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Abstract – Robots that emulate biological visual systems must solve the perceptual problem of when and where to
direct gaze. In this paper, a gaze control scheme for a specific binocular robot head is described and assessed. A
well-known computational model of visual attention is used to find attractive target locations and a proportional-
integral position control is used to drive pan and tilt servomotors of a dominant camera. Experiments demonstrate
that the system is capable of tracking conspicuous moving targets in real-time (30 fps) in non-cluttered environments
without any previous knowledge or strong assumptions. Addition of vergence control for the non-dominant camera
is the next step towards a complete binocular control framework.
Keywords: visual attention, gaze control, stereo vision, robot head.

1. Introduction

Robot heads are classic examples of biologically-
inspired active vision systems. The presence of ac-
tuated cameras allows a robot to sense a broad por-
tion of its surroundings, while the incoming visual
input may act as feedback to influence the next mo-
tion to be performed [1]. This direct link between
perception and action makes this kind of agents suit-
able to interact with highly dynamic environments.

Several robot heads have been successfully de-
veloped since the late 1980’s, such as the Rochester
[4], Harvard [6] and MEDUSA [9] heads. All of
them had to address the gaze problem: where to
look next in response to external stimuli. Although
the solution to this question may depend on top-
down cues like the task being executed and previ-
ously acquired knowledge, studies indicate that very
basic visual information contributes to eye fixation.
In fact, the investigation of human psychophysical
data has led researchers to propose models of low-
level (bottom-up) attention that solely rely on prim-
itive features of the scene, for example color and
orientation [10]. Some of these models have been
translated to the computational domain, yielding ac-
curate predictions when correlated with real human
fixations recorded by eye-tracking equipment [3].

By analyzing the past work in visual attention
and active vision, two facts become evident. First,
attention models have been predominantly experi-
mented on static images, rather than on dynamic and
interactive scenes [2]. Hence, the effects of motion,
time and top-down processes in attention are still
trending research topics not completely understood.
Second, much effort has been devoted to emulate
the complex saccadic and smooth pursuit eye move-
ments of the Human Visual System (HVS) [5, 8].

In this paper, we investigate a simpler gaze con-
trol scheme based on a proportional-integral (PI)
position controller and a static bottom-up visual
saliency model [7] that seems sufficient to direct the
camera movements of a robot head in various sce-
narios. In the following sections, detailed informa-
tion about the proposed control architecture and the
experiments conducted for its quantitative assess-
ment are given.

2. The Dexter Robot Head

A stereo robot vision head called Dexter was built at
the Computer Vision Laboratory of the Federal Uni-
versity of Technology - Paraná (UTFPR) to serve as
a visual navigation module for autonomous mobile
robots. Figure 1 illustrates Dexter, which is cur-
rently available as a research platform for the in-
vestigation of robot vision concepts such as depth
estimation, obstacle detection and avoidance, and
simultaneous localization and mapping in real en-
vironments.

Figure 1. The Dexter Robot Head physical im-
plementation, disconnected from the control
desktop computer.
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From a mechanical perspective, Dexter is a kine-
matic chain of four rotational degrees of freedom:
left eye pan (θl), right eye pan (θr), eye tilt (θt) and
head pan (θh), as shown in Figure 2. The mecha-
nism has five actuated joints because each camera
bears its own tilt motor. Independent vertical eye
movement was eliminated in software, based on the
constraints of the HVS.
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Figure 2. Kinematic chain of the Dexter Robot
Head, composed of five actuated joints, but
only four degrees of freedom, as eye tilt mo-
tors are virtually coupled.

3. Control System Architecture
The complete system is composed of four subsys-
tems: the robot head mechanism, an Arduino R3
board used for servo control, a power supply unit
and a control desktop computer running the Ubuntu
14.10 Linux operating system.

The main goal of the complete control system is
to maintain both cameras directed to the most visu-
ally attractive location at every instant. This prob-
lem involves two issues: deciding where to look
(gaze control) and pointing the two cameras to the
same location (vergence control). In this work, only
the first issue is addressed.

The approach followed in this work assumes that
there is a dominant (left) camera, which selects the
target and drives both cameras towards it. The cam-
eras periodically send color image frames to the
control computer, from which a saliency map [7]
is computed by the visual attention module. A
peak detector selects the most salient location (x, y)
in the map, which acts as the feedback source for
the gaze controller. The saliency detection algo-
rithm was implemented in C++, using the OpenCV

library framework and following the formulations
of Walther [11] – complete details of the saliency
model can be found in [7].

The gaze controller setpoint is defined as the cen-
tral coordinates of the image frame, since each cam-
era should maintain the target at a “virtual fovea”.
Thus, the error signal is the displacement between
the detected salient location and the center of the
frame. The controller aims at minimizing the error
signal in the shortest period of time by driving the
servomotors.

