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1. Introduction 
 

Novelty detection – the ability to identify perceptions that were never experienced before – 
and, more generally, selective attention are extremely important mechanisms to 
autonomous mobile robots with limited computational resources. From the operational 
point of view, the robot’s resources can be used more efficiently by selecting those aspects of 
the surroundings which are relevant to the task in hand or uncommon aspects which 
deserve closer analysis. 
In fact, identification of new concepts is central to any learning process, especially if 
knowledge is to be acquired incrementally and without supervision. In order to learn 
concepts, it is necessary to determine first if they are not already part of the current 
knowledge base of the agent. Simultaneous learning and recognition (Artač et al., 2002) is a 
fundamental ability to robots aiming at true autonomy, adaptability to new situations and 
continuous operation. 
From the application point of view, reliable novelty detection mechanisms facilitate 
automated environment inspection and surveillance by highlighting unusual situations. 
Novelty detection and incremental learning are also vital in applications that demand 
unsupervised environment exploration and mapping. 
In this chapter we are particularly interested in environment inspection using mobile robots 
to assist in the detection of abnormalities. An example of a practical application is the 
automatic identification of cracks, tree roots or any other kinds of faults in sewer pipes. 
Sewer inspection is currently performed manually by human operators watching logged 
video footage, a time-consuming and error-prone approach, due to human fatigue. This task 
would benefit immensely from the assistance of an inspection robot that is able to pinpoint 
just the unusual features in the sewer which are likely to correspond to potential faults. 
Fault detection tasks are different from the usual pattern recognition problems in which the 
features of interest are usually determined beforehand – the aim in fault detection is to 
detect something that is unknown a priori. Therefore, it is argued that the most feasible 
approach to be followed is to learn a model of normality of the environment, and then use it 
to filter out any abnormal sensory perceptions (Tarassenko et. al., 1995). Abnormal 
perceptions are thus defined as anything that does not fit the acquired model of normality. 
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Previous work has demonstrated that the approach of learning models of normality and 
later on using them to highlight abnormalities is very effective for mobile robots that use 
low-resolution sonar readings as perceptual input (Marsland et al., 2002a). 
The sensor modality used as perceptual input obviously plays an important role in the 
robot’s performance for a given task or behaviour. If relevant features of the surroundings 
can not be properly sensed and discriminated, it will be impossible for the robot to respond 
appropriately. Mobile robots are usually equipped with tactile, distance (infrared, sonar and 
laser range finders) and vision sensors. Of all range of sensors, vision is the most versatile 
modality because it can detect colour, texture, shape, size and even distance to a physical 
object. Moreover, vision also has the advantage to be able to generate high-resolution 
readings in two dimensions, making the detection of small details of the environment more 
feasible. 
Vision is therefore a primary source of information for a mobile robot operating in real 
world scenarios, such as in sewer fault inspection. The main reason for this is that the 
environment needs to be sensed in high resolution and preferentially using a two-
dimensional field of view, so that the chances of missing important details are minimised. 
Furthermore, vision is a sense shared with humans and therefore provides common ground 
for collaboration between robots and operators while performing the inspection task. 
Much of the previous research done in novelty detection applied to environment inspection 
using real mobile robots was made using exclusively sonar sensing (Crook et al., 2002; 
Marsland et al., 2002a) and little work was done using monochrome visual input in very 
restricted ways (Crook & Hayes, 2001; Marsland et al., 2001). There is also work related to 
novelty detection using sonar readings in simulated robots (Linåker & Niklasson, 2000; 
Linåker & Niklasson, 2001). The main idea behind these approaches was to use on-line 
unsupervised learning mechanisms in order to acquire models of normality for the 
environment. 
Marsland et al. (2002a) have developed the Grow-When-Required (GWR) neural network 
and used it to highlight novel patterns in sonar scans, while Crook & Hayes (2001) used a 
novelty detector based on the Hopfield neural network (Hopfield, 1982). These approaches 
were qualitatively compared in (Crook et al., 2002) during a novelty detection task using 
sonar readings in a corridor. Linåker & Niklasson (2000) developed the Adaptive Resource 
Allocating Vector Quantisation (ARAVQ) network and used it in simulations. All of these 
mechanisms have shown to work very well with low-resolution sonar data according to 
qualitative assessment criteria. However, none of them was employed using high-resolution 
visual data in real world application scenarios. Also, quantitative tools to assess and 
compare the performance of novelty filters objectively were missing. Therefore, qualitative 
evaluation of novelty filters is one of the issues addressed in this work. 
Here we are mainly interested in investigating novelty detection using colour visual input in 
real robots. However, a major difficulty that comes with vision is how to select which 
aspects of the visual data are important to be encoded and processed. It is undesirable to 
process raw high-dimensional visual data directly due to restrictions in computational 
resources in mobile robots. Hence, a possible solution to cope with massive amounts of 
visual input (tens of thousands of pixels per image frame) is the use of a mechanism of 
attention to select aspects of interest and concentrate the available resources on those (Itti & 
Koch, 2001). 
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A mechanism of visual attention selects interest points within the input image according to 
some criteria (for instance, edges or corners). Interest points selected by such attention 
mechanisms are usually locations containing very descriptive information – they are 
visually salient in the scope of the image frame. A small region in the vicinity of an interest 
point can then be encoded to represent local visual features. This process not only localises 
salient features within the image, but also concentrates computational resources where they 
are necessary. Local encoding of a small image region also has the advantage of reducing 
data dimensionality while preserving details. 
A particularly interesting attention mechanism is the saliency map model (Itti et al., 1998), 
which combines different visual features (such as intensity, colour and orientation in 
multiple scales) to obtain a general indication of saliency for each image location – saliency 
can be thought as the property to stand out from the background. This approach is very 
convenient for novelty detection and, more specifically, inspection tasks in which the 
identification of uncommon features is precisely what is desired. Also, the use of a model of 
visual attention is essential to localise where the unusual features are within the image. 
The approach we follow in this work is to use the saliency map as mechanism of attention to 
select a number of salient regions in the input frame, which are encoded into feature vectors 
and then fed to an unsupervised learning mechanism, either a GWR neural network 
(Marsland et al., 2002b) or an incremental Principal Component Analysis (PCA) algorithm 
(Artač et al., 2002). These learning mechanisms are used to build a model of normality for 
the perceptions acquired in the operating environment and, after the learning process, are 
used as novelty filters to highlight arbitrary novel features that may be encountered. This 
approach, as well as some tools for qualitative and quantitative performance assessment of 
novelty detection systems, is described further in the next section. 
 
