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The construction of multi-scale image pyramids is used in state-of-the-art methods that perform robust ob-
ject recognition, such as SIFT and SURFE. However, building such image pyramids is computationally expen-
sive, especially when implementations in embedded systems with limited computing resources are considered.
Therefore, the use of alternative less expensive approaches are necessary if near real-time operation is desired.
Previous work has reported that using binomial filters to construct half-octave multi-scale pyramids consumes
only 1/4 of the processing time of the Gaussian pyramid originally used in the SIFT framework. Here we
investigate how interest points detected using the binomial approach behave when compared to the Gaussian
approach, focusing on repeatability. Experimental results show that in average up to 86% of interest points
detected with the original SIFT pyramid building scheme are also detected when using the binomial method,
despite of large gains in processing time. When rotation of image features is considered, experimental results

demonstrate that slightly superior repeatability of interest points is achieved using the binomial pyramid.

1 INTRODUCTION

In the last decade, many research efforts were directed
to robust object recognition in terms of invariance to
scale, rotation and partial occlusion. Among some of
the most well-known methods are SIFT (Lowe, 1999;
Lowe, 2004) and SURF (Bay et al., 2008).

However, most methods designed for multi-scale
object recognition are computationally expensive and
memory consuming — therefore, implementations that
run in real-time are difficult to be achieved, even in
modern computer architectures. When it comes to
performing multi-scale object recognition in embed-
ded systems with limited computing resources, the
difficulty in achieving near real-time performances is
even more challenging.

Recently, physically small and low-power embed-
ded systems based on ARM cores were made avail-
able at affordable costs, such as the BeagleBoard-
xM (Coley, 2010) and Raspberry Pi (Halfacree and
Upton, 2012), making them interesting platforms for
such object recognition methods, especially when au-
tonomous robot systems are considered. As these em-
bedded systems consume little power at full load and
are small in size, their computing power is naturally
significantly smaller than the computing power avail-

able in most desktop computers.

Among the efforts being directed at enabling em-
bedded systems to be capable of performing real-time
multi-scale object recognition, there are some that are
based on computationally cost-effective, but coarser
approximations of already known methods available
in the literature. For example, the work in (Entschev
and Vieira Neto, 2013) aims at near real-time object
recognition in an embedded platform, using a half-
octave binomial image pyramid (Crowley et al., 2002)
to represent multi-scale visual information, approxi-
mating the Gaussian image pyramid approach com-
monly used in object recognition methods, such as
SIFT (Lowe, 2004) and other approaches (Mikola-
jezyk and Schmid, 2004).

Previous work shows that the use of half-octave
binomial pyramids for multi-scale interest point de-
tection is approximately four times faster than when
using their Gaussian counterparts, yielding similar
properties — real-time interest point detection at 25
frames per second can be achieved for images of
129 x 129 pixels in size (Entschev and Vieira Neto,
2013). Here, the repeatability of interest points de-
tected using half-octave binomial pyramids is as-
sessed in comparison to that obtained using conven-
tional Gaussian pyramids.



2 RELATED WORK

Multi-scale representations of images using the no-
tion of low-pass filtering and sub-sampling was first
proposed in (Burt and Adelson, 1983) and has been
exploited for about three decades now. One of the
great advantages in the use of such a multi-scale ap-
proach is that it allows recognition of objects indepen-
dently of the scale in which it appears in the scene.
Much research work has been done in multi-scale ob-
ject recognition since then, from which we can par-
ticularly cite SIFT, first introduced in (Lowe, 1999)
and later extended and improved in (Lowe, 2004), and
also SURF (Bay et al., 2008).

Both SIFT and SURF present processes to gener-
ate multi-scale image pyramids, followed by the ex-
traction of robust local descriptors from a model ob-
ject image, which can be subsequently matched to the
descriptors of a scene to find the object position and
affine orientation regardless of changes in scale and
some degree of changes in illumination.

In SUREF, a multi-scale image pyramid is obtained
by first computing an integral image (Viola and Jones,
2001) and then processing it with coarse approxima-
tions of Gaussian derivative filters in different scales
and orientations. As the processing effort to filter in-
tegral images is independent of the scale of the filter,
overall computational cost is reduced when compared
to traditional filter-and-subsample pyramid building
schemes. The Hessian matrix is then applied locally
at the pyramid in order to detect stable interest points,
usually corresponding to blobs and corners, around
which image information is encoded as a descriptor
that is invariant to rotation.