A discrete PI controller corrects the left pan and
tilt motor positions in response to the target loca-
tion error, as depicted in Figure 3. Given that the
input image frame has width w and height h, the
error vector e[k] is computed as the difference be-
tween a constant setpoint (xd[k] = w/2 for pan,
yd[k] = h/2 for tilt) and the target location given by
the saliency algorithm (x[k] for pan, y[k] for tilt).
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Figure 3. Discrete PI controller implementa-
tion using trapezoidal integration, output sat-
uration and anti-windup. The same controller
structure is used for both pan and tilt.

The integral action is discretized by means of
trapezoidal integration (Tustin) in order to avoid
abrupt motion when there is a sudden change in the
target location. Controller output u[k] is limited be-
tween umin = 0.0 and umax = 1.0 to protect servo-
motors against out-of-range inputs. Finally, an anti-
windup algorithm prevents the error from being per-
manently integrated to large values when the output
is saturated.

4. Experimental Setup
A first experiment was conducted to identify, by
means of step response analysis, the pan and tilt
plant blocks, in which both motors were individ-
ually excited with a step input while the camera
captured a reference mark at 30 fps. The position
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of the reference mark in each frame was manually
collected and plotted against time. The resulting
signal was then resampled at 30 Hz using cubic
interpolation to compensate for non-uniform sam-
pling and then subjected to a least-squares estima-
tion routine. Finally, the selected continuous esti-
mated models were discretized at 30 Hz using zero-
order-hold sampling and the controllers were manu-
ally tuned by assessing the effect of changes in gain.

The second experiment assessed quantitatively
the gaze controller’s ability to pursue a conspicu-
ous moving target without previous knowledge of
its existence. A pendulum connecting a conspicu-
ous red ball to the lab ceiling was built and made
to oscillate in harmonic motion for several seconds,
while the system recorded current error and motor
positions.

The optimized OpenCV implementation allowed
real-time performance with acceptable frame sizes
(320 × 240 pixels). The processing of one image
frame took less than 15 ms, leaving enough time
available for further computational tasks.
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Figure 4. Model identification via least squares
estimation for (a) pan and (b) tilt.

5. Results and Discussion
The outcomes of the system identification experi-
ment are depicted in Figure 4, where one can visu-
ally notice that the pan plant can be modelled by a
second order system and that the tilt plant can be
modelled by a third order system. This conclusion
is corroborated by the smaller Mean Squared Error
(MSE) of each estimated model, as Table 1 shows.
The tilt system is naturally more oscillatory because
of the effects of gravity and the mass distribution of
the camera.

Extracted model parameters such as the gain re-
lating joint and image plane displacements, as well
as time constants, aided simulation and tuning of
the PI controllers, as shown in Figure 5. As ex-
pected, the presence of the integral time Ti elimi-
nated steady state errors. The increase of controller
gain Kc, while holding Ti constant, decreased rise
time and increased overshoot, degrading overall sta-
bility. The best trade-off between tracking perfor-
mance and robustness was obtained by selecting in-
termediate gains (green lines in Figure 5).
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Figure 5. Controller tuning by simulation for
(a) pan and (b) tilt.
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Table 1. Mean Squared Error of each estimated
model (smaller values indicate a better fit).

Model Mean Squared Error
Order 1 2 3
Pan 110.6 4.864 -
Tilt 429.2 57.98 16.59

Finally, Figure 6 shows the results of the pen-
dulum pursuit experiment. The robot successfully
tracked the target, but there was an evident phase
shift between the robot and target. This behavior
was caused by two main reasons: the inherent delay
in the position control loop and the lack of feedfor-
ward techniques to predict target speed and there-
fore correct errors faster. When the ball decelerated
to a halt, the head managed to reach it and bring the
error to zero. Despite the small amount of lag, mo-
tor position history shows that the system has cap-
tured the damped oscillatory behavior of the target
accurately.
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Figure 6. Target tracking: the exponentially de-
creasing sinusoidal profile of motor position
confirms tracking of the oscillating pendulum.

6. Conclusions
A gaze control system for a robot head based on a
biologically-plausible model of visual attention was
presented in this work. Instead of focusing in com-
plex eye movement and cognitive models, a simple
PI control strategy and low-level saliency detection
were used for real-time execution. The main advan-
tages of this approach are that the image-based con-
trol system eliminates the need for kinematic cali-
bration, there are no strong assumptions about the
nature of the target and that controller tuning is per-
formed in a straightforward manner.

However, there are still issues to be addressed:
in highly cluttered or noisy scenes, where similarly

salient objects may be competing for gaze, some
higher level processing may be necessary. In ad-
dition, some lag was observed during visual track-
ing of moving objects, which may be compensated
with some sort of predictor or speed control. Future
work also includes the design of a vergence con-
trol scheme to guide de non-dominant camera to the
same spot as the dominant camera, completing the
proposed attentional framework.
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