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Abstract—This work aims at investigating the influence of
luminance information and environment illumination on skin
classification. We explore Bayesian approaches to perform
automatic classification of human skin pixels on digital images,
using color features as input. Two probabilistic skin color
models were built on different color spaces (RGB, normalized
RG, HSI, HS, YCbCr and CbCr) and tested in a task of
automatic pixel classification into skin and non-skin. Anal-
yses of classification performance were done by presenting
an illumination controlled image database containing images
acquired in four different illumination conditions (shadow, sun,
incandescent and fluorescent lights) to these classifiers. Our
experiments show that building probabilistic skin color models
using the CbCr color space generally improves performance of
the classifiers and that best performance is achieved in shadow
illumination.

Keywords: skin segmentation, Bayes theory, image process-
ing, color spaces.

I. INTRODUCTION

Automatic human skin segmentation plays an impor-
tant role on many image processing applications such as
face recognition [1], people tracking [2], biometric pattern
recognition [3], offensive content detection [4] and gesture
recognition [5]. The literature shows that, in these image
processing methods, skin detection is often part of their
preliminary steps.

Two pieces of information are needed in order to perform
pixel classification, which are: (a) a priori information about
the classes corresponding to each pixel; (b) appropriate
visual features, which are intended to provide enough in-
formation to separate pixels in one class or another. Visual
features are usually quantified in feature vectors, which
constitute a point in a multidimensional space U — subsets
of U constitute pixel classes.

In this paper each pixel of the input image is considered
to belong to either of two classes, a skin class or a non-skin
class. The visual feature used for classification is simply the
color of each pixel, since skin color is easily recognized by
people [6]. Moreover, color-based skin classifiers are robust
to geometrical transformations and partial occlusions, and
rely on fast algorithms [7].

Most of the difficulties in automatic skin pixel classifica-
tion are due to environment illumination and camera sensor
characteristics. Changes in environment illumination usually
alter the resulting images acquired by the camera, causing
colors to appear different. This is known as the color con-
stancy problem [7]. Another matter that increases difficulties
in automatic skin segmentation is the variation of skin color
from person to person — ethnicity, age and gender are
some of the factors that have influence. For all this reasons,
creating a model that is able to express skin color based
only on pixel information is a challenging task. Here we
assume that it is possible to extract enough information from
probabilistic models in order to perform pixel classification
and investigate which color space minimizes the influence of
environment illumination and intrinsic skin color variations
in the performance of skin pixel classifiers.

This work uses models for skin color in six color spaces
(RGB, normalized RG, HSI, HS, YCbCr and CbCr), which
are described in section II. The two probabilistic models
used are presented in section III. Section IV describes the
process of joining probabilistic models and decision rules in
order to build Bayesian classifiers. In section V we present
an illumination-controlled skin database, which we used to
conduct classification experiments. Classifier performances
are assessed using ROC curves [8] and discussed in sec-
tion VI.

II. COLOR SPACES FOR BUILDING SKIN MODELS

The sensor of a digital camera captures the light reflected
from objects in the scene in a specific color space. There are
basically two proprieties of the light that are represented by
color spaces — luminance and chrominance [9]. Luminance
is the measure of how many photons reach the sensor of the
camera — the energy of the light source — and chrominance
is the information about the spectral composition of the light
source. Transformations from one color space to another
may highlight specific characteristics of a particular color
feature and, as a result, improve pixel classification.

The color of a pixel is a point within a three-dimensional
color space, defined by a vector c = [c1, c2, c3]. The com-



ponents of vector c represent luminance and chrominance
information from a pixel. Usually luminance is represented
by one of the dimensions and chrominance is represented
by the other two dimensions of c. In this work we conduct
experiments with reduced two-dimensional color spaces
(chrominance information only) or three-dimensional color
spaces (chrominance and luminance information).

A. Additive Color Spaces (RGB and normalized RG)

The RGB color space stems from the three types of color
photoreceptors (cones) that are present in the normal human
retina. Color representation in this model consists in the
additive combination of the three primary colors red, green
and blue. The RGB model was originally designed for use
in cathode ray tube monitors and is still used in many image
processing algorithms because of historical reasons related
to the codification of image file formats.

