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Abstract

We present a framework to perform novelty detection using visual input in which

a mobile robot first learns a model of normality in its operating environment and

later uses this to highlight uncommon visual features that may appear. This ability

is of great importance for both robotic exploration and inspection tasks, because it

enables the robot to allocate computational and attentional resources efficiently to

those features which are novel.

At the heart of the proposed system is the image encoding mechanism which

uses local colour statistics from regions selected by a biologically-inspired model of

visual attention. Our approach works in real-time with a wide, unrestricted field of

view and is robust to image transformations.

Experiments conducted in an engineered scenario demonstrate the efficiency and

functionality of our method.

∗The original publication is available at www.springerlink.com. DOI 10.1007/s10846-007-9146-9
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1 Introduction

The ability to distinguish between common and unusual sensory perceptions — novelty

detection — is very useful for mobile robots operating in dynamic environments. Such

a competence allows the robot to select those aspects of the surroundings that have an

abnormal nature and therefore deserve closer attention from either a human operator, as

it is the case for supervised surveillance or inspection tasks, or its own computational

resources for further processing in other applications, such as environment exploration

and mapping.

Novelty detection has been used in diverse problems, from medical diagnosis of masses

in mammograms (Tarassenko et al., 1995) to fault monitoring and detection (Taylor and

McIntyre, 1998). These problems share a common characteristic, which is the existence

of large amounts of data in which the result of the test is negative (no disease diagnosed

or no fault detected), whereas relatively few examples of the important features that are

desired to be detected. It is therefore usually not possible to install or learn models of

abnormality, because too little training data is available. Instead, a model of normality is

acquired on-line and used to filter out any input stimuli that do not fit the learnt model

(Marsland, 2003).

Either statistical approaches (Markou and Singh, 2003a) or neural networks (Markou

and Singh, 2003b) can be used to implement novelty detection systems. In this work

we use the self-organisation of a Grow-When-Required (GWR) neural network (Marsland

et al., 2002b) to learn a model of the normal operating environment of a mobile robot

and then use this model to highlight any anomalous perception that may appear.

The GWR network is capable of unsupervised and continuous (on-line) learning and

has previously been successfully used in mobile robots having sonar readings as percep-

2



tual input (Marsland et al., 2002a). However, sonar sensors provide very low resolution

sampling of the environment, posing serious limitations for real world applications. There-

fore, we are interested in using the GWR network with visual information instead of sonar

readings.

In this paper we describe a method to process colour vision using a model of visual

attention and local colour statistics as means to generate feature vectors to the GWR-

based novelty filter. Figure 1 shows a block diagram of the framework developed for our

visual novelty detection mechanism.

Environment

?
Colour Camera (1)

Raw Image
?

Selective Attention (2)

Salient Regions
?

Colour Statistics (3)

Colour Features
?

Novelty Filter (4)

?
Degree of Novelty

Figure 1: The proposed visual novelty detection mechanism: local colour features are
computed at salient regions of the input image, whose degrees of novelty are determined
by an artificial neural network.

The paper is structured as follows: first an account of related work in visual novelty

detection is given, followed by a description of the image encoding procedure and the nov-

elty filter we have used. Finally, we present and discuss laboratory experiments involving

visual exploration and inspection of an engineered environment. We conclude that the

system is able to discriminate new, arbitrary colour features and set the scene for future

improvements using other visual features in addition to colour.

2 Related work

Previous work in novelty detection using visual input and mobile robots was conducted by

Marsland et al. (Marsland et al., 2001). They have used a wall-following behaviour and a

monochromatic camera positioned to acquire close-up images of the wall being followed.
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This approach implicitly constrained the visual input to a very limited field of view, also

limiting its usefulness to more general applications, although it was capable of on-line

novelty detection through a GWR network.

Diehl and Hampshire have implemented a real-time novelty detection mechanism for

video surveillance (Diehl and Hampshire II, 2002). Their method was based in the extrac-

tion of monochromatic spatial features in image sequences to represent moving objects.

A classifier based on support vector learning was trained off-line with models of people

and cars and was later used to reject different moving objects, such as bicycles, vans and

trucks.

Recently, a new framework for novelty detection applied to region-segmented outdoor

scenes in video sequences was proposed by Singh and Markou (Singh and Markou, 2004).

