the environment were reconstructed with
some deterioration due to the inclusion of the orange ball.
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(a) (b)

Figure 14: Examples of output images of the new inspection trial. In (a) and (b) the grey box is
correctly identified as being the novel object in spite of the presence of the much more conspicuous
but already known orange ball.

9 Conclusion

The ability to differentiate between common and uncommon stimuli is essential to robots operating in dynamic
environments and is at the core of applications involving automated exploration and inspection. Because novelty
is of contextual nature, and therefore can not be easily modelled, the most feasible approach to be followed is to
first acquire a model of normality through robot learning via unsupervised clustering mechanisms and then use it
as a means to highlight any abnormal features that may appear in the operating environment. This approach was
used previously in mobile robots using low-resolution sensor modalities such as sonar sensing.

A comprehensive on-line visual novelty detection framework that can be used in autonomous mobile robots
for exploration and inspection tasks was presented in this chapter. The use of novelty filters and global image
descriptors to detect when novel features enter the field of view of the robot was described and discussed, as well
as the use of a visual attention mechanism and local image descriptors to detect where novel features are within
the image frame. The unsupervised clustering mechanisms used as novelty filters were a GWR neural network
operating on image descriptors, or an incremental PCA algorithm operating directly on raw image patches, which
had their performances evaluated in several experimental examples.

Experiments conducted in engineered environments with a physical mobile robot have demonstrated that
the proposed visual novelty detection framework has the ability to highlight and locate new, arbitrary objects as
soon as they first appear in the field of view of the robot’s camera. The on-line unsupervised clustering mech-
anisms used were able to learn adequate representations of the robot’s normal operating environment very effi-
ciently. When using raw image patches as input to a novelty filter based on the incremental PCA algorithm, it was
also possible to have visual feedback of the aspects learnt from the environment through image reconstruction.

For further experimental results obtained in different environmental conditions, including analysis and
discussion of the influence of the robot’s trajectory on the performance of the visual novelty detection framework
presented in this chapter, the reader is referred to (Vieira Neto, 2006).
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