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Abstract

This paper presents experiments with an autonomous inspection robot, whose task was to highlight novel features in its
environment from camera images.

The experiments used two different attention mechanisms — saliency map and multi-scale Harris detector — and two different
novelty detection mechanisms — Grow-When-Required (GWR) neural network and an incremental Principal Component Analysis
(PCA). For all mechanisms we compared fixed-scale image encoding with automatically scaled image patches.

Results show that automatic scale selection provides a more efficient representation of the visual input space, but that performance
is generally better using a fixed-scale image encoding.
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1. Introduction

The ability to identify perceptions that were never ex-
perienced before — novelty detection — is an attractive
component of “intelligent” robot control for a number of
reasons. First, the ability to differentiate between com-
mon and rare perceptions is essential component for mo-
bile robots aiming at true autonomy, adaptability to new
situations and continuous operation. Second, from an op-
erational point of view, the robot’s limited computational
resources can be used more efficiently by selecting the as-
pects of the surroundings which are relevant to the task in
hand or uncommon aspects which deserve further analysis.
Third, by using a novelty detection mechanism, previously
unknown aspects of the environment can be incrementally
learnt by the robot without supervision. Finally, novelty
detection is a core competence in industrial applications
of autonomous mobile robots, for instance in inspection,
surveillance or fault detection tasks. The research presented
here — while currently focusing on research aspects — will
ultimately lead to autonomous inspection robots that can
relieve human operators from tedious and therefore fatigu-
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ing aspects of inspection work (scrutinising repetitive, nor-
mal data) and allow them to concentrate on unusual sig-
nals, highlighted by the inspection robot.

Obviously, relevant features in the environment need to
be sensed and discriminated, otherwise it would be impos-
sible for the agent to respond appropriately. Therefore, the
sensor modality used to generate the perceptual input plays
an important role in the agent’s performance for a given
task or behaviour. Among the various sensors commonly
available to a mobile robot, vision allows measurement and
estimation of several environmental features and provides
high resolution readings in two dimensions, making the de-
tection of small details of the environment more likely.

Our work investigates novelty detection mechanisms us-
ing vision as perceptual input, with potential applications
in automated inspection. In order to deal with the large
amount of data provided by a camera, we use an attention
model to select raw image patches from the input image
frame. These image patches are then normalised to unit-
length vectors and fed to a novelty filter that indicates the
presence or absence of novelty [1,2]. This approach is sum-
marised in Fig. 1.

The role of the attention model The attention model plays
an important role in the overall performance of our visual
novelty detection framework, allowing the localisation of
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Fig. 1. Visual novelty detection using raw image patches: an attention
model selects candidate regions, which are then normalised and fed
to a novelty filter.

where novel visual features are within an input image frame
and reducing the dimensionality of input vectors through
the use of local image patches rather than the whole image
frame. Moreover, because visual input is acquired from a
moving platform and therefore subject to several geometri-
cal transformations, the use of visual attention intrinsically
deals with translations of features within the image frame
by centring image patches on stable salient locations. How-
ever, other alterations in appearance such as changes in
scale, rotations or affine-transformations need more elabo-
rated image encoding to be dealt with efficiently.

The role of automatic scale selection Our hypothesis is
that an image encoding method that is robust to changes
in scale would improve the novelty filter’s ability to gener-
alise and reduce the number of acquired concepts by the
learning mechanism in use — we therefore investigate here
how image patch size can be determined automatically. In
previous work we achieved generalisation according to scale
by acquiring multiple image patches in different scales for
the salient visual features found in the environment [1]. We
used raw image data to allow image patch reconstruction
and provide visual feedback of which aspects of the envi-
ronment were actually learnt by the robot.

In this work, we exploit the characteristic scale property
[3] present in multi-scale attention mechanisms to deter-
mine the size of interest regions (image patches) automat-
ically. We compare results obtained during a novelty de-
tection task using the saliency map [4] and the multi-scale
Harris detector [5] as attention mechanisms; the GWR neu-
ral network [6] and the incremental PCA algorithm [7] were
compared as novelty filters.

2. Novelty Detection

The objective of novelty detection is to highlight any pre-
viously unknown feature. This differs from pattern recog-
nition tasks, in which the features of interest are already
known beforehand.