Their approach made use of a feature-selection mechanism for various visual features to

encode image regions and a feedforward neural network as a classifier. The classifier was

used to reject any input not present in the training dataset so that the network could be

retrained off-line.

In this paper we present an on-line novelty detection framework for visual input ac-

quired from a moving platform, but limited to the use of colour statistics to encode visual

features. Our approach contrasts with the aforementioned in the sense that it combines

both unsupervised continuous learning and colour vision with no explicit image segmen-

tation or restrictions in field of view.

3 Image encoding

The implementation of computer vision algorithms in mobile robots is a non-trivial issue,

as one normally desires to process large amounts of data in real-time but with limited

computational resources. Moreover, acquiring images from a moving platform makes

visual features subject to numerous transformations, such as scaling, translation, rotation,

changes in perspective and perceived illumination and also partial occlusions. Therefore,

we are looking for a fast image encoding technique to provide compact and robust feature

vectors for higher levels of processing.
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A natural approach to overcome limitations posed by processing speed is to simplify

the image encoding. Unfortunately, simplifying too much the image encoding mechanism

also limits its robustness to the various transformations that images acquired from a

mobile robot are susceptible to. Here we present an image encoding procedure (blocks

2 and 3 in Fig. 1) that uses local colour statistics from salient regions within the image

frame. This approach has shown to work efficiently in real-time and to be robust to several

image transformations.

3.1 Selective attention

In order to select which regions of the image contain useful information and hence deserve

to be analysed in detail, we have used the saliency map model for visual attention (Itti

et al., 1998), which is inspired by the neural architecture of the early primate visual

system and is in agreement with the Feature-Integration Theory of Attention (Treisman

and Gelade, 1980). Further processing to extract local visual features is therefore directed

only to the selected regions.

Figure 2 presents the simplified architecture of the saliency map model, which consists

in the construction and combination of multi-scale feature maps that allow the detection

of local discontinuities in intensity, colour and orientation.
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Figure 2: The saliency map model architecture.
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The feature maps are computed from pyramidal structures (Greenspan et al., 1994),

which are obtained by successive low-pass filtering and subsampling of the preprocessed

input image (152× 120 pixels in size). The resulting pyramids consist of five levels with

reduction factors ranging from 1:1 (scale 0) to 1:16 (scale 4).

The first step in the extraction of early visual features is to obtain an intensity channel

I = (r + g + b)/3 from the original red (r), green (g) and blue (b) channels of the input

image. After that, intensity normalised channels r̂, ĝ and b̂ are computed in order to

decouple hue from intensity, but only at those locations where I is larger than 1/10 of

the maximum intensity (in other locations r̂, ĝ and b̂ are set to zero). Four broadly tuned

colour channels are then computed: R = r̂− (ĝ + b̂)/2 for red, G = ĝ− (r̂+ b̂)/2 for green,

B = b̂− (r̂ + ĝ)/2 for blue and Y = −2(B + |r̂ − ĝ|) for yellow, with negative values set

to zero.

The intensity channel I and the broadly tuned colour channels R, G, B and Y are used

to construct the Gaussian pyramids I(σ), R(σ), G(σ), B(σ) and Y (σ), respectively. I is

also used to construct oriented Gabor pyramids O(σ, θ) in the same manner as described

in (Greenspan et al., 1994). We have used five scales (σ ∈ {0 . . . 4}) and four orientations

(θ ∈ {0◦, 45◦, 90◦, 135◦}).
Centre-surround linear operations similar to receptive fields found in neurons along

the visual pathway of mammals are used to obtain the feature maps and are implemented

as the difference between a fine centre scale and a coarser surround scale. Across-scale

difference between scales (denoted by ª) is obtained by interpolation from the coarse

scale to the finer scale and subsequent pixelwise subtraction. In our implementation, the

centre consist of pixels at scale c ∈ {1, 2} and the surround of the corresponding pixels at

scale s = c + 2.