2. An Experimental Framework for Visual Novelty Detection 
 

Although novelty detection using sonar sensing proved to be useful to detect open doors in 
corridors (Marsland et al., 2000) and even to identify in which corridor a mobile robot was 
operating (Marsland et al., 2002a), the very low resolution used – a robot’s sonar ring is 
typically composed of a small number of sensors – and unreliable noisy readings pose 
serious limitations to more demanding real world applications. For example, it would be 
impossible to detect small cracks in a wall by using sonar sensors alone. 
Vision, on the other hand, provides detailed information about the operating environment 
in high resolution. Of course, this comes at the expense of large amounts of data to be 
processed, which constitutes a serious difficulty when one desires real-time operation.  
Fortunately, the massive amount of information provided by a vision sensor is highly 
redundant and therefore can be compressed prior to higher levels of processing. Selecting 
which aspects of the visual data are the most relevant, however, is not a straightforward 
procedure and usually is dependant on the application. 
Visual novelty depends on the multi-modal measures of the properties from the 
environment that the camera provides the robot with – some visual feature can be 
considered novel because of its colour, texture, shape, size, pose, motion or any combination 
of these and even other visual features – a much more complex scenario than the one of 
single mode sensors like sonars. Because multi-modal vision is very difficult to be 
accomplished in a mobile robot with limited computational resources, we had to decide 
which visual features were the most important to define novelty in our application domain. 
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In the context of an environment such as the inside of a sewer pipe, the visual novelties we 
are interested in are static, i.e. they do not move. Nevertheless, the sewer is a dynamic 
environment in the sense that new visual features that correspond to faults – cracks and tree 
roots, for instance – may appear at any time, hence the need of regular inspections. For this 
type of application, higher level visual interpretations – such as the concepts of size, pose or 
motion – are not as important as low-level features that characterise the essential 
appearance of visual objects. Therefore, we limited the visual features of interest in this 
work to colour, texture and shape. 
Besides characterising novelty by visual appearance, spatial location of novel visual features 
in the environment is also important. Therefore, we are interested not only in detecting 
which features constitute potential faults but also where they are in the environment. 
Changes in location of visual features may also constitute novelty and are relevant in some 
application domains, such as automated surveillance. However, in the scope of this work we 
will not consider the location of a visual feature to be contextually important to determine 
novelty. In other words, it will not be possible to consider some visual feature as being novel 
based solely on its location in the environment. 
Another difficulty related to visual novelty detection using a mobile robot concerns 
invariance to image transformations. Because the images are acquired from a moving 
platform, visual features are subject to several geometric transformations and it is 
undesirable that known visual features happen to be labelled as novel just because there 
were changes in appearance due to robot movement (e.g. changes in perspective). Hence, 
the image encoding procedure should be robust to small geometrical transformations that 
result from robot motion. 
In order to localise novel features within the image frame, we decided to get inspiration 
from biological vision systems and use a mechanism of attention (Itti & Koch, 2001). 
Following this idea, smaller image regions selected by the visual attention mechanism from 
the input image can be encoded as feature vectors. Figure 1 depicts the block diagram of 
such an approach, in which the novelty filter is preceded by the attention mechanism. 
Instead of encoding the whole image frame in a single feature vector, several feature vectors 
are encoded per frame using the vicinity of salient image locations. Salient (or interest) 
points normally correspond to places with high information contents, i.e. strong peaks, 
edges or corners, depending on the criteria for their selection. In this work, we have used 
the saliency map (Itti et al., 1998) as our mechanism of selective attention. 
By selecting interest regions in the form of image patches, we reduce the dimensionality of 
the data to be processed by the novelty filter and also gain robustness to some geometrical 
transformations, notably translations within the image frame due to robot movement. 
Furthermore, novel visual features can be immediately localised within the input image 
frame with the selection of local salient regions, as we will demonstrate experimentally. 
The experiments that follow use raw image patches (24×24 pixels in size) extracted from 
salient locations within the input image (160×120 pixels in size) and compare performances 
of novelty filters based on the GWR neural network (Marsland et al., 2002b) and incremental 
PCA (Artač et al., 2002). There is hardly any other visual representation more specific than 
raw image patches and therefore generalisation in the experiments reported here is left to 
the learning mechanisms used as novelty filters. As a side-effect, the use of raw image 
patches allows visual feedback of the knowledge acquired during training (Vieira Neto & 
Nehmzow, 2005; Vieira Neto & Nehmzow, 2007). 
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Figure 1. The framework for the investigation of visual novelty detection: an attention 
mechanism selects patches from the input image frame, which are then classified by the 
novelty filter as novel or non-novel. 
 