Therefore, we acquire a model of normality from the en-
vironment using robot learning, and then use this model to
filter out abnormal perceptions. In this work we focus on
on-line unsupervised learning mechanisms based either on
neural networks or statistical approaches.

Initially we use the GWR network, which was origi-
nally designed for the purpose of on-line novelty detection,
as novelty filter. This neural network combines a self-
organising clustering mechanism and a model of habitua-
tion to decide if a given input vector is novel or not [6].

In a second experiment we use an alternative method
for novelty detection based on the incremental PCA algo-
rithm introduced by Artac et al [7]. In this approach, the
magnitude of the residual vector (the RMS error between
the original input data and its reconstruction from the cur-
rent eigenspace projection) is used as a means to determine
novelty. Incremental PCA offers the advantage of intrin-
sically reducing input dimensionality, allowing optimal re-
construction (minimal squared error). Implementation de-
tails of both novelty detection methods used in this work
are given in [1].

2.1. Experimental Setup

Our experiments were carried out using a Magellan Pro
robot operating in a square arena (2.56×2.56m) made from
cardboard boxes. The robot used a simple force-field ob-
stacle avoidance behaviour to navigate slowly around the
arena while acquiring images at one frame per second. Dur-
ing an initial learning phase the robot acquired a model of
normality from its environment. The learning phase con-
sisted of five loops around the empty arena, resulting in the
acquisition of 225 image frames.

Once the model of normality was obtained, a novel ob-
ject (either an orange football or a grey box) was placed in
the arena and the trained robot was used to inspect the en-
vironment again. The inspection phase also comprised five
loops around the arena containing a novel object, resulting
again in 225 acquired image frames for each case. Exam-
ples of acquired images containing the novel objects inside
the arena are given in Fig. 2.

(a) (b)

Fig. 2. Input images containing novel objects inside the arena: (a)
orange football; (b) grey box.

The expected outcome of the experiments was that the
novelty filters would highlight the location of novel stim-
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uli during inspection and ignore visual features that were
previously learnt.

2.2. Quantitative Assessment of Results

To ensure a fair comparison of all algorithms used, all im-
ages obtained in the arena were stored and algorithms were
tested off-line, using identical images. The novelty filters
used here, however, have the ability to process data on-line
in real time, and in actual robot applications would be used
to identify novelty while operating in the environment.

After acquiring the images from the environment, ground
truth data was generated in the form of a binary image for
each image frame where novel objects were present. The
pixels corresponding to novel features were manually high-
lighted in these ground truth templates, as Fig. 3 shows.

(a) (b)
Fig. 3. Ground truth templates corresponding to the input images
in Fig. 2: (a) orange football; (b) grey box.

Using the ground truth information, contingency tables
were built relating the system response to the actual novelty
status, as shown in Table 1. For the novelty status of a
given region of the input image to be considered as “novelty
present”, it had to have at least 10% of highlighted pixels
in the corresponding region of the respective ground truth
template.

Table 1
Example contingency table for the quantitative assessment of novelty
filters.

Novelty Novelty

Detected Not Detected

Novelty

Present
A B

Novelty

Not Present
C D

Statistical significance of the association between actual
novelty status (ground truth) and the novelty filter re-
sponse was established using a χ2 analysis of the contin-
gency table [8,9]. The strength of this association was then
quantified through Cramer’s V (0 ≤ V ≤ 1) and the uncer-
tainty coefficient U (0 ≤ U ≤ 1). Smaller values for these
statistics indicate weaker associations [9,10].

A further statistic used in this paper is the κ index of
agreement, which is computed as follows [11]:

κ =
2(AD −BC)

(A + C)(C + D) + (A + B)(B + D)
, (1)

where A, B, C and D are the entries in the contingency
table (see Table 1).

This statistic is used to assess the agreement between
ground truth and novelty filter response, in a similar fash-
ion to V and U . However, κ has the advantage of having
an established semantic meaning associated with some in-
tervals [11], as Table 2 shows.

Table 2
κ intervals and corresponding levels of agreement between ground
truth and novelty filter response.