The first type of feature map is related to intensity contrast, detected by neurons

sensitive to bright centres and dark surrounds or vice-versa. Both types of sensitivity are

simultaneously obtained by the use of rectification:

I(c, s) = |I(c)ª I(s)|. (1)
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The second type of feature map is concerned with colour double-opponency, which is

detected by neurons whose centres are excited by one colour and inhibited by another,

while the opposite excitation relationship holds for the surrounds. Therefore colour feature

maps are computed for red/green and blue/yellow double-opponent pairs as follows:

RG(c, s) = |(R(c)−G(c))ª (G(s)−R(s))|, (2)

BY(c, s) = |(B(c)− Y (c))ª (Y (s)−B(s))|. (3)

Finally, the third type of feature map accounts for local orientation contrast between

centre and surround scales. They are computed separately for every orientation, as shown

below:

O(c, s, θ) = |O(c, θ)ªO(s, θ)|. (4)

In order to combine feature maps with different dynamic ranges into a single saliency

map it is necessary to use a normalisation operator N (.), otherwise salient features that

are strongly present in a few maps may be masked by noise or less salient features that

appear more frequently. The original normalisation operator suggested in (Itti et al.,

1998) involves searching for local maxima, but here we use a simpler way of normalising

feature maps that yields comparable results: first we subtract the average value from the

feature map F ; second, we divide the resulting zero-mean feature map F0 by its vector

norm ‖F0‖; and finally we take the absolute value of the result.

The feature maps are combined in three conspicuity maps at scale σ = 2, one for each

feature: intensity Ī, colour C̄ and orientation Ō. The conspicuity maps are obtained by

computing across-scale addition (denoted by ⊕), which consists of resampling each map

to scale 2 and subsequent pixelwise addition:

Ī =
2⊕

c=1

N (I(c, s)), (5)
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C̄ =
2⊕

c=1

[N (RG(c, s)) +N (BY(c, s))], (6)

Ō =
∑

θ∈{0◦,45◦,90◦,135◦}
N

(
2⊕

c=1

N (O(c, s, θ))

)
. (7)

Finally, the three conspicuity maps are normalised and added to yield the final saliency

map S:

S = N (Ī) +N (C̄) +N (Ō). (8)

The highest values in the saliency map correspond to the most salient locations within

the input image and we use this information to select the regions where further analysis

for feature extraction should be performed. After that, we inhibit a circular region of

the saliency map centred around the current location and search for the next most salient

position to be analysed. The process is repeated until a desired number of salient locations

is reached.

Interest points determined using the saliency map are robust to geometric transfor-

mations, which contributes to the desired general robustness of the image encoding mech-

anism. We have used the nine highest salient values to indicate which locations of the

image are likely to be the most interesting so that colour statistics could be calculated in

their vicinity, as described next.

3.2 Colour statistics

Histograms are well-known statistical tools that can be successfully used to encode gen-

eral image features and show robustness against geometric transformations, changes in

perspective and partial occlusion. In fact, many approaches make use of histograms to

characterise visual information, for example Swain and Ballard’s colour indexing (Swain

and Ballard, 1991) and Schiele and Crowley’s multidimensional receptive field histograms

(Schiele and Crowley, 2000).
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In previous work (Vieira Neto and Nehmzow, 2004) we have studied the use of his-

tograms using the HSI colour space to encode colour information, but found them to be

very sensitive to changes in illumination. This shortcoming was also identified by Funt

and Finlayson and lead them to improve Swain and Ballard’s approach by developing

a colour constant colour indexing scheme (Funt and Finlayson, 1995). Finlayson et al.

have also proposed the colour angular indexing technique (Finlayson et al., 1996), a very

compact colour representation that is invariant to illumination conditions.

Here we use the colour angular indexing approach to encode colour features present in

the regions selected by the saliency map model (see subsection 3.1). This method encodes

the characteristics of the colour distribution of an image as the angles between colour chan-

nel vectors in image space. For that, first we have to obtain zero-mean colour channels R0,

G0 and B0 by subtracting the average value from each original colour channel. The next

step is to normalise the zero-mean colour channels to unitary length by dividing each one

by their respective vector norm (‖R0‖, ‖G0‖ and ‖G0‖). Finally, the three colour angles

are computed as the inverse cosine of the dot product between the resulting normalised

colour channels RN , GN and BN : φrg = arccos(〈RN , GN〉), φgb = arccos(〈GN , BN〉) and