However, the use of the RGB color space for skin color
classification seems not to be such a very good choice [10]–
[12], since this model presents a high correlation between
its three channels and there is not a clear separation between
luminance and chrominance components, i.e. luminance is
diluted in all three color channels. Furthermore, the RGB
color model is notably vulnerable to environment illumina-
tion variations [9]. However, in the work by Min C. Shin
and others [10], promising results for skin detection using
RGB color features were reported.

In order to reduce the effects of illumination, it is neces-
sary to remove luminance information [6] — this is experi-
mented with all color spaces used in this paper. Particularly
for the RGB color space, which does not have a clear
luminance component, a simple color space transformation
is made, as shown in equations (1) and (2), in order to
decouple luminance from chrominance.

r =
R

R + G + B
, (1)

g =
G

R + G + B
, (2)

where, R, G and B are the values of the RGB color channels
red, green and blue, respectively, and r and g are the values
of the so-called normalized R and G channels.

B. Perceptual Color Spaces (HSI and HS)

The HSI (Hue, Saturation and Intensity) color space tries
to reproduce colors numerically as a human being would do
perceptually. Hue represents the primary color of an object
(green, yellow, blue, orange), saturation represents how pure
this color is (deep blue, light blue), and intensity represents
how bright it is. Hue and saturation represent chrominance
and intensity represents luminance information. Therefore,
it is possible to removed I component in an effort to reduce
illumination effects in skin detection applications.

All images used in this work are coded in RGB and
therefore it is necessary to transform them to HSI, according
to equations (3), (4) and (5).

I =
R + G + B

3
, (3)

S = 1− min(R,G, B)
I

, (4)

H = arctan

[ √
3(G−B)

2R−G−B

]
, (5)

where, R, G and B are the RGB color channels normalized
in range [0, 1], and H , S and I are components of the HSI
color space.

C. Orthogonal Color Spaces (YCbCr and CbCr)

The YCbCr color space is largely used in European tele-
vision systems and consists of a linear transformation of the
RGB color space [6]. Y represents luma or luminance, Cb
represents chroma blue and Cr represents chroma red. Since
this color space presents a decorrelation between luminance
and chrominance information, it is called an orthogonal color
space [7]. Having this in mind, we believe that removing the
luminance component Y from this color space would yield
good skin color classification results.

The transformation from RGB to YCbCr can be done
using equations (6), (7) and (8).

Y = 0.299R + 0.587G + 0.114B, (6)

Cb = −0.168736R− 0.331264G + 0.5B, (7)

Cr = 0.5R− 0.418688G− 0.081312B, (8)

where, R, G and B are the RGB color channels normalized
in range [0, 1], and Y , Cb and Cr are the components of
YCbCr color space.

III. PROBABILISTIC MODELS FOR SKIN COLOR

In order to perform skin color classification, we decided
to use probabilistic models as previous knowledge. Such
probabilistic models can be parametric or non-parametric.
For skin pixel classification, parametric models are usually
single Gaussian models or mixture Gaussian models [6].
On other hand, non-parametric models are usually color
histograms built from many skin pixel observations.

Here we present two well known and established methods
of modeling skin color, which we call “color histogram”
and “naı̈ve Bayes”. Both methods are non-parametric and
use only information about the color of pixels. The models
represent the probability density functions of a color given
that it is known to be from skin, p(c|skin), where c is the



pixel color feature vector. A probabilistic model for non-
skin colors, p(c|non-skin), is also built. These models were
built for every existing point in the color spaces used in this
work.

A. Color Histograms

This type of probabilistic model is generated by counting
the number of observations for each color in the database and
dividing the result by the total count of pixels, thus obtaining
the probability density function p(c|skin). The process is
done with an auxiliary set of masks, each corresponding
to an image in the database. In these masks, white pixels
represent skin and black pixels represent non-skin in the
corresponding location of the original input images. This
set of auxiliary masks containing previous knowledge about
the class of each pixel is called ground-truth.

B. Naı̈ve Bayes

Treating each dimension of a the color feature vector
c as an independent variable, it is possible to calculate
separate histograms for each color vector component ci.
The histograms obtained represent the probability density
function of each color component given that it is known
to be from skin, p(ci|skin). In order to find p(c|skin) it is
possible to use the equation 9.

p(c|skin) =
d∏

i=1

p(ci|skin), (9)

where d is the dimensionality of the color space being used
and c is the color feature vector.