Interval Level of Agreement

κ ≤ 0.10 No

0.10 < κ ≤ 0.40 Weak

0.40 < κ ≤ 0.60 Clear

0.60 < κ ≤ 0.80 Strong

0.80 < κ ≤ 1.00 Almost complete

Unlike V and U , the κ statistic may yield negative values
(−1 ≤ κ ≤ 1). If κ is negative, the level of disagreement
between system response and manually generated ground
truth can be assessed.

3. Models of Visual Attention

3.1. Saliency Map

In previous work [1,12] we reported experiments using
the saliency map [4] as a mechanism of visual attention us-
ing a fixed number of salient points. The saliency map is
inspired by the early primate visual system and consists of
computing multi-scale feature maps that allow the detec-
tion of local changes in intensity, colour and orientation in
different scales.

The feature maps are obtained from image pyramids
computed from the original input image. In our implemen-
tation, Gaussian and oriented Gabor pyramids with eight
scales were built, as described in [4]. Across-scale differ-
ences were computed between finer and coarser scales from
the pyramids to yield the feature maps, which were com-
bined in conspicuity maps for intensity, opponent colours
and orientation. A normalisation operator was used in or-
der to combine these conspicuity maps with different dy-
namic ranges into a single saliency map, giving more weight
to unusual features in the input image frame. Full imple-
mentation details are available in [10].

The highest value within the saliency map needs to be
found in order to determine the location of the first focus of
attention, then the second highest value needs to be found
to establish the location of the second focus of attention,
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and so on. Salient locations were determined by a search for
local maxima whose values were above the average saliency
value of the map. The determined coordinates and their
neighbours were then used to interpolate the salient loca-
tion with sub-pixel accuracy using a Taylor expansion up
to the second derivative:

x̂ = − Sx

Sxx
, (2)

ŷ = − Sy

Syy
, (3)

where Sx and Sy are the first partial derivatives and Sxx

and Syy are the second partial derivatives of the saliency
function S relative to coordinates x and y, respectively.

Equations 2 and 3 fit a parabola to the local saliency
function in order to find the offset (x̂, ŷ) to be added to
the coordinates of the salient point previously found. A
parabola is sufficient to interpolate a more accurate loca-
tion for local maxima because the saliency function is rea-
sonably smooth.

3.2. Multi-scale Harris Detector

We also implemented the multi-scale Harris detector [5]
as an alternative interest point selection strategy to the
saliency map. This algorithm basically consists of building
an intensity Laplacian pyramid from the input image and
then searching it for extrema. Interest points correspond to
extrema due to their stability in both space and scale [13].
We used the fast and efficient algorithm proposed in [14] to
build Difference-of-Gaussian (Laplacian) image pyramids
by successive Gaussian filtering, sub-sampling and subtrac-
tion. In our implementation we used Laplacian pyramids
with 12 scale levels.

After the Laplacian pyramid is built for an input image,
search for extrema in scale-space is performed. Each pixel
in the pyramid is compared to its eight neighbours in the
same level and its 18 neighbours in the levels above and
below. The location of extrema is interpolated using equa-
tions 2 and 3 for better accuracy. Extrema corresponding
to locations with low contrast (less than 2.5% of the maxi-
mum value in the image) were rejected. Also, because the
Difference-of-Gaussian function has strong responses along
edges even if localisation is poorly defined and unstable due
to noise, we rejected locations with a principal curvature
ratio r < 4 in order to achieve better stability (poorly de-
fined extrema have a large principal curvature across the
edge but a small curvature in its perpendicular direction)
[13]. Further details are given in [10].

4. Experiments with Fixed Scale

To compare performances of different strategies to se-
lect interest points, we conducted experiments using unit-
length normalised raw image patches in the image encoding
stage, the same approach followed in [1]. The main reason

to use raw image patches was to allow reconstruction from
the acquired model of normality. However, by using this
image encoding approach, the overall performance of the
visual novelty detection system is sensitive to patch mis-
alignment, which obviously depends on the accuracy and
stability of the attention mechanism being used. Therefore,
an attention mechanism that provides better interest point
stability and accuracy is expected to also provide better
overall performance when using raw image patches.