φrb = arccos(〈RN , BN〉).
It should be noted that the angles of a colour distribution cannot discriminate unsatu-

rated colours, i.e. shades of grey whose R, G and B components have the same value. To

overcome this situation, we decided to also include intensity statistics in our representa-

tion. We have used the normalised standard deviation σi of the intensity values (average

of the R, G and B components) of the image as a fourth element in our feature vector

ξ = {φrg, φgb, φrb, σi}.
We have computed the colour statistics described above for image patches of size

24 × 24 pixels around the nine most salient points identified by the saliency map in the

input image. Therefore, for each input image we generated nine local feature vectors using

colour statistics to feed into our novelty filter.
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4 Novelty filter

The novelty filter used in our framework (block 4 in Fig. 1) is based on the GWR neural

network (Marsland et al., 2002b), which is a clustering mechanism derived from Kohonen’s

self-organising feature map (SOFM) (Kohonen, 1984). However, unlike the SOFM, the

GWR network has the ability to add nodes to its structure to represent new input stimuli

using a model of habituation.

Figure 3 shows a schematic representation of the GWR network, which consists of

a clustering layer of nodes and a single output node. The connecting synapses to the

clustering layer are subject to habituation, which is a reduction in response to repeatedly

presented stimuli. In other words, the more a node in the clustering layer fires, the less

efficient its output synapse becomes.

 

 

Output node

Habituable synapses

Clustering layer

Input vector

Figure 3: The GWR neural network architecture.

The habituation rule of a node’s output synapse is given by the following first-order

differential equation:

τi
dhi(t)

dt
= α[h0 − hi(t)]− S(t), (9)

where h0 is the initial value of the habituation hi(t), S(t) is the external stimulus,

τi and α are time constants that control the habituation rate and the recovery rate,

respectively. As the habituation value has a bounded output, it can be neatly used as a

measure of the degree of novelty for any particular input.

The GWR network starts with two nodes in its map M = {c1, c2}, whose weights wc1

and wc2 are initialised randomly from the input distribution p(ξ). There are no topological
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connections between the two initial nodes and therefore the connection set is initialised

to the empty set.

Training is done with an unsupervised winner-take-all approach, where the winner

node (the best match to the input) and its topological neighbours have their weights

adapted and their output synapses habituated. The distance from the input ξ to each

node in the clustering layer is computed using the Euclidean distance ‖ξ −wi‖, where wi

is the weight vector of the node i, with i covering all the nodes in the current map M .

The best matching node is selected as s = arg min
i∈M

‖ξ − wi‖ and the second best as

t = arg min
i∈M−{s}

‖ξ − wi‖. If there is already a connection between s and t, its age is set

to zero, otherwise a new connection is created. The activation value of the winner node

is computed as as = exp(−‖ξ − ws‖2). Both activation and habituation values of the

winner node are used to decide whether an input is novel or not. Therefore, a new node

r is added to the map every time that both activation and habituation values are below

predefined thresholds aT and hT , respectively: M = M ∪ {r}.
In our implementation the new weight vector wr is set to the input ξ, whereas in the

original GWR algorithm (Marsland et al., 2002a) it is set to the average between the

winner node’s weight vector ws and the input. After inserting a new node in the map, it

is also necessary to update its topological connections by removing the link between the

nodes s and t and inserting links between r and s and between r and t. The positions

of the winner node and all of its topological neighbours are adapted according to the

learning rule ∆wi = εi(ξ − wi), where εi is the particular learning rate for each of the

nodes concerned (the winner and its neighbours only).

The implementation of the GWR training algorithm used in this work is slightly

different from the original presented in (Marsland et al., 2002a), as we have altered the

learning and habituation rules for the topological neighbours of the winner node. The

original approach used parameters εi and τi for the neighbours, which were just a constant

fraction of εs and τs for the winner node. Therefore, εi and τi were completely independent

of the distance between neighbour and winner nodes in input space. In our approach, we

made the learning and habituation rates of the neighbour nodes proportional to the ratio

between the winner node and neighbour activations:
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εi =
ηai

as

εs, (10)

τi =
as

ηai

τs, (11)

where as and ai are the activation of the winner and neighbour nodes, respectively,

and η is a proportionality factor (0 < η < 1).

