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Abstract

In this paper we present a novelty detection
mechanism in which a mobile robot learns a
model for its environment through visual explo-
ration. Once the learning process is finished, the
robot can be used to inspect the environment
and highlight stimuli that do not fit the acquired
model of normality. Experimental results from a
visual inspection task involving the detection of
arbitrary objects are also presented in this paper.

1. Introduction

The ability to differentiate between common and unusual
perceptions, also known as novelty detection, can be very
useful for mobile robots that operate in dynamic environ-
ments. A robot with such a competence can select which
aspects of the environment are abnormal and therefore
deserve the attention from either a human operator – for
instance, in supervised inspection or surveillance tasks –
or its own computational resources for further process-
ing.

However, the implementation of a novelty detection
mechanism is not trivial. As it is unclear beforehand
which features of the environment need to be searched
for, it is not feasible to install explicit models a priori.
Instead, models have to be acquired – furthermore, as
novelty detection entails the identification of any novel
stimuli, these models need to be models of normality,
rather than abnormality.

Following this approach, a model of normality is learnt
through the self- organisation of a neural network and
used as means to separate novel from common percep-
tions.

Previous work using sonar readings as the source for
perceptual stimuli has shown that novelty detection is
possible without prior installation of any kind of knowl-
edge (Marsland et al., 2002a). Nevertheless, the low sen-
sory resolution provided by sonars poses serious limi-
tations for real world surveillance and inspection tasks,
where sensors with higher resolution are needed.

In this work we investigate the possibility of apply-
ing the novelty filter used in (Marsland et al., 2002a)

to visual information, instead of sonar readings. We
describe a method to process colour visual informa-
tion using image statistics, generating feature vec-
tors for a Grow-When-Required (GWR) neural network
(Marsland et al., 2002b). The GWR network is then
used to highlight new, arbitrary features that contrast
with the acquired model of normality. A block diagram
of our visual novelty detection mechanism is shown in
figure 1.
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Figure 1: The visual novelty detection mechanism: colour his-

tograms are computed from the images acquired from the envi-

ronment and then a novelty filter is used to measure their degree

of novelty.

Finally, we present some laboratory experiments
which involve a visual inspection task to detect novel fea-
tures in the environment. We discuss the use of global
and local colour histograms – centred around visually
salient locations within the image – as image descrip-
tors.



2. Novelty Filter

As the concept of novelty is ill-defined, the most feasi-
ble approach for the implementation of a novelty filter
consists in learning a model of normality for the environ-
ment and then using it as means to highlight abnormal
(i.e. novel) perceptions.

Several techniques available in the literature – for
instance the ones reported in (Ypma and Duin, 1997,
Taylor and MacIntyre, 1998) – rely on Kohonen’s Self-
Organising Feature Maps (SOFM) (Kohonen, 1984) to
build the model of normality. The main advantage of
this approach is that there is no need of any a priori
knowledge installation.

In this work we used a Grow-When-Required (GWR)
neural network, which itself is derived from the SOFM,
but has the additional capability to add nodes to its
structure in order to represent new perceptions. The
ability to grow is particularly interesting to avoid the
network becoming “saturated” with the amount of in-
formation (Marsland et al., 2002b).

The GWR uses a model of habituation, which is a
reversible reduction in responses to repeatedly presented
stimuli. With the use of habituation, novelty can be
defined more specifically as stimuli which have not been
perceived in the current context. Moreover, habituation
also allows an objective measure of the degree of novelty
of a given stimulus over time (Marsland et al., 2002a).

The model of habituation is given by the following
first-order differential equation:

τ
dhi(t)

dt
= α[h0 − hi(t)]− S(t), (1)

where h0 is the initial value of the habituation function
hi(t), S(t) is the external stimulus, τ and α are time con-
stants that control the habituation rate and the recovery
rate, respectively.