First set of experiments For the first experiments a fixed
scale size of 25× 25 pixels was used for the image patches,
which were centred at the locations selected either by the
saliency map or by the multi-scale Harris detector. Both
of these approaches automatically decide the number of
salient points to be selected within the input image accord-
ing to the threshold parameters mentioned in section 3.

In order to assess the impact of the attention mecha-
nism on the overall visual novelty detection performance,
a GWR network was trained with the normalised raw im-
age patches selected from the empty arena (the activation
threshold for the GWR network was aT = 0.85, see [1]).
The acquired model of normality of the empty arena was
then used to filter out any abnormal perceptions during in-
spection, which was conducted with the presence of novel
objects (an orange football or a grey box) in the arena. The
results obtained with each attention mechanism are given
in Table 3, including the sizes of the acquired models.

Table 3
Visual novelty detection performance comparison using different in-
terest point selection methods (fixed scale) and the GWR network.
The larger the V , U and κ values, the stronger the agreement between
novelty postulated by the filter and manually determined ground
truth.

Model Size Orange Ball Grey Box

V = 0.70 V = 0.71

Saliency Map 23 nodes U = 0.41 U = 0.42

κ = 0.66 κ = 0.67

V = 0.98 V = 0.80
Multi-scale

31 nodes U = 0.92 U = 0.58
Harris Detector

κ = 0.98 κ = 0.78

All experiments resulted in statistically significant corre-
lation between novelty ground truth and the classification
made by the GWR network (χ2 analysis, p ≤ 0.01). It can
be noticed in Table 3 that the performance of the saliency
map is consistent for both novel objects and corresponds to
a “strong agreement” between system response and actual
novelty status. The multi-scale Harris detector performs
better, resulting in “almost complete agreement” between
the novelty filter response and ground truth for the orange
ball. It should be noted that for the parameters chosen the
multi-scale Harris detector selects a larger number of in-
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terest points than the saliency map and therefore increases
the chances of finding novelties.

Figure 4 shows the reconstructed images from the trained
GWR networks when using either of the interest point de-
tectors. From these reconstructions one can notice that
the GWR network learned the visual features correspond-
ing mostly to drawings and inscriptions on the cardboard
boxes, edges between adjacent boxes and edges between the
boxes and the floor. The number of interest points selected
by each attention mechanism is reflected in the number of
acquired concepts — the use of the saliency map resulted
in a trained GWR network with 23 nodes, while the use of
the multi-scale Harris detector resulted in a GWR network
with 31 nodes. Notice that in both models of normality
there are several concepts corresponding to scaled versions
of the same visual features.

(a)

(b)

Fig. 4. Image patches (fixed scale) acquired using the GWR network:
(a) interpolated saliency map; and (b) multi-scale Harris detector.

The same experiments were repeated using the incre-
mental PCA algorithm as novelty filter (the residual error
threshold for the incremental PCA algorithm was rT =
0.25, see [1]). Table 4 shows the results obtained.

Again, all results showed statistically significant associ-
ation between system response and actual novelty status
(χ2 analysis, p ≤ 0.01) when using incremental PCA as
novelty filter. Table 4 shows that the strength of the as-
sociation between system response and ground truth was
in the same order of magnitude as when using the GWR
network as novelty filter (see Table. 3).

The reconstructed images from the acquired PCA mod-
els using the saliency map or the multi-scale Harris de-
tector are shown in Fig. 5, where it can be noticed that
the concepts acquired by both PCA models roughly corre-
spond to the same visual features acquired by the GWR
network. Once again, multiple image patches correspond-
ing to scaled versions of the same visual features are present
in both models of normality.

Table 4
Visual novelty detection performance comparison using different in-
terest point selection methods (fixed scale) and incremental PCA.
The larger the V , U and κ values, the stronger the agreement between
novelty postulated by the filter and manually determined ground
truth.

Model Size Orange Ball Grey Box

V = 0.76 V = 0.78

Saliency Map
28 vectors

U = 0.50 U = 0.53
(26 dim.)

κ = 0.74 κ = 0.76

V = 0.97 V = 0.78
Multi-scale 37 vectors

U = 0.89 U = 0.58
Harris Detector (36 dim.)