It can be noticed from Eq. 10 that the neighbour nodes will have their weights adapted

to a lesser extent than the winner while Eq. 11 shows that neighbours will habituate in a

slower rate than the winner node.

The final step of the GWR training iteration consists of checking for nodes and edges

to be removed, i.e. nodes that no longer have any neighbours and edges whose age is

greater than a predefined threshold agemax.

For the experiments reported here we have used the following parameters: aT = 0.9,

hT = 0.3, η = 0.1, εs = 0.1, τs = 3.33, α = 1.05, h0 = 1, S(t) = 1 and agemax = 20

(see Eqs. 9, 10 and 11). The values for the node insertion thresholds aT and hT were

selected to make sure that new nodes are added for every novel stimulus without the need

of a large number of iterations. The low value assigned to the learning rate εs ensures

that nodes are not able to move too much from the location in input space where they

were originally placed. It is also important to mention that only habituation is modelled

with the use of a constant positive value for S(t), i.e. its reversal — dishabituation — is

disabled in our implementation.

5 Experiments

We conducted a set of experiments to test our approach using the colour vision system of

Radix2, the Magellan Pro robot shown in Fig. 4a. Besides the standard sonar, infra-red

and bump sensors, our robot is also equipped with a laser range scanner whose readings

were used for controlling the robot’s navigation behaviour. Figure 4b also shows the top

view of the engineered environment used in the experiments — a simple square arena built
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of cardboard boxes in whose corners (numbered from 1 to 4) novel objects were gradually

introduced.

&%

'$££°

1

2 3

4

(a) (b)

Figure 4: Experimental setup: (a) the mobile robot and (b) the laboratory environment.

The cardboard boxes at the borders of the arena act as walls that limit the robot’s

trajectory and also its visual world. With the sole intention of obtaining a completely

controlled visual world for our experiments, the images were acquired with the robot’s

camera tilted down to its maximum (−25◦), so that the field of view was constrained

mostly to the arena’s walls and floor. In spite of being able to process up to eight frames

per second using the robot’s onboard computer, the images used in the experiments

reported here were acquired at one frame per second without stopping the robot, resulting

in 50 frames per loop around the arena.

A simple obstacle-avoidance algorithm using the laser range scanner readings was used

as the navigation behaviour for the robot. We have employed the force field strategy, in

which every distance measure covering 90◦ in front of the robot is modulated to act as

a virtual spring pushing it to the freest space in the environment. Basically, the robot

slowly translated at 0.15m/s until it found an obstacle within a threshold distance of

0.5m, which made it stop and then rotate at a maximum speed of 35◦/s towards free

space again. In our experiments, this behaviour has shown to be extremely predictable

and stable (the resulting approximate path followed by the robot is shown in Fig. 4b).
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5.1 Robot task

Our experiments were designed in order to evaluate the ability of the proposed framework

to detect arbitrary novel visual features that may appear in the robot’s normal operating

environment. Hence, they were divided in two stages: an exploration (learning) phase

and an inspection (application) phase.

During the learning phase, images were acquired while the robot was navigating around

the empty arena. These images were processed to generate local colour feature vectors as

described in section 3 and to train the GWR network. After that, during the application

phase, a novel object was introduced in the arena so that a new sequence of images could

be acquired and used to test the trained GWR network as a novelty filter. The habituation

value of the winner node’s output synapse was used as a measure of the degree of novelty

of the input.

The expected outcome of such experiments was that the amount of novelty measured

would progressively be reduced during exploration as a result of the self-organisation and

habituation of the GWR network to represent the original environment. In addition, it

was expected that peaks in the novelty measure would appear in areas where the new

object was inserted during the inspection phase.

5.2 Results and discussion

Both exploration and inspection phases involved processing images acquired during five

loops around the arena. The amount of novelty in each frame was computed as the average

of the winner node’s habituation value for each of the nine local colour feature vectors

generated per frame.

Figure 5 shows the average measure of novelty per frame during the learning phase

in five consecutive loops around the empty arena. Notice that the average novelty value

reduces as the robot explores the environment. Given the parameters used for the ha-

bituation rule in Eq. 9, novelty values range from a minimum of 0.05 and a maximum of

1.