The SIFT framework also builds a scale space, but
using the traditional Gaussian filter-and-subsample
approach at multiple scales. After filtering and sub-
sampling, differences between adjacent levels of the
Gaussian pyramid are computed in order to obtain
a difference-of-Gaussian pyramid, which is a finer
representation of derivatives when compared to the
coarser method used in SURF. The sub-sampling pro-
cess is used to avoid the use of unnecessarily large
Gaussian filters, whose sizes grow with scale. The
set of pyramid levels in which the scale of filtering is
doubled is conventionally named an octave (Crowley
et al., 2002).

The difference-of-Gaussian constitutes an approx-
imation of the Laplacian of Gaussian (Burt and Adel-
son, 1983) and the main purpose of using it resides
in its reduced computational cost when compared
to the direct computation of the Laplacian of Gaus-
sian (Crowley and Stern, 1984). Both difference-of-
Gaussian and Laplacian of Gaussian approaches re-

sult in high-pass filtering of the original image, en-
hancing edges as their result.

A more computationally efficient way to build
multi-scale image pyramids than the one used in the
original SIFT approach uses binomial kernels instead
of Gaussian kernels (Crowley et al., 2002). Although
it is not possible to generate all possible scales us-
ing binomial filters, their resolution is enough to build
image pyramids with scales sufficiently spaced by
6 = v/2 (Crowley and Riff, 2003).

More recently, the method presented in (Crowley
et al., 2002) was used in (Entschev and Vieira Neto,
2013) to build SIFT image pyramids more efficiently.
In this approach, the time spent to compute the whole
multi-scale pyramid was reduced to up to one fourth
of the time spent to build the same multi-scale pyra-
mid using the original approach of SIFT.

The work presented in (Entschev and Vieira Neto,
2013) proposes the use of binomial filters to build im-
age pyramids for SIFT-like object recognition, aiming
at near real-time performance in a BeagleBoard-xM
embedded development kit. That work explains how
the scale space for the SIFT framework can be built
more efficiently, focusing in execution time perfor-
mance, but did not consider the repeatability of inter-
est points. The present work intends to fill the gap left
in (Entschev and Vieira Neto, 2013), assessing the re-
peatability of interest points detected using binomial
image pyramids.

2.1 Binomial Pyramid

As described in (Entschev and Vieira Neto, 2013),
there are two kernels of special interest for the con-
struction of a binomial pyramid, % x [1 2 1] and its
auto-convolution ¢ x [1 4 6 4 1], which are approx-
imations to Gaussian kernels of 62 = J and 6> = 1,
respectively (Crowley et al., 2002). The reason for
such importance is that with just these two kernels,
it is possible to build full scale spaces separated by
c=2.

The relationship for cascaded convolutions of bi-
nomial filters is given in:

6=1/07+03. (D)

From Equation 1, it is possible to deduce that with
two consecutive convolutions with the & x [1 464 1]

kernel, an image with scale ¢ = v/2 is obtained. The
same scale is also obtainable by applying four con-
secutive convolutions with the % x [12 1] kernel. This
important relationship determines that multiple con-
volutions of binomial kernels result in a scale space



separated by 6 = /2, the so-called half-octave bino-
mial pyramid.

Every time that the scale doubles, 1:2 nearest
neighbour sub-sampling is performed in each dimen-
sion for the next octave, in order to avoid increas-
ing the size of the filters and therefore saving com-
putational resources (Crowley et al., 2002). In or-
der to facilitate the computation of differences be-
tween pyramid levels, in (Entschev and Vieira Neto,
2013) neighbouring levels in adjacent octaves are ei-
ther up-sampled or down-sampled to match image di-
mensions in each particular pyramid octave, in a sim-
ilar fashion to what is done in (Lowe, 2004).

In Figure 1, the construction model of a binomial
pyramid with two octaves and four levels per octave is
shown. The first level of each octave (except for the
first octave) is obtained by nearest neighbour down-
sampling of the third level of the previous octave. The
fourth level is obtained by up-sampling via bilinear
interpolation of the second level of the next octave.

3 EXPERIMENTAL SETUP

The experiments to assess interest point repeatability
reported in this work involve comparisons between
the conventional SIFT pyramid building scheme and
the half-octave pyramid described in (Entschev and
Vieira Neto, 2013), regarding both stability in the de-
tection of interest points (keypoints) and their robust-
ness to rotations.

Firstly, the binomial pyramids were constructed
exactly as explained in (Entschev and Vieira Neto,
2013) and the reference Gaussian pyramids were con-
strained to have the same number of octaves as the bi-
nomial pyramids. In order to achieve this, the SIFT
implementation in the OpenCV library (Bradski and
Kaehler, 2008) was adapted to generate image pyra-
mids with five scales per octave. The number of oc-
taves for both pyramid types is equal to |log,d| — 2,
where |.| indicates the floor function and d is the
smallest dimension of the original input image.

For a detected test keypoint K; to be considered
a repetition of a reference keypoint K, the euclidean
distance between K; and K, must not be larger than the
scale s of K,. The scale s of the keypoint being tested
must also satisfy the condition V2s—s<s<+\2s+s.
When robustness to rotation is concerned, all key-
points that lie outside a circle with radius equal to
the smaller dimension of the image are disregarded,
because some of them will not be present when the
image is synthetically rotated. The orientation of key-
points was not considered in the experiments reported
here.

To test if the keypoints are repeated, we can not
consider the exact coordinates of keypoints K; and
K,. Due to the nature of the scale space, the coor-
dinates of keypoints might shift slightly, and that is
the reason to consider a small surrounding region as
valid for location of repeated keypoints. When key-
points are found in different octaves, their location
must be estimated according to the original size of
the input image, which might also vary for differ-
ent approaches of scale space construction. Finally,
as proposed in (Brown and Lowe, 2002) and used in
SIFT (Lowe, 2004), the interpolated location of key-
points is determined by fitting a quadratic 3D function
to the scale space.

All tests were performed using a dataset con-
taining 12 images taken from the Affine Covariant
Regions Dataset provided by the Visual Geometry
Group of the University of Oxford (Visual Geometry
Group, 2004) and from the original dataset of images
of SIFT, provided along with the SIFT demo program
from David Lowe(Lowe, 2005). The images were not
used in their full size, but were cropped to dimensions
of 2V + 1, with both horizontal and vertical dimen-
sions being the same.

In a first experiment, the repeatability of keypoints
detected using the binomial pyramid is first compared
to the ones detected using the conventional Gaussian
pyramid. Then, in a second experiment, the robust-
ness of keypoint detection using both approaches is
assessed regarding rotation — for this purpose, the
original input images are synthetically rotated around
their central pixel using bicubic interpolation, and the
repeatability of keypoints computed.

4 RESULTS

In this section some peculiarities that arise from the
use of binomial filters to construct image pyramids
are discussed, as well as the similarity between Gaus-
sian and binomial pyramids with regard to keypoint
repeatability.

The process of up-sampling the subsequent oc-
tave to obtain scales that cannot be achieved by a bi-
nomial filter of small size has a coarser effect than
that of using larger Gaussian filters directly. This
coarseness of the method seems to yield more ex-
trema when performing non-maximum suppression in
scale space, which are prone to result in unstable key-
points. To prevent the existence of too many unstable
keypoints with corresponding low curvatures, we per-
formed tests with non-maximum suppression using
smaller curvature threshold values than the original
curvature threshold value of 10 proposed in (Lowe,
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Figure 1: Construction of a half-octave binomial pyramid with two octaves and corresponding difference pyramid. Neighbour-
ing levels in adjacent octaves are either up-sampled or down-sampled to match image dimensions and facilitate computation
of differences between pyramid levels, resulting in four levels per octave (Entschev and Vieira Neto, 2013).

2004).
4.1 Keypoint Repeatability

Figure 2 shows the relative amount of keypoints de-
tected within images processed with a binomial scale
space that are also detected in the Gaussian scale
space. According to the explanation given in sec-
tion 3, K; are the test keypoints found using the bi-
nomial approach, and K, are the reference keypoints,
found using the Gaussian approach. The repeatability
of keypoints is shown in the graph by the ascending
continuous line, where average samples are marked
(x) and vertical bars represent the standard deviation
obtained with the test dataset.

A pyramid constructed with binomial filters and a
curvature threshold of 5 repeats in average 78% of the
keypoints found in a pyramid cosntructed with Gaus-
sian filters, as shown in Figure 2. The repeatability of
keypoints grows up to about 86% when using a cur-
vature threshold of 10. Repeatability stabilises if the
curvature threshold is raised any further.

This experiment shows that even using a much
less computationally expensive approach as the one
in (Entschev and Vieira Neto, 2013) to build the scale-
space, most of the relevant keypoints are preserved,
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Figure 2: Average repeatability of keypoints found in a bi-
nomial pyramid in relation to the ones found in a Gaussian
pyramid as a function of curvature threshold in the binomial
pyramid — vertical bars indicate standard deviations. The
number of average repeated keypoints grows as the curva-
ture threshold is raised.

while reducing processing time to up to 1/4.

An example of the resulting keypoints for a test
image using both Gaussian and binomial pyramids,
with curvature threshold values of 10 and 5, respec-
tively, is shown in Figure 3.



Figure 3: Example of detected keypoints with a Gaus-
sian pyramid and curvature threshold value of 10 (left) and
with a binomial pyramid and curvature threshold value of
5 (right). All detected keypoints in both approaches are
shown, according to the constraints defined in section 3.
More keypoints are detected when a binomial pyramid is
used, even with lower curvature threshold values are used

4.2 Keypoint Ratio

When a binomial pyramid is used, more keypoints
are found due to the coarseness that results from up-
sampling the levels from subsequent octaves. The ra-
tio between the number of detected keypoints in a bi-
nomial pyramid and the ones detected in a Gaussian
pyramid can be seen in Figure 4 — the average ratio
as a function of curvature threshold, now considering
the total amount of keypoints found, results in an as-
cending continuous line with increasing standard de-
viation, represented by the vertical bars.
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Figure 4: Ratio between the number of keypoints found in a
binomial pyramid and the number found in a Gaussian pyra-
mid — vertical bars indicate the standard deviation. For
the same curvature threshold value of 10, the binomial ap-
proach yields almost twice the number of keypoints than the
Gaussian approach.

As shown in Figure 4, when non-maximum sup-
pression is performed over a scale space built with bi-
nomial filters, with a curvature threshold of 5, about
50% more keypoints are found in average, compared
to non-maximum suppression performed over a scale
space built with Gaussian filters. The average number

of keypoints found almost doubles when the curva-
ture threshold is set to 10. As the curvature threshold
is increased, the standard deviation of the ratio of key-
points also increases.

4.3 Repeatability and Rotation

In this subsection, the repeatability achieved when in-
put images are subject to rotation will be analysed.
The results that follow were all gathered with syn-
thetic rotations of the same 12 image samples used
to obtain the results previously presented.

Figure 5 shows a polar graph with the repeatabil-
ity obtained for a 360 degree rotation window, in steps
of five degrees. For the Gaussian scale space, a cur-
vature threshold of 10 was used, in accordance to the
original value proposed in (Lowe, 2004), and for the
binomial scale space, a curvature threshold of 5 was
used, based on the results obtained in subsections 4.1
and 4.2.

Repeatability (%)

270

Rotation Angle

Figure 5: Average rotation repeatability of keypoints. The
black dashed line represents the repeatability of keypoints
found in the original SIFT scheme and the solid gray line
represents the repeatability of keypoints found using the
binomial approach. The binomial approach results in a
slightly superior overall repeatability of keypoints, except
for rotation angles that are multiples of 90 degrees.

As can be seen in Figure 5, the original scale space
proposed in (Lowe, 2004) has maximum repeatability
when the rotation angle is a multiple of 90 degrees.
This is not surprising, as there is no need for inter-
polation to generate the synthetic pixel values of the
rotated image, but only transposition of intensity val-
ues in the image. For different angles, the repeatabil-



ity of keypoints for the original SIFT scheme almost
remains constant at a rate of 80%.

Using the binomial scale space pyramid proposed
in (Entschev and Vieira Neto, 2013), the repeatabil-
ity is also maximum for 90 degrees multiples, sim-
ilarly to the scale space built with Gaussian filters,
achieving approximately 90%. The farther rotation
gets from a 90 degree multiple and closer it gets to an
odd 45 degree multiple, the repeatability decreases,
the smallest repeatability being around 80%.

Figure 6: Example of detected keypoints using a binomial
pyramid as a function of rotation. The original input im-
age appears at the top — then, from left to right and top to
bottom, rotations of 15 to 90 degrees in steps of 15 degrees
are shown. The centre of the white circles represent key-
point locations and their radius represent their correspond-
ing scale.

In Figure 6, the detected keypoints from 0 to 90
degrees, in steps of 15 degrees, are presented for one
of the image samples used in the experiments. Be-
cause the average repeatability is similar, only sam-
ples for the first 90 degrees are shown.

S CONCLUSION

The experiments presented here show that the ap-
proach proposed in (Entschev and Vieira Neto, 2013)
yields good keypoint repeatability rate when com-
pared to the original SIFT method proposed in (Lowe,
2004). When compared to the conventional Gaussian
approach, the average keypoint repeatability rate for
a binomial scale space is 78% for a curvature thresh-
old value of 5 and reaches about 86% with a curvature
threshold value of 10.

With a curvature threshold value of 5, the keypoint
repeatability of the binomial scale space regarding ro-
tations is maximum at multiples of 90 degrees and
reaches more than 90%, while the worst cases involve
rotations of odd multiples of 45 degrees, no less than
82%.

The most computationally expensive step of the
method is considered to be upscaling of levels from
subsequent octaves by bilinear interpolation during
the pyramid construction. Further studies on this
specific topic, including experiments with alternative
methods to build binomial pyramids in time-efficient
manners are still in sight.

Additional comparisons concerning changes in
scale of the input image are also necessary, as well
as performance assessment involving actual match-
ing of SIFT descriptors generated for keypoints found
when using the approach proposed in (Entschev and
Vieira Neto, 2013) to construct the scale space — these
are subjects of future research.
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