We used a variant of the CompaqDB skin database —
the CompaqDBeasy500 — to build up our probabilistic
models for skin color. This image database was created by
Jones & Rehg [13]. In the CompaqDBeasy500 there are
500 images containing skin pixel samples and another 500
images containing no skin pixel samples.

IV. BAYESIAN CLASSIFIERS

Bayesian classifiers are a combination of probability mod-
els and decision rules. In this work we used the decision rule
proposed by Jones & Rehg [13], which works by applying
a threshold value over p(skin|c), as shown in equation 10.
The transformation from the probabilistic model p(c|skin)
to p(skin|c) is computed by equation 11.

class(c) =
{

skin, if p(skin|c) > Θ
non-skin, otherwise (10)

p(skin|c) =
p(c|skin)p(skin)

p(c)
(11)

The decision rule applied to p(skin|c) is invariant to a pri-
ori probabilities p(skin) and p(non-skin), which only affect
the choice of threshold Θ. Equation 11 can be rearranged to
find the relationship between p(c|skin) and p(c|non-skin) as

shown in equation 12. The value of Θ can be then computed
by means of equation 13.

p(c|skin)
p(c|non-skin)

< Θ (12)

Θ = K
1− p(skin)

p(skin)
, (13)

where K is a parameter in the range [0, 1], which is used to
normalize Θ.

Using the rule above in each probabilistic model described
in section III, it is possible to build two classifiers: the Jones
& Rehg classifier and the naı̈ve Bayes classifier.

V. ILLUMINATION-CONTROLLED IMAGE DATABASE

The previous knowledge probabilistic models used in this
work for the classifiers were built using the CompaqD-
Beasy500, since CompaqDB is a large and diversified image
database for skin color. However, this database was built
disregarding any information about illumination. Therefore,
in order to have additional information about illumination
conditions, we decided to build our own structured skin
image database, which besides images also contains meta
information about illumination conditions, camera used,
regions of interest, among other details related to the subject,
such as skin color, age and gender. Since we intend to study
the influence of illumination in skin color, our database was
only used at test stages, using previous knowledge obtained
from the compaqDBeasy500 in a training stage.

Our image database is called skinDB and currently con-
tains 120 equally divided pictures in four environment
illumination conditions: “sun” (direct sun light), “shadow”
(no direct source of light), “incandescent” (indoor incandes-
cent lamp light) and “fluorescent” (indoor fluorescent lamp
light). Samples of images in each environment illumination
condition can be seen in figure 1, where it is possible to
observe significant changes in skin color due to variations
in illumination.

Our database includes a set of ground-truth masks, but
it is also possible to specify rectangular regions of interest
which are filled with skin pixels. The database and corre-
spondent metadata for each image can be downloaded from
http://www.labiem.cpgei.cefetpr.br/Members/diogo.

One important point about the skinDB images used as
input for the classifiers in this work is that for none of them
the automatic white balance of the camera was disabled. This
fact can result in serious variations in classification rates and
will be better discussed in section VI.

VI. RESULTS AND DISCUSSION

The primary results of our classification experiments are
obtained in the form of skin maps, which are binary images
with white pixels indicating what the classifier considered as
skin-pixels and black pixels indicating non-skin. In figure 2



Figure 1. Image samples from skinDB: (a) Image under fluorescent light
; (b) Image under incandescent light; (c) Image under shadow; (d) Image
under sun light

Figure 2. Classification example: (a) Original image; (b) Ground-truth;
(c) Result using the Jones & Rehg Classifier and the CbCr color space;
(d) Result using the Jones & Rehg Classifier and the normalized RG color
space; (e) Result using the naı̈ve Bayes Classifier and the CbCr color space;
(f) Result using the naı̈ve Bayes Classifier and the normalized RG color
space.

there is an example of an image from the CompaqD-
Beasy500 database, with its ground-truth and some skin
maps for different models, color spaces and threshold values.

The evaluation of classifier performance is made trough
ROC curves, which holds information about the rate of
incorrect classification (FPR - false positive rate) versus the
rate of correct classification (TPR - true positive rate). Each
point of the curve refers to a different threshold value. The
desired value of threshold is the one which minimizes the
value of FPR while maximizing the value of TPR. Having
said so, curves that show sharper knees close to the point
(0,1) indicate better classification results. The values of TPR
and FPR are expressed in percentage of pixels correctly and
incorrectly classified, respectively.