In this work we have used τ = 3.33, α = 1.05, h0 = 1
and S(t) = 1. These parameter values constrain the
synaptic efficacy h(i) of each network node to the range
[0.05, 1], the minimum value meaning complete habitu-
ation of the node to the input and the maximum value
meaning complete novelty. As S(t) is a constant posi-
tive value, there is no recovery (i.e. dishabituation) in
our case, which allows us to use the synaptic efficacy of
the winner node hw(t) as a direct measure of the degree
of novelty for any given input stimulus.

The network is trained with a traditional winner-take-
all approach, in which the weights of the winner node and
its topological neighbours are adapted according to the
learning rule given below:

∆wi = ε(ξ −wi), (2)

where wi is the weight vector, ξ is the input vector and
ε is the learning rate.

The activation value ai of a given input vector for each
node is determined by the equation that follows:

ai = exp(− ‖ ξ −wi ‖). (3)

If both habituation and activation values of the win-
ner node are below pre-defined thresholds hT and aT ,
respectively, a new node is added to the network. We
have used hT = 0.5 and aT = 0.9 to make sure that
new nodes are added for every novel stimulus without
the need of a large number of iterations. In addition,
we have used a learning rate ε of 0.1, which assures that
nodes are not able to move too much from the location
in input space where they were originally placed.

Concerning the topological neighbours of the winner
node, the training algorithm used in this work is slightly
different from the original one (Marsland et al., 2002a),
which used separate parameters εn and τn for the neigh-
bours. These values were just a constant fraction of the
parameters ε and τ . Our approach made the learning
and habituation rates of the neighbour nodes propor-
tional to their distance to the winner node in input space:

εn =
ηan

aw
ε, (4)

τn =
an

ηaw
τ, (5)

where aw and an are respectively the activation of the
winner and neighbour nodes and η is the proportionality
factor (0 < η < 1).

It can be noticed from the equations above that neigh-
bour nodes will have their weights adapted to a lesser
extent and habituate in a slower rate than the win-
ner node (in this work we have used η = 0.1). For
further details about the implementation of the GWR
network algorithm, please see (Marsland et al., 2002a,
Marsland et al., 2002b).

3. Image Encoding

The use of computer vision algorithms in mobile robots
is a challenging task: large amounts of data need to
be processed in real-time with limited computational
resources. Moreover, acquiring images from a moving
platform make visual features subject to a number of
geometric transformations such as scaling, translation,
rotation, changes in perspective and occlusions.

In order to make efficient use of the GWR-based nov-
elty filter it is necessary to generate input vectors that
are at the same time compact, robust to image transfor-
mations and fast to compute. In this paper we present
an image encoding method that uses colour statistics to
represent image features.



3.1 Colour Histograms

Image histograms are well-known statistical tools
that when properly used can present robustness
against image transformations and partial occlusions
(Schiele and Crowley, 2000). Here we are concerned
with the performance of colour histograms, with no ex-
plicit encoding of any other image feature.

To compute the colour histograms we first convert the
images to the HSI colour space from the RGB colour
space as follows:

I =
R + G + B

3
, (6)

S = 1− min(R,G,B)
I

, (7)

H = arctan

( √
3(G−B)

2R−G−B

)
, (8)

where R, G and B are the red, green and blue channels
and H, S and I are the hue, saturation and intensity
for each pixel, respectively. The HSI colour space was
selected with the purpose of separating explicitly chromi-
nance (hue and saturation) from luminance (intensity).

We divided the hue interval [−π, π] equally into M
regions by defining the following membership functions
fm:

fm =
{

1 if− θ < H − (M − 2m) θ ≤ θ
0 otherwise, (9)

where θ = π
M and m = 0, 1, ...,M − 1.

The standard hue histogram is computed by adding
the responses of the membership functions fm for each
pixel in the image to the corresponding histogram bin
(bm), as shown below:

bm =
X−1∑
x=0

Y−1∑
y=0

fm(Hx,y), (10)

where (x, y) are the pixel coordinates and m =
0, 1, ...,M − 1.