κ = 0.97 κ = 0.76

(a)

(b)

Fig. 5. Image patches (fixed scale) acquired using incremental PCA:
(a) interpolated saliency map; and (b) multi-scale Harris detector.

5. Experiments with Automatic Scale

On a moving mobile robot, visual features are subject to
several geometric transformations as a result of robot mo-
tion. The use of attention mechanisms provides robustness
to translations of visual features by selecting salient char-
acteristic locations within the image frame. Both atten-
tion mechanisms being investigated in this paper rely on a
multi-scale pyramidal (also known as scale-space) represen-
tation, which provides them with a good degree of stability
when selecting salient locations, regardless of translations
or changes in scale.

Changes in scale are evident when the robot approaches
objects. In our experiments using image patches with fixed
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size, we achieved generalisation according to scale by learn-
ing multiple versions of salient visual features in different
scales. If the image encoding stage is made invariant to
changes in scale, this would obviously improve the overall
system ability to generalise and reduce the amount of ac-
quired concepts in the model of normality of the environ-
ment.

Determining the characteristic scale Lindeberg has shown
that the characteristic scale of a pixel within an image can
be determined by locating the extremum of the Laplacian
jet of that particular pixel [3]. The Laplacian jet of a given
pixel is the function across the levels of a Difference-of-
Gaussian image pyramid at the coordinates of the given
pixel. The response of the Laplacian will be the highest at
the scale in which the contrast between close neighbouring
pixels is maximal, which by definition corresponds to the
characteristic scale of that location.

Because both attention mechanisms used in this paper al-
ready make use of Laplacian (Difference-of-Gaussian) pyra-
mids, we can use them to compute the characteristic scale
of the selected interest points and use it to determine the
approximate size of their corresponding region of interest,
i.e. the size of the image patch to be cropped from the in-
put frame. This strategy was successfully used in [13] and
[14] to determine the region of interest surrounding visual
features.

Once the location of an interest point is found, the Lapla-
cian jet profile at that location needs to be searched for an
extremum. A more precise location in scale is also deter-
mined by interpolation using a second order Taylor expan-
sion:

ŝ = − Ls

Lss
, (4)

where s is the level of the pyramid in which the extremum
was found, Ls and Lss are the first and second partial
derivatives of the Laplacian function L relative to the level
s, respectively.

The offset ŝ is then added to the extremum level in order
to determine scale with better accuracy. According to [14],
the radius rroi of the region of interest can be computed
from the interpolated pyramid level by using the equation:

rroi = ks × b(s+ŝ), (5)

where the constant ks = 1.6 is an empirical correction fac-
tor for the scale, which is given by a geometric progression
with base b =

√
2.

The procedure above can be performed directly in the
case of the multi-scale Harris detector because in our imple-
mentation we use a scale-space (Laplacian pyramid) with
12 levels, which provides sufficient scale resolution. How-
ever, the intensity Laplacian pyramid of the saliency map is
not built using the same algorithm. Therefore an additional
Laplacian pyramid was built using the intensity channel
with the sole purpose of computing the characteristic scale
of salient points.

In our implementation of automatic scale selection, we
selected regions of interest with 1.5 times the radius com-
puted with Equation 5, in order to guarantee that edges
would be present in the image patches. The final radius was
limited to a minimum of six pixels and a maximum of 24
pixels, and the size of the patch was computed as follows:

p = 2×min{max{6, 1.5× rroi}, 24}+ 1. (6)

This results in the selection of square image patches cen-
tred around the interest points ranging from 13 × 13 to
49 × 49 pixels in size. Figure 6 shows examples of points
selected by the saliency map and the multi-scale Harris de-
tector, and their regions of interest, whose sizes were cal-
culated according to Equation 6.

(a) (b)
Fig. 6. Output images with automatic scale selection: saliency map
(left column, a) and multi-scale Harris detector (right column, b).
Interest points are indicated by numbers in (a) or crosses in (b) and
the size of their respective regions of interest are indicated by white
circles.

The circles in Fig. 6 designate the size of the regions of
interest according to the automatic scale selection of the
corresponding interest points at their centres. There was no
novelty detection involved in the generation of these out-
put images, just the use of the attention models with auto-
matic scale selection to determine the size of the regions of
interest. In these examples it is possible to notice the pref-
erence of both algorithms for interest points on blobs and
edges with high curvature, although the saliency map also
selects interest points on straight edges.
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Second set of experiments In a second set of experiments
we investigated how automatic scale selection affects our
visual novelty detection mechanism. We expected that
smaller models of normality would be acquired than in the
first set of experiments, because generalisation according
to scale improves through the image encoding mechanism
itself, rather than the acquisition of multiple scaled ver-
sions of the same features by the learning mechanisms. To
obtain input vectors with fixed size for the novelty filters,
the image patches selected by the attention models were
scaled to a fixed image patch size of 25 × 25 pixels (the
original size of image patches when fixed scale was used)
through bilinear interpolation, allowing changes in scale
from 1:2 to 2:1.

First, we trained a GWR network using images acquired
when the robot was exploring the empty arena, as in the
previous experiments. The acquired model of normality was
then used to filter out abnormal visual features in images
acquired during inspection of the arena containing either
of two novel objects (again, the orange football or the grey
box). Table 5 shows the quantitative results obtained.

Table 5
Performance comparison between different interest point selection
methods (automatic scale) using the GWR network. The larger the
V , U and κ values, the stronger the agreement between novelty
postulated by the filter and manually determined ground truth.

Model Size Orange Ball Grey Box

V = 0.74 V = 0.54

Saliency Map 17 nodes U = 0.46 U = 0.28

κ = 0.71 κ = 0.54

V = 0.95 V = 0.58
Multi-scale

23 nodes U = 0.83 U = 0.34
Harris Detector

κ = 0.94 κ = 0.54

The use of both attention mechanisms resulted in statis-
tically significant association between the GWR network
response and ground truth data (χ2 test, p ≤ 0.01). The
results in Table 5 show that performance of both interest
point detectors was worse than that obtained with fixed
scale for the case of the grey box (“clear agreement” be-
tween novelty filter response and actual novelty status),
but was kept at the same level for the orange ball (compare
with Table 3). We surmise that this is because the grey box
stands out less well from the grey floor than the orange
ball, and furthermore has smaller details that attract inter-
est points. Also, the use of bilinear interpolation for scal-
ing causes image patch smoothing, i.e. a low-pass filtering
effect, which makes differentiation of image patches using
the Euclidean metric (used by the GWR network) more
difficult. Figure 7 depicts the image patches reconstructed
from the acquired models of normality when using either
of the interest point detectors.

The hypothesis that the use of automatic scale selection
results in smaller models of normality is confirmed in Fig. 7.

(a)

(b)

Fig. 7. Image patches (auto scale) acquired using the GWR network:
(a) interpolated saliency map; and (b) multi-scale Harris detector.
Both models are smaller than the ones acquired using fixed scale.

When using the saliency map with automatic scale selec-
tion the number of concepts was reduced from 23 to 17 and
when using the multi-scale Harris detector from 31 to 23,
a reduction of approximately 26% in both cases. One can
notice that in these models there are fewer image patches
corresponding to scaled versions of the same visual features
(see Fig. 4). The ability to generalise scale results in a re-
duction in the number of acquired concepts, as predicted.

As in the first set of experiments, the experiments were
then repeated using the incremental PCA algorithm as
learning mechanism, which is expected to be less sensitive
to bilinear interpolation smoothing. A quantitative com-
parison of the results obtained is in Table 6.

Table 6
Performance comparison between different interest point selection
methods (automatic scale) using incremental PCA. The larger the
V , U and κ values, the stronger the agreement between novelty
postulated by the filter and manually determined ground truth.

Model Size Orange Ball Grey Box

V = 0.91 V = 0.37

Saliency Map
17 vectors

U = 0.76 U = 0.18
(16 dim.)

κ = 0.91 κ = 0.35

V = 0.98 V = 0.34
Multi-scale 22 vectors

U = 0.93 U = 0.20
Harris Detector (21 dim.)