2.1 Experimental setup 
To evaluate the ability of our novelty detection framework to detect novel visual features 
that may appear in the robot’s normal operating environment, we conducted experiments in 
controlled scenarios. Every experiment consisted of two stages: an exploration (learning) 
phase, in which the robot was used to acquire a model of normality of the environment, 
followed by an inspection (application) phase, in which the acquired model was then used 
to highlight any abnormal perception in the environment. 
During the learning phase, images were acquired while the robot was navigating around a 
“baseline” environment (an empty arena or corridor, containing only “normal” features). 
These images were then processed by the attention mechanism to generate input feature 
vectors and train the novelty filter. After that, during the application phase, novel objects 
were placed in the environment so that a new sequence of images could be acquired and 
used to test the trained novelty filter. 
The expected outcome of these experiments was that the amount of novelty detected would 
continuously decrease during exploration as a result of learning. At the beginning of the 
learning procedure everything is considered novel and, as the robot learns, less and less 
novelties should be found. During the inspection phase we expected that peaks in the 
novelty measure would appear only in areas where a new object had been placed. This 
hypothesis was tested using a real robot navigating in engineered (laboratory) and medium-
scale real world environments. Figure 2 shows the experimental setup used for the 
laboratory experiments. 
The colour vision system of Radix, the Magellan Pro robot shown in Figure 2a, was used to 
generate visual stimuli while navigating in the environment. The robot was equipped with 
standard sonar, infra-red and tactile sensors, and also with an additional laser range scanner 
whose readings were used for controlling the navigation behaviour. Radix operated 
completely autonomously in our experiments. 
The robot’s on-board computer was capable of processing on-line up to eight frames per 
second when running our control software, which was optimised for speed. Nevertheless, 
the images used in the experiments reported in this chapter were acquired at one frame per 
second (without stopping the robot) for off-line processing. This procedure was chosen in 
order to allow fair performance comparisons between different novelty detection 
mechanisms by using the same datasets. 
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(a) 

 
(b) 

 

Figure 2. Experimental setup: (a) Magellan Pro mobile robot; (b) top view of a typical robot 
arena used as operating environment used in laboratory experiments. The robot arena was 
delimited by cardboard boxes, represented by rectangles, while the robot is represented by a 
circle with a line indicating its front, to where its camera is directed. 
 

Figure 2b shows the top view of the engineered environment used in the laboratory 
experiments, a square arena delimited by cardboard boxes in whose corners (numbered 
from 1 to 4) novel objects were introduced. The cardboard boxes at the borders of the arena 
acted as walls (approximately 0.5m high) that limited the robot’s trajectory and also its 
visual world. The images were acquired with the robot’s camera tilted down to −25 degrees, 
so that the field of view was constrained to the arena’s walls and floor, resulting in a 
completely controlled visual world for our experiments. A simple obstacle-avoidance 
algorithm using the robot’s laser range scanner measurements was used as the navigation 
behaviour for the robot. In our experiments, this behaviour has shown to be very predictable 
and stable. 
 
2.2 Assessment of results 
Qualitative and quantitative assessment tools were devised to analyse our results. These 
assessment tools are very important to establish a reference for comparisons and therefore 
determine which of the studied methods perform better according to the desired 
application. 
Qualitative assessment. In the following sections we use bar graphs in which novelty 
measurements provided by the novelty filter are plotted against time. They are used in 
order to obtain a qualitative indication of performance, in a similar fashion to (Marsland et 
al., 2002a). In these graphs, time essentially corresponds to a certain position and orientation 
of the robot in the environment because the navigation behaviour used in the experiments 
was highly repeatable. 
The efficiency of learning during the exploration phase can be graphically assessed through 
inspection of the qualitative novelty graphs in multiple rounds. By looking at the novelty 
graphs for the exploration phase, one can determine how fast learning occurred and also 
assess if the amount of learning was adequate for the acquisition of an environmental model 
of normality. 
In the inspection phase, a new object was introduced in the normal environment in order to 
test the system’s ability to highlight abnormal perceptions. The measure of novelty was 
expected to be high only in places where the new object could be sensed, an expectation that 
should be reflected in the novelty graphs obtained. The inspection phase of experiments was 
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also carried out in multiple rounds with the learning mechanism disabled, so that unusual 
features in the environment were highlighted every time that they were perceived. Hence, 
the consistency of a novel feature being detected in a particular location of the environment 
but in different inspection rounds can also be evaluated using this qualitative assessment 
scheme. 
Quantitative assessment. The off-line processing of image frames acquired with the robot in 
exploration and inspection phases also allows a quantitative assessment and direct 
performance comparison between different approaches through the use of identical 
datasets. For that, we manually generated ground truth in the form of a binary image for 
each input image where the novel object was present. In these binary images, the pixels 
corresponding to the novel object were highlighted (see examples in Figure 3). 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. Example of typical input images containing a novel object: an orange football in (a) 
and a grey box in (c), and their corresponding ground truth novelty templates in (b) and (d), 
respectively. 
 