Figure 3. ROC curves for the Jones & Rehg classifier in all used color
spaces.

Figure 4. ROC curves for the naı̈ve Bayes classifier in all used color
spaces.

Before entering into the merit of evaluating the effects of
environment illumination conditions in skin classification,
we performed an overall skin classification evaluation. This
evaluation was done using the entire skinDB database for
both classifiers (Jones & Rehg and naı̈ve Bayes) and all
six color spaces (RGB, normalized RG, HSI, HS, YCbCr
and CbCr) that were presented earlier. Figure 3 shows the
ROC curves obtained for the Jones & Rehg classifier and
figure 4 shows the ROC curves obtained for the naı̈ve Bayes
classifier.

The overall skin pixel classification ROC curves shown
in figures 3 and 4 indicate that, in most of the cases,
two-dimensional color spaces containing only chrominance
information provide better results, which in this case are
RG/HS for the Jones & Rehg classifier and HSI/HS for
the naive Bayes . Comparing our results using the Jones



& Rehg classifier with the work of others [13], [14], two-
dimensional color spaces yielded poorer results than tree-
dimensional color spaces. This is possibly due to the fact that
skinDB is a small database which was especially designed
and whose images were acquired in a controlled way, having
skin classification studies in mind.

Another important result is that ROC curves for classifica-
tions using the Jones & Rehg classifier and any of the tree-
dimensional color spaces yield very similar results (figure 3).
This shows that there is no loss of information due to the
transformation from RGB to other tree-dimensional color
spaces, as one should expect.

When the naı̈ve Bayes classifier ROC curves are analyzed,
the only two color spaces that maintain similar results are
the HS and HSI color spaces (figure 4). These similar
result for HS and HSI shows that these color spaces have
a higher independence between color components, i.e. the
probability of a pixel corresponding to skin does not depend
on the complete color probability but on independent color
component probabilities. Something similar occurs with
CbCr and YCbCr color spaces. The results may be poorer
than the ones obtained for the Jones & Rehg classifier, but
the corresponding ROC curves remain close to each other,
showing that the Y component does not affect the result and
the independence between YCbCr channels can be supposed.
Finally, the results in figure 4 show that RGB color space
has a high correlation between its color channels, opposed
to what is observed for HSI and YCbCr.

The comparison of ROC curves for both classifiers using
images acquired in four different illumination conditions
results in an interesting discussion. First of all, we analyzed
the influence of illumination for the Jones & Rehg classifier,
whose results are shown in figures 5, 6, 7 and 8. We also
analyzed the influence of illumination for the naı̈ve Bayes
classifier, whose results are shown in figures 9, 10, 11
and 12.

A. Jones & Rehg Classifier

The results for the Jones & Rehg classifier show that
three-dimensional color spaces yield better classification
rates than two-dimensional color spaces from the origin to a
specific false detection rate point on the ROC chart. When
the FPR is lower than 5% under sun and incandescent light,
three-dimensional color spaces yield better classification.
However, when higher false detection rates are acceptable,
two-dimensional color spaces constitute a better choice.
Under shadow illumination, the same happens, but for a
lower FPR (approximately 2,5%). Another interesting result
is that for all illumination conditions, three-dimensional
color spaces yield extremely similar ROC curves.

Using images taken under sunlight (figure 5), the CbCr
color space provides the best results, 86% TPR at 10% FPR.
Sunlight illumination yielded the most divergent results,
especially for normalized RG and HS color spaces.

Figure 5. ROC curves for the Jones & Rehg classifier using images taken
under sunlight.

Figure 6. ROC curves for the Jones & Rehg classifier using images taken
under shadow.

The best classification performance for the Jones & Rehg
classifier was obtained using images taken under shadow
(figure 6). All color spaces that were used reached TPR
values that are higher than 95% for FPR values lower than
2.5%. We believe that this occurs because the camera’s
automatic white balance has less influence under shadow,
consequently preserving skin color.

For images taken under incandescent light (figure 7), the
results were not as good as under shadow and not as poor
as under sunlight. Once again, the hypothesis is that the
automatic white balance of the camera is responsible for
the variation in classification rates. For incandescent illumi-
nation, the CbCr color space yielded the best classification
rate, 92.5% TPR at 10% FPR.

Table I summarizes the classification rates obtained for the
Jones & Rehg classifier for all illumination conditions and



Figure 7. ROC curves for the Jones & Rehg classifier using images taken
under incandescent light.

Figure 8. ROC curves for the Jones & Rehg classifier using images taken
under fluorescent light.

Table I
TPR IN PERCENTAGE FOR THE JONES & REHG CLASSIFIER AT 10%

FPR

Sun Shadow Incandesc. Fluoresc.
RGB 76.3% 96.5% 86.3% 75.5%
RG 52.1% 99.6% 85.2% 92.1%
HSI 76.5% 96.5% 86.3% 75.5%
HS 54.7% 99.5% 84.7% 87.0%
YCbCr 75.5% 96.4% 85.6% 75.5%
CbCr 87.1% 99.0% 91.9% 77.3%

color spaces. In this table, the FPR value is fixed at 10% as
is commonly done in the literature, for a better comparison
of TPR values.

B. Naı̈ve Bayes Classifier

The naı̈ve Bayes classifier supposes that color components
are statistically independent from each other. Although it is

Figure 9. ROC curves for the naı̈ve Bayes classifier using images taken
under sunlight.

Table II
TPR IN PERCENTAGE FOR THE NAÏVE BAYES CLASSIFIER AT 10% FPR

Sun Shadow Incandesc. Fluoresc.
RGB 23.3% 42.9% 45.5% 77.4%
RG 36.2% 95.2% 43.4% <20%
HSI 71.5% 99.5% 85.2% 42.9%
HS 54.5% 99.8% 74.2% 44.4%
YCbCr 42.4% 99.6% 88.9% 26.0%
CbCr 41.4% 99.5% 89.0% 75.3%

known that in most cases statistically independence does not
hold, the naı̈ve Bayes classifier is used to investigate which
are color spaces with the most statistically independent
components for skin classification, while preserving machine
resources (memory and processing power).

As previously stated, color channels in RGB color space
are highly correlated. The effect of this characteristic in the
performance of the naı̈ve Bayes classifier can be observed in
figures 9, 10 and 11, since for all curves the poorest results
are from the RGB color space. For yet unknown reasons,
the ROC curve obtained for images taken under fluorescent
light (figure 12) shows relatively good results for the RGB
color space.

For images taken under sun light (figure 9), the best results
were achieved using the HSI, HS and normalized RG color
spaces, reaching 90% TPR at 20% FPR.

Under shadow (figure 10), the results were very similar
to the ones obtained for the Jones & Rehg classifier, except
for the RGB color space. Acquiring skin images under
shadow results in more than 95% TPR at less than 5% FPR
for the naı̈ve Bayes classifier. This indicates that all used
color spaces but RGB show little channel correlation, but
illumination conditions distort the appearance of skin pixels.

Table II summarizes the TPR values obtained for all
color spaces and illumination conditions experimented in
this work.



Figure 10. ROC curves for the naı̈ve Bayes classifier using images taken
under shadow.

Figure 11. ROC curves for the naı̈ve Bayes classifier using images taken
under incandescent light.

VII. CONCLUSION

Skin color is a very attractive visual feature for applica-
tions involving the detection of skin pixels, since it provides
fast and robust processing. However, illumination conditions
and automatic white balance camera features have a large
influence on skin color, leading us to investigate which are
the existing color models that minimize this influence on
classification performance.

Our experiments show that the use of two-dimensional
color spaces yield better results by discarding luminance
information and thus reducing the influence of illumination.
Results obtained with two-dimensional color spaces show
that using partial color information is sufficient for reason-
ably good skin-pixel classification.

Further investigation is needed to clear up apparently con-
tradicting results between our experiments and experiments

Figure 12. ROC curves for the naı̈ve Bayes classifier using images taken
under fluorescent light.

reported by others [13], [14]. Future work also includes
improving the skinDB database by using other control
parameters, such as camera white balance, type of back-
ground, anonymous identification of subjects photographed
and distance from the camera. This more controlled scenario
would contribute to make skin color variations mostly due
to the effects of illumination.
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