κ = 0.98 κ = 0.24

Despite revealing statistically significant association be-
tween system response and ground truth data (χ2 test, p ≤
0.01), the results in Table 6 are much poorer than the re-
sults obtained using fixed scale for the case of the grey box
(“weak agreement” between system response and ground
truth data). For the orange ball, performance of the saliency
map was improved and resulted in “almost complete agree-
ment” between novelty filter response and actual novelty
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status (compare with Table 4). The explanation for this
fact is that the details of the grey box correspond to inter-
est points in small scales and with relatively low contrast,
making their discrimination from features in larger scales
more difficult as a result of bilinear interpolation smooth-
ing.

The reconstructed images from the acquired incremen-
tal PCA models using automatic scale selection are shown
in Fig. 8, where the fact that the acquired models using
automatic scale selection are smaller can be confirmed by
comparisons with Fig. 5.

(a)

(b)

Fig. 8. Image patches (auto scale) acquired using incremental PCA:
(a) interpolated saliency map; and (b) multi-scale Harris detector.
Both models are smaller than the ones acquired using fixed scale.

Figure 8 shows that the use of automatic scale selection
reduced the number of acquired vectors from 28 to 17 when
using the saliency map and from 37 to 22 vectors when
using the multi-scale Harris detector. This corresponds to
a reduction of approximately 40% in acquired concepts.
Once again, it can be noticed that there are fewer image
patches corresponding to scaled versions of the same visual
features in these models (see Fig. 5).

6. Conclusion

This paper addressed the question of how an attention
mechanism influences a robot’s performance to detect nov-
elty in its environment. In particular, we were interested to
find out if automatic scale detection improves performance.
We therefore investigated two distinct interest point de-
tection schemes: the saliency map [4] and the multi-scale
Harris detector [5]. Both approaches had their localisation
accuracy improved through function interpolation using a
second order Taylor expansion, as suggested in [13].

Interest point stability The accuracy and stability in inter-
est point selection becomes an important issue when using
raw data for image encoding. Accurate localisation reduces

errors due to misalignment of image patches during match-
ing, having an impact in the overall performance of the vi-
sual novelty filter and also contributing to reduce the size
of the model of normality that is learnt from the environ-
ment. The use of raw image data allows the reconstruction
of visual information from the acquired model of normal-
ity, which is essential to understand which aspects of the
environment were actually learnt.

Another issue of concern is the robustness to changes
in scale of visual features as a result of robot navigation
around the environment. In experiments involving image
patches with fixed size, generalisation with respect to scale
happened through the acquisition of several scaled versions
of the same visual features by the learning mechanisms. We
tested the hypothesis that some degree of scale invariance
incorporated in the image encoding stage would reduce the
size of the learnt models and improve overall robustness to
changes in scale, through experiments using the automatic
scale selection method originally proposed in [3].

Results The results in Figs. 4, 5, 7 and 8 corroborate our
hypothesis, showing that the use of automatic scale selec-
tion reduced the size of the acquired models of normality
(26% in the case of the GWR network and 40% in the case
of incremental PCA). However, performance of the novelty
filters for inconspicuous features (the grey box) was gener-
ally worse than when using fixed scale image patches, while
performance for conspicuous features (the orange ball) was
better or at least the same. The conclusion drawn is that
when the model size matters one should choose automatic
scale selection, otherwise performance is better when using
fixed scale. We attribute the deterioration in performance
for inconspicuous features to the difficulty in discriminat-
ing scaled image patches due to the smoothing effects that
arise from bilinear interpolation. Alternative techniques to
perform comparisons between image patches with different
sizes are currently being investigated.

Quantitative assessment We performed quantitative per-
formance comparisons through contingency table analysis
and computation of Cramer’s V , uncertainty coefficient U
and the κ index of agreement [8,9,11]. The multi-scale Har-
ris detector gave the best results, particularly when using a
fixed scale strategy and the GWR network as novelty filter.

Future work Our future research aims at improving per-
formance through the use of affine-invariant interest point
detectors [15,16]. Concerning automatic scale selection, the
implementation of the saliency map reported here is not the
most efficient, because it uses an additional Laplacian pyra-
mid. To implement the saliency map directly from Lapla-
cian pyramids as in [14], instead of the pyramidal structure
originally used in [4], improves efficiency and is currently
under investigation.
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