Using the manually generated ground truth information, contingency tables were built 
relating system response to actual novelty status, as shown in Table 1. If a given region of 
the input image had more than 10% of highlighted pixels in the corresponding ground truth 
template, then this region’s novelty status was considered as “novelty present”. In this case, 
if the system response was “novelty detected” this configured true novelty and therefore 
entry A in the contingency table shown in Table 1 was incremented; otherwise, if the system 
response was “novelty not detected”, this configured a missed novelty with entry B being 
incremented. On the other hand, if the novelty status of a given image region was 
considered as “novelty not present” (less than 10% of highlighted pixels in the 
corresponding ground truth region) and nevertheless the system responded as “novelty 
detected”, this configured a false novelty with entry C being incremented. Finally, if the 
system response agreed with the actual novelty status by attributing “novelty not detected” 
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to a region whose novelty status was “novelty not present”, this represented true non-
novelty and entry D was incremented. 
 

 Novelty 
Detected 

Novelty 
Not Detected 

Novelty 
Present A B 

Novelty 
Not Present C D 

 

Table 1. Contingency table for the quantitative assessment of novelty filters. 
 

An ideal association between system response and actual novelty status would have a 
contingency table in which values B and C in Table 1 are zero, while values A and D have 
non-zero values (in practice, A will be small in comparison to D as usually there are few 
examples of novel features in the inspected environment). The statistical significance of the 
association between the actual novelty status (ground truth) and the novelty filter response 
can be tested using 2χ analysis (Nehmzow, 2003; Sachs, 2004). For the 2×2 contingency table 
shown in Table 1, the 2χ statistic is computed using: 
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where DCBAN +++=  is the total number of samples in the table. 
If 84.32 >χ  there is a significant correlation between novelty status and novelty filter 
response, with a probability 05.0≤p  of this statement being wrong. If 64.62 >χ  the 
significance level of the correlation is higher and the probability of being wrong decreases to 

.01.0≤p  It is also important to mention that the 2χ test is valid only for well-conditioned 
contingency tables – this entails the computation of a table of expected values, which must 
have no entries with expected values below 5 (Nehmzow, 2003). 
The strength of the association was assessed by Cramer’s V, which is directly based on 
the 2χ statistic (Nehmzow, 2003): 
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The uncertainty coefficient U, an entropy-based measure, was also used to estimate the 
strength of the association. Computation of the uncertainty coefficient relies on the fact that 
each sample in the contingency table shown in Table 1 has two attributes, the actual novelty 
status S and the novelty filter response R. The entropy of S, H(S), the entropy of R, H(R), and 
the mutual entropy of S and R, H(S, R), are given by the following equations: 
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When applying equations 3, 4 and 5, one must remember that 0lnlim 0 =→ ppp . The 

uncertainty coefficient U of S given R, ),( RSU is finally computed using (Nehmzow, 2003): 
 

)(
)(),()()(

SH
RHRSHSHRSU +−

= . (6) 
 

Both V and U provide normalised measures of strength ranging from zero to one. Good 
associations result in V and U having values close to one, while poor associations result in 
values close to zero. Therefore, the values of V and U can be used to determine which 
among two or more novelty systems perform better in a given situation. 
A further statistic that was used is theκ index of agreement, which is computed for 2×2 
contingency tables as follows (Sachs, 2004): 
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This statistic is used to assess the agreement between ground truth data and novelty filter 
response, in a similar way to what is done with V and U. However, it has the advantage of 
having an established semantic meaning associated with some intervals, as shown in Table 2 
(Sachs, 2004). 
 

Interval Level of Agreement 
10.0≤κ  No 

40.010.0 ≤< κ  Weak 
60.040.0 ≤< κ  Clear 
80.060.0 ≤< κ  Strong 
00.180.0 ≤< κ  Almost complete 

 

Table 2. κ  intervals and corresponding levels of agreement between ground truth and 
novelty filter response. 
 

Unlike V and U, theκ statistic may yield negative values. If this happens, the level of 
disagreement between system response and manually generated ground truth can be 
assessed. Negative values result when the entries B and C in the resulting contingency table 
are larger than the entries A and D. In such a case, both U and V would still result in 
positive values because they are designed to measure the strength of the association (be it 
positive or negative) rather than the level of agreement (positive association) or 
disagreement (negative association). 
 
3. Experiments in a Laboratory Environment 
 
3.1 The GWR neural network as novelty filter 
The GWR network (Marsland et al., 2002a; Marsland et al., 2002b) is a self-organising neural 
network based on the same principles as Kohonen’s Self-Organising Map (Kohonen, 1984). 
Its structure is composed of nodes that represent the centres of clusters (model weight 
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vectors) in input space – every time that an input is presented, each network node will 
respond with higher or lower activity depending on how good its weight vector matches the 
input vector. 
A novelty filter based on the GWR network basically consists of a clustering layer of nodes 
and a single output node. The connecting synapses to the output layer are subject to a model 
of habituation, which is a reduction in behavioural response to inputs that are repeatedly 
presented. In other words, the more a node in the clustering layer fires, the less efficient its 
output synapse becomes. 
What makes the GWR network superior to the SOM is its ability to add nodes to its 
structure – hence the name Grow-When-Required – by identifying new input stimuli 
through the habituation model. Given an input vector, both the firing node’s activity and 
habituation are used to determine if a new node should be allocated in order to represent 
the input space better. 
The habituation rule of a clustering node’s output synaptic efficacy is given by the following 
first-order differential equation (Marsland et al., 2002b): 
 

)()]([)(
0 tSthh

dt
tdh

−−=ατ . (8) 

 
where 0h is the initial value of the efficacy h(t), S(t) is the external stimulus,τ andα are time 
constants that control the habituation rate and the recovery rate, respectively. 