We have also included saturation in the colour his-
tograms used in our experiments by weighting the re-
sponse of the membership functions as follows:

bm =
X−1∑
x=0

Y−1∑
y=0

fm(Hx,y) Sx,y. (11)

Finally, we have normalised the histogram to satisfy
the constraint

∑
bm = 1. Our approach employs the

above defined histograms using M = 32 bins as input
vectors for the GWR-based novelty filter.

3.2 Global and Local Histograms

In our first experiments we have used colour histograms
in a global fashion, i.e. the histograms were computed
for the whole image frame. This approach has shown to
be able only to detect large visual alterations in the envi-
ronment (see section 4.), but lacked the ability to point
where exactly the alteration was in the image frame.

To provide the novelty detection mechanism with the
ability to localise where in the image frame are the novel
visual features, local statistics, rather than global, are
needed. Therefore, a method to determine which regions
of the image are the most “interesting” and deserve fur-
ther analysis has to be employed.

In this work we have used the Saliency Map
(Itti et al., 1998) as a model for selective visual atten-
tion. This model is inspired by the neural architecture
of the early primate visual system and consists of multi-
scale feature maps that allow the detection of local dis-
continuities in intensity, colour and orientation. Further
details of our implementation of the Saliency Map are
given in (Vieira Neto and Nehmzow, 2004).

The interesting property of salient points determined
in this fashion is that they tend to be robust to geomet-
ric transformations and contribute to the general desired
robustness of the whole image encoding mechanism. We
have selected the ten highest values in the Saliency Map
to indicate which locations of the image are the most “in-
teresting” so that colour histograms could be calculated
in their vicinity. The salient points tend to correspond
to edges, corners and similar discontinuities.

Therefore, for each input image, ten local histograms
were generated to feed the GWR-based novelty filter.
The histograms were computed from patches of 32× 32
pixels centred around the salient points.

4. Experimental Setup

The experiments discussed here were conducted using
the colour vision system of the Magellan Pro mobile
robot Radix 2, which is shown in figure 2.

Figure 3 shows the top view of the environment used
for the experiments, which consists of a closed arena sur-
rounded by cardboard boxes and plastic cylinders.

The boxes and cylinders at the borders of the arena
act as walls, limiting the path of the robot and also its
visual world. It can be noticed from figure 3 that the
arena’s floor has several marks, which contribute to add
some visual heterogeneity to the environment.

With the intention of obtaining a completely con-
trolled visual world for our experiments, the images were
acquired with the robot’s camera tilted down to its max-
imum angle (−25◦). Therefore, the robot’s field of view
consisted of mostly of the floor and the walls of the arena.

The images used in our experiments were acquired at
one frame per second and without stopping the robot,



Figure 2: The Magellan Pro mobile robot used for the exper-

iments. The laser range scanner visible in the photograph was

used only for motion control, not for novelty detection.

resulting in a total of 45 image frames per loop around
the arena.

4.1 Robot Behaviour

The navigation behaviour of the robot was exclusively
determined by the distance information provided by the
laser range scanner. We have used the force field strat-
egy, in which every distance measure covering 90◦ in
front of the robot acts like a virtual spring, pushing the
robot towards free space in the environment.

The robot moves forward very slowly (0.15m/s) until
it finds an obstacle within a threshold distance of 0.5m,
which causes it to stop and slowly rotate (35◦/s max-
imum) towards free space again. This behaviour has
shown to be extremely predictable and stable in our ex-
periments.

4.2 Robot Task

Our experiments were designed to evaluate the ability of
the devised mechanism to detect arbitrary novel visual
features that may be inserted in the environment. They
were conducted in two stages: an exploration (learning)
phase and an inspection (application) phase.