Figure 5 also shows the output of the algorithm for the first image frame acquired
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Figure 5: Exploration of the empty arena (learning of the GWR network enabled).

during exploration: the nine most salient locations are assigned with numbers (zero being

the most salient), around which white circles are drawn if the surrounding region is con-

sidered novel (habituation value of the corresponding winner node above the habituation

threshold hT ). As the GWR network has just initiated the learning process in this case,

every salient region (with the exception of region 3) is considered as novel.

For the application phase, a new object — an orange ball — was placed in corner 3

of the arena. The amount of novelty measured in five consecutive loops around the arena

with the ball is depicted in Fig. 6.

The new object appeared in the camera’s field of view immediately after the robot has

turned corner 2 and is clearly differentiated from other common visual stimuli observed in

the arena (see Fig. 6). In this case, learning of the GWR network was disabled so that it

would not habituate on the orange ball and hence detect it as many times as it appeared.

Again, the visual output of the system is also shown for an image frame where the orange
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Figure 6: Inspection of the arena with the orange ball (new) in corner 3 (learning of the
GWR network disabled).

ball is present, illustrating the ability of our algorithm to localise novel features.

As an extra experiment, learning of the GWR network was enabled and the arena

with the ball in corner 3 was explored again in order to make the robot habituate on

it. Another object was inserted in corner 2 of the arena, this time a grey box much less

conspicuous than the orange ball. The arena was then inspected again and the results

obtained are shown in Fig. 7.

Examination of Fig. 7 illustrates the ability of the system to localise the newly in-

troduced object (salient locations 0 and 3) while rejecting very similar visual features in

the same frame (salient locations 1, 2 and 4, corresponding to reflections of light on the

arena’s grey floor which share the same colour characteristics with the grey box).

We conducted statistical tests in oder to compare the performance of the system to

the expected results. For these, ground truth was generated in the form of binary image
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Figure 7: Inspection of the arena with the orange ball (habituated) in corner 3 and the
grey box (new) in corner 2 (learning of the GWR network disabled).

masks with the location of the new object manually highlighted. The correlation between

the system’s response and the actual “novelty situation” was found to be significant (χ2

test, p < 0.05).

6 Conclusion

Motivated by the great potential of a visual novelty-detection mechanism to applications in

automated exploration and inspection using mobile robots, we have proposed a framework

that uses local colour statistics from salient regions within input image frames to form a

sub-symbolic representation of the operating environment without the installation of any

a priori knowledge.

Colour angles (Finlayson et al., 1996) and the normalised standard deviation of inten-

sity are computed in the vicinity of locations determined by a saliency-based mechanism

17



of visual attention (Itti et al., 1998) to form feature vectors. The image encoding proce-

dure as a whole has shown to be very stable and robust to various image transformations,

such as changes in perspective and perceived illumination. Experiments conducted in

an engineered environment with a moving robot have shown that our approach has the

ability to highlight new, arbitrary objects based on their colour characteristics as soon as

they first appear in the camera’s field of view.

The novelty filter based on the GWR neural network (Marsland et al., 2002b) was able

to learn a representation of the normal environment quickly through our image encoding

method, and later was used to detect any unusual features that were introduced after train-

ing. Our implementation is capable of on-line learning at eight frames per second when

running on a Magellan Pro robot equipped with an 850MHz Pentium III processor. Fur-

thermore, we have compared the performance of our mechanism with manually-generated

ground truth and observed statistically significant correlation between system response

and actual novelty status.

Ongoing work includes the improvement of the image encoding mechanism, which will

incorporate other visual features in addition to colour. As the computation of the saliency

map is expensive, we are interested in exploiting information already available from the

image pyramids to encode local features. We also intend to implement automatic scale se-

lection (Lindeberg, 1998) and investigate the possibility of using incremental PCA (Artač

et al., 2002) to integrate image encoding and on-line novelty detection in a single method.

Finally, the system’s scalability to real-world environments is also under evaluation.

We consider to have achieved very good results in interfacing unrestricted visual stim-

uli to the GWR-based novelty filter. Our framework has shown to offer stability and

robustness to general image transformations while providing consistent novelty detection

based on local colour statistics.
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