1)( =tS  causes habituation (reduction in efficacy) and 0)( =tS  causes dishabituation 
(recovery of efficacy). It is important to mention that only habituation was modelled in our 
implementation – dishabituation was disabled by setting .1)( =tS Using 05.1=α  and =0h 1 
results in efficacy values ranging from approximately 0.05 (meaning complete habituation) 
to 1 (meaning complete dishabituation). As synaptic efficacy has a bounded output, it can be 
used neatly as a measure of the degree of novelty for any particular input: higher efficacy 
values correspond to higher degrees of novelty. More detail is given in (Vieira Neto & 
Nehmzow, 2005). 
Normality model acquisition. Exploration was conducted in five consecutive loops around 
the empty arena, with the robot being stopped and repositioned at the starting point in 
every loop. This procedure was used in order to ensure that the robot’s trajectory would be 
as similar as possible for every loop, resulting in consistent novelty graphs for qualitative 
assessment. Images were acquired at the rate of one frame per second, resulting in a total of 
50 images per loop around the arena. We used normalised raw image patches, selected by 
the saliency map from the acquired images, as input to the GWR network. 
During the exploration phase, learning of the GWR network was enabled to allow the 
acquisition of a model of normality. As expected, the amount of novelty measured – the 
efficacy of the habituable synapse of the firing node – decreased as the network habituated 
on repeated stimuli. Only four nodes were acquired by the GWR network by the end of the 
fifth exploration loop. 
Novelty detection. Having trained the GWR network during the exploration phase, we then 
used the acquired model to highlight any unusual visual features introduced in the empty 
arena: an orange football was placed as novel object in one of the corners and the robot was 
used to inspect the arena. The ball was selected not only because it contrasted well with the 
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arena’s colour features, but also because it did not interfere with the robot’s trajectory 
around the arena (it could not be sensed by the laser range scanner). 
Learning of the GWR network was disabled during inspection, so that consistency in 
novelty indications could be verified over different loops around the arena. The novelty 
graphs obtained for the inspection phase of the arena containing the ball are shown in 
Figure 4. 
 

 

 
 
Figure 4. Inspection of the arena with the orange ball (novel stimulus) using the GWR 
network. The orange ball is clearly and consistently highlighted as novelty. The pictograms 
below the graphs indicate the approximate position and orientation of the robot in the arena 
while performing the inspection loops and also the location of the novel stimulus. 
 

Because the images were acquired at the rate of one frame per second, the horizontal axis of 
the graphs in Figure 4 can also be interpreted as time in seconds. Pictograms indicating the 
approximate position and orientation of the robot in the arena are also shown (we use the 
notation “Corner 1+” to indicate position and orientation immediately after the robot has 
completely turned the first corner). 
The set of frames where the orange football appeared in the camera’s field of view are 
indicated by dotted arrows on the top of Figure 4. These frames correspond to locations 
where high values for the novelty measure were expected to happen (the ball appeared 
always in the same frames in every loop because the navigation behaviour was very stable). 
As one can notice in Figure 4, the ball was always correctly detected as the novel feature in 
the environment (see also figure 8a for the visual output of the system). Contingency table 
analysis through the 2χ test revealed statistical significance between the novelty filter 
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response and actual novelty status ( 01.0≤p ). The strength of the association revealed 
almost complete agreement between system response and actual novelty status. 
A new inspection phase was then performed in the arena with another novel stimulus, a 
grey box instead of the orange ball. The grey box is much less conspicuous than the orange 
ball and the idea behind its use was to check the system’s ability to detect a novel object 
similar in colour to the environmental background and therefore not very salient (the arena 
had predominantly grey and dark blue colours). 
The frames in which the grey box appeared in the camera’s field of view are indicated with 
dotted arrows in Figure 5, where the results of the new inspection round are also given. 
 

 

 
 
Figure 5. Inspection of the arena with the grey box (novel stimulus) using the GWR 
network. The grey box is clearly and consistently highlighted as novelty, but unexpected 
novelty indications also appeared consistently for image frame 46. The pictograms below 
the graphs indicate the approximate position and orientation of the robot in the arena while 
performing the inspection loops and also the location of the novel stimulus. 
 

The GWR network correctly identified the grey box as novel, as shown in Figure 5 (see also 
figure 8b for the visual output of the system). However, unexpected novelty peaks also 
appeared consistently for image frame 46, when the robot turned a corner very close to the 
arena’s wall. In this particular image frame, two thirds of the most salient regions 
correspond to a large edge between two of the cardboard boxes that constitute the wall. 
Although the robot was exposed before to edges between the cardboard boxes, it had never 
before been as close as happened in this case – this resulted in image patches containing 
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edges larger in scale than the GWR network was habituated to, resulting in their 
classification as novel. 
Nevertheless, contingency table analysis using the 2χ  test revealed statistical significance 
between system response and ground truth ( 01.0≤p ). The strength of the association was 
also measured and revealing strong agreement between novelty filter response and actual 
novelty status. As one can notice from these results, the false novelty indications due to the 
features present in image frame 46 depressed results slightly, but not statistically 
significantly. 
 
3.2 Incremental PCA as novelty filter 
PCA is a very useful tool for dimensionality reduction that allows optimal reconstruction of 
the original data, i.e. the squared reconstruction error is minimised. It consists of projecting 
the input data onto its principal axes – the axes along which variance is maximised – and is 
usually computed off-line because the standard algorithm requires that all data samples are 
available a priori, making it unsuitable for applications that demand on-line learning. 
A method for the incremental computation of PCA recently introduced by Artač et al. (2002) 
makes simultaneous learning and recognition possible, which is an improvement to the 
algorithm originally proposed by Hall et al. (1998). Using this method, it is possible to 
discard the original input data immediately after the eigenspace is updated, storing only 
projected data with reduced dimensions. 
We use incremental PCA as an alternative method to the GWR network to perform on-line 
novelty detection. The magnitude of the residual vector – the RMS error between the 
original input and the reconstruction of its projection onto the current eigenspace – is used 
to decide if a given input is novel and therefore should be added to the model. If the 
magnitude of the residual vector is above some threshold ,Tr the corresponding input vector 
is not well represented by the current model and therefore must be a novel input. Complete 
implementation details of the incremental PCA algorithm used in this work can be found in 
(Vieira Neto & Nehmzow, 2005). 
The previous laboratory experiments were repeated using the incremental PCA approach 
for comparison purposes. During the exploration phase it was verified that most of the 
eigenspace updates happened in the beginning of the first loop around the arena, becoming 
less frequent as the environment was explored. By the end of the fifth exploration loop, the 
incremental PCA algorithm acquired 35 model vectors. 
As before, the model learnt during the exploration phase was used to highlight novel visual 
features in the arena during the inspection phase, while the learning mechanism was 
disabled. The results obtained for the inspection of the arena with the orange ball are given 
in Figure 6. 
The orange ball was correctly identified as novel, as can be seen in Figure 6. Also, there were 
very few false indications of novelty. Inspection was repeated for the arena containing the 
grey box and the results obtained are given in Figure 7. 
The grey box was also correctly highlighted by the incremental PCA approach with only a 
few spurious novelty indications. Incremental PCA coped better with the robot getting 
closer to the arena’s walls (e.g. the large scale edge present in frame 46) because of our 
choice of parameters which influence generalisation – but this does not necessarily mean 
that incremental PCA always generalises better than the GWR network. 
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Figure 6. Inspection of the arena with the orange ball (novel stimulus) using incremental 
PCA. The orange ball is clearly and consistently highlighted with very few unexpected 
novelty indications. 
 

 

 
Figure 7. Inspection of the arena with the grey box (novel stimulus) using incremental PCA. 
The grey box is clearly and consistently highlighted with very few unexpected novelty 
indications. 
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3.3 Results 
Table 3 shows a quantitative comparison of the results obtained with the GWR network and 
the incremental PCA approach. All cases presented statistically significant correlation 
between novelty filter response and actual novelty status according to the 2χ analysis 
( 01.0≤p ). 
Overall performances (combined performances for the orange ball and the grey box) of both 
approaches are quantitatively very similar (almost complete agreement between novelty 
filter response and ground truth), although the incremental PCA algorithm yielded slightly 
better and more consistent overall results. 
 

 GWR network Incremental PCA 

Orange ball 
91.0
74.0
91.0

=
=
=

κ
U
V

 
86.0
68.0
86.0

=
=
=

κ
U
V

 

Grey box 
70.0
44.0
70.0

=
=
=

κ
U
V

 
83.0
60.0
83.0

=
=
=

κ
U
V

 

Overall 
82.0
58.0
82.0

=
=
=

κ
U
V

 
85.0
64.0
85.0

=
=
=

κ
U
V

 

 

Table 3. Performance comparison for the laboratory experiments: all results correspond to 
statistically significant correlation between system response and actual novelty status 
( 2χ analysis, 01.0≤p ). 
 

Figure 8 gives examples of output images in which the novel object was present in the field 
of view of the robot’s camera. In these output images the numbers indicate the location of 
the interest points identified by the saliency map in order of relevance (0 corresponding to 
the most salient), while the presence of white circles indicate that the surrounding region 
was classified as novel by the filter.  
One can notice in Figure 8 that in both cases, the system was able to indicate where the 
regions containing part of the novel object were within the image frame. For the particular 
output images shown, the results yielded by both novelty filters – GWR network and 
incremental PCA – were identical. 
 

 
(a) 

 
(b) 

Figure 8. Examples of output images for the laboratory experiments: (a) orange ball (GWR 
and PCA); (b) grey box (GWR and PCA). The numbers indicate the location of salient points 
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in order of importance (0 corresponds to the most salient) and the white circles indicate that 
the region corresponding to a particular salient point was labelled as novel. 
 
4. Experiments in a Real World Environment 
 

After the successful results obtained in experiments conducted in a laboratory environment, 
it was time to test the proposed visual novelty detection approach in a medium-scale real 
world environment. 
The ideal scenario would be to send the robot down a sewer pipe to inspect for cracks, tree 
roots and other types of faults. However, our research robot was too large and also was not 
suitable to operate in such an environment. Furthermore, rigorous analysis and assessment 
of the system’s behaviour in this kind of situation would be very difficult to perform due to 
the lack of knowledge and control of environmental characteristics – construction of the 
novelty ground truth, for instance, would constitute a difficult task. 
Experimental setup. Hence, we decided to conduct experiments in one of the corridors at 
the Network Centre building at the University of Essex. The robot navigated along the 
corridor using the same navigation behaviour previously used in the laboratory 
experiments, acquiring one image frame per second, which resulted in the acquisition of 50 
images per journey along the corridor. Differently from the previous laboratory 
experiments, the camera’s pan-tilt unit was driven to its home position (facing straight 
towards the forward direction of the robot) for the experiments in the corridor. 
Exploration was performed in the “empty” corridor to acquire a model of normality, as in 
the previous laboratory experiments, but limited to three journeys along the corridor. 
Finally, the learnt model of normality was used to inspect the corridor for unusual visual 
features that were manually inserted a posteriori. 
We placed three different novel objects in the corridor at different times: a black rubbish 
bag, a dark brown bin and a yellow wooden board. These objects appeared in the robot’s 
field of view immediately after the traversal of a door, which was present in the corridor. 
Results. After three exploration journeys along the empty corridor, the GWR network 
acquired 48 nodes, while the incremental PCA acquired 80 model vectors. Although the 
GWR network acquired fewer concepts, the incremental PCA algorithm has a more efficient 
and compact representation. 
Apart from the wooden board, the chosen novel objects are dark and therefore to some 
extent similar to the dark areas of the normal environment. Contrast in the images acquired 
in the corridor was generally poor because no extra illumination was used, just the weak 
lighting already present. In spite of this fact, both GWR network and incremental PCA 
algorithm were able to correctly highlight the novel objects in the corridor during 
inspection, as shown in Figure 9. 
However, both novelty filters also responded with false novelty indications for a pair of fire 
extinguishers that were present in the corridor. These novelty indications were unexpected 
because the fire extinguishers were already present during the exploration phase and 
therefore should have been part of the acquired model of normality. We attribute such false 
novelty indications to changes in the scale of the already known visual features of the fire 
extinguishers and believe that use of an image encoding method that is robust to changes in 
scale would contribute to reduce false novelty indications and enhance general performance 
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of the visual novelty filter. This hypothesis is currently under investigation (Vieira Neto & 
Nehmzow, 2007). 
Table 4 shows a performance comparison in terms of Cramer’s V, uncertainty coefficient U 
and κ  index of agreement. All results showed statistically significant correlation between 
system response and actual novelty status ( 2χ analysis, 01.0≤p ). Overall performance 
(combined results for all three novel objects) indicates strong agreement between system 
response and actual novelty status. The GWR network presented the most consistent results. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 9. Examples of output images for the real world experiments: (a) black rubbish bag 
(GWR and PCA); (b) dark brown bin (GWR and PCA); (c) yellow wooden board (GWR 
only); (d) yellow wooden board (PCA only). The white circles correctly indicate regions 
containing novel features. 
 

 GWR network Incremental PCA 

Black bag 
63.0
35.0
63.0

=
=
=

κ
U
V

 
65.0
37.0
65.0

=
=
=

κ
U
V

 

Brown bin 
64.0
38.0
64.0

=
=
=

κ
U
V

 
50.0
23.0
50.0

=
=
=

κ
U
V

 

Yellow board 
67.0
37.0
67.0

=
=
=

κ
U
V

 
84.0
69.0
84.0

=
=
=

κ
U
V

 

Overall 
65.0
36.0
65.0

=
=
=

κ
U
V

 
70.0
44.0
70.0

=
=
=

κ
U
V
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Table 4. Performance comparison for the real world experiments: all results correspond to 
statistically significant correlation between system response and actual novelty status 
( 2χ analysis, 01.0≤p ). 

 
5. Conclusion 
 

To achieve novelty detection on visual images, for the purpose of automated inspection 
tasks, we used a mechanism of visual attention that selects candidate image patches in the 
input frame, combined with methods that classify image patches as novel or non-novel. 
For real world inspection applications vision is the most appropriate sensor modality, as it 
provides colour, texture, shape, size, and distance information. All of this information is 
useful for robots operating in complex environments, but of course comes at the cost of 
processing large amounts of data, which is a particular challenge on autonomous mobile 
robots with limited computing power available. 
We demonstrated that the use of the saliency map (Itti et al., 1998) as selective attention 
mechanism minimises the amount of data to be processed and at the same time makes it 
possible to localise where the novel features are in the image frame. The use of this attention 
mechanism avoids explicit segmentation of the input image (Singh & Markou, 2004) and 
makes the overall system more robust to translations due to robot motion. 
Because novelty is of contextual nature and therefore can not be easily modelled, the 
approach that we follow is to first acquire a model of normality through robot learning and 
then use it as a means to highlight any abnormal features that are introduced in the 
environment. For this purpose, we have used unsupervised clustering mechanisms such as 
the GWR neural network (Marsland et al., 2002b) and the incremental PCA algorithm (Artač 
et al., 2002), which were both able to learn aspects of the environment incrementally and 
yielded very good results. 
We proposed an experimental setup to evaluate performance and functionality of visual 
novelty filters, dividing the experimental procedure in two stages: an exploration phase, in 
which the learning mechanism was enabled to allow the robot to build a model of normality 
while experiencing the environment; and an inspection phase, in which the acquired model 
of normality was used as a novelty filter. Novel objects were inserted in the robot’s 
environment during the inspection phase of experiments with the expected outcome that the 
visual novelty filter would produce indications of novelty and localise these new objects in 
the corresponding input image frame. 
As the precise location and nature of the novelty introduced during the inspection phase is 
known by the experimenter, it is possible to generate ground truth data to be compared 
with the responses given by the novelty filter. In order to assess the performance of a 
novelty filter objectively, we used 2×2 contingency tables relating actual novelty status 
(ground truth) to system response, followed by the computation of statistical tests to 
quantify the association or agreement between them. Here we used the 2χ test in order to 
check the statistical significance of the association between ground truth and novelty filter 
response, followed by the computation of Cramer’s V, the uncertainty coefficient U and 
theκ index of agreement (Sachs, 2004). 
Extensive experimental data was logged to evaluate and compare the efficiency of the visual 
novelty filter. The 2χ analysis of the generated contingency tables revealed statistical 
significance in the associations between system response and actual novelty status in all of 
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the reported experiments. Typical quantitative analyses resulted in strong agreement with 
the ground truth data. 
Qualitative assessment of the learning procedure during exploration, as well as consistent 
identification of novel features during inspection was made through the use of novelty bar 
graphs. In these graphs, a measure of the degree of novelty in each image frame is plotted 
against time/position. Novelty graphs are particularly useful to identify novelty indications 
in unexpected locations of the environment and investigate their reasons, leading to 
improvements in overall system robustness and ability to generalise. 
We consider the results obtained to be very good and likely to succeed in real world 
applications that involve exploration and inspection of environments using vision. An 
example of such an application is the automated inspection of sewer pipes. However, more 
elaborate processing to become more robust to general affine transformations is likely to be 
necessary for applications in which the environment is not as structured as the arena and 
corridor that were used as operating environments in this work. 
 
5.1 Contributions 
One of our main contributions was to implement and experiment with visual novelty 
detection mechanisms for applications in automated inspection using autonomous mobile 
robots. Previous work done in novelty detection used only low-resolution sonar readings 
(Crook et al., 2002; Marsland et al., 2002a) or very restricted monochrome visual input 
(Crook & Hayes, 2001; Marsland et al., 2001). In contrast to this, the work presented here 
used colour visual stimuli with an unrestricted field of view. The selection of algorithms had 
emphasis on bottom-up and unsupervised learning approaches to allow exploitation of 
relevant characteristics of the acquired data from the ground-up. 
Quantitative performance assessment tools based on contingency table analysis and 
statistical tests were developed in order to support objective comparisons between different 
visual novelty filters. For comparison purposes, novelty ground truth maps were generated 
in the form of binary images, in which novel visual features are highlighted manually. 
Because vision is a sensor modality shared between robots and humans, generation of 
novelty ground truth maps occurs in a natural and relatively easy way (although it demands 
time because of the volume of images involved). 
Another main contribution was the demonstration that attention mechanisms extend the 
functionality of visual novelty filters, enabling them to localise where the novel regions are 
in the input frame and improving image encoding robustness to translations due to robot 
motion. Also, the use of an attention mechanism avoids explicit segmentation of the input 
image frame. 
 
5.2 Future research 
The results and conclusions drawn from the experiments in visual novelty detection 
reported in this work open a series of avenues for future investigations and improvements. 
It would be interesting, for instance, to conduct more experiments using alternative 
attention mechanisms, especially those which can determine affine transformation 
parameters for the selected regions of interest. Possible options are the Harris-affine detector 
(Mikolajczyk & Schmid, 2002; Mikolajczyk & Schmid, 2004) and the interest point detector 
developed by Shi & Tomasi (1994). The use of such algorithms is expected to result in image 
encoding with extra robustness to affine transformations, improving the ability to generalise 
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and reducing the number of stored vectors or nodes by the novelty filter. Experiments are 
needed to compare performances with the attention mechanism already studied here to 
confirm or reject this hypothesis. 
There are also some alternative methods of interest for the image encoding, which are likely 
to improve robustness to changes in scale and orientation of visual features. One possibility 
is the use of space-variant (log-polar) foveation (Bernardino et al., 2002) and the Fourier-
Mellin transform (Derrode, 2001; Reddy & Chatterji, 1996) in order to encode visual features. 
For applications that demand a systematic exploration of complex large-scale environments, 
such as a whole floor in a building, the integration of the proposed visual novelty detection 
framework with the environment exploration scheme developed by Prestes e Silva Jr. et al. 
(2002; 2004) is of particular interest. This approach uses potential fields to generate a 
dynamic exploration path that systematically covers the entire free area of the robot’s 
environment, while generating a grid map of the obstacles that are present. Later on, the 
generated grid map can be used to produce arbitrary inspection paths or even paths 
towards specific goals. 
If a novelty detection algorithm is used to learn and associate the local visual appearance of 
the environment to the grids of the environmental map, it is possible to determine novelty 
not only in terms of uncommon features that may appear in the environment, but also to 
establish if known features appear in unusual locations. A potential application of such 
ability is the automated organisation of a room, in which an autonomous mobile robot 
would be able to identify which objects are not in the places they were supposed to be and 
then take actions to correct the situation, “tidying up” the environment. 
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