During the exploration phase we acquired images
while the robot was navigating around the empty arena.
These images were used to generate the histogram-based
feature vectors and train the GWR network. For the in-
spection phase, some novel object was inserted inside the

Figure 3: Top view of the arena used for the experiments: the

robot is shown at its starting position and an orange football at

the opposite corner.

arena and once more the robot was used to acquire im-
ages while navigating. The new sequence of images was
then used to test the trained GWR network, using the
synaptic efficacy of the winner node hw as a measure of
novelty.

The expected outcome of these experiments was that
the amount of novelty would progressively be reduced
during the exploration phase. Additionally, it was ex-
pected during the inspection phase that peaks in the
measure of novelty would appear mostly near to where
the novel object was inserted.

4.3 Results and Discussion

The learning dataset was built with images acquired dur-
ing five loops in the empty arena. Figure 4 shows the
degree of novelty measured during the exploration phase
when using global histograms (i.e. a single colour his-
togram for the whole image frame). Given the used
GWR network parameters, novelty values can range
from a minimum of 0.05 and a maximum of 1.0. It
can be seen that the novelty values tend to slowly re-
duce as the robot explores the environment, but there
are several unexpected peaks of novelty which indicate
problems with the use of global histograms for a proper
image encoding.

For the application phase, an object was placed at
one of the corners of the arena. Care was taken to select
objects that did not interfere with the original path of
the robot, i.e. objects that were not detected by the laser
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Figure 4: Original environment explored with the use of global

histograms: the graphs depict the amount of novelty measured

at every location in five consecutive loops around the empty

arena. Learning of the GWR network was enabled.

range scanner.
Figure 5 shows an example of the amount of novelty

measured during the inspection phase when an orange
football was placed in the arena (as shown in figure 3),
once again using global histograms as image descriptors.
The ball appeared within the field of view of the camera
immediately after the robot turned the first corner, as
indicated. Unfortunately, in these graphs there is no
clear indication that the novel object is detected.

As the approach using global histograms did not work
as desired, we decided to use a mechanism of selective
attention and compute local histograms in the vicinity
of salient image locations, as described in the previous
section. The local approach has shown to perform as
desired, with the additional advantage of pointing out
where the new visual features are located within the im-
age frame.

Figure 6 shows the degree of novelty measured during
the learning phase when using the mechanism of atten-
tion and local histograms. It can be noticed that the
novelty values consistently reduce as the robot explores
the environment. The amount of novelty in each frame
was computed as the average of the synaptic efficacies
of the winner nodes for each of the ten computed local
histograms.

The four major peaks of novelty that repeatedly ap-
pear in the first loop correspond to the corners of the
arena, where the robot was turning. These peaks are
persistent over the next loops, indicating that our ap-
proach still needs to be further refined to cope with the
major geometric transformations that occur in the im-
ages when the robot is turning a corner.
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Figure 5: Altered environment inspected with the use of global

histograms: the graphs depict the amount of novelty measured

at every location in five consecutive loops around the arena when

an orange football was placed at one of its corners. Learning of

the GWR network was disabled.

Finally, the degree of novelty measured during the in-
spection phase when using the mechanism of attention
and local histograms is shown in figure 7.

As can be observed in figure 7, the novel object is
clearly detected and differentiated from the other visual
stimuli observed in the arena. Figure 8 shows an example
of how the mechanism is able to locate the novel visual
features within the image frame.

5. Conclusion

The ability to detect stimuli that contrast with stimuli
commonly perceived in a robot’s environment – novelty
detection – is of immense importance to autonomous
mobile robots, as it allows the precise commitment of
sensory and computational resources, decreases reaction
time and improves the reliability and security of robot
operation. Besides, novelty detection is a core compo-
nent of tasks such as surveillance, inspection and explo-
ration.

In this paper we have presented experiments with a
fully autonomous Magellan Pro mobile robot (Radix 2),
that uses the mechanism of habituation and growing ar-
tificial neural networks to acquire models of normality,
using visual input. These models can subsequently be
used to detect anything not conforming with them, i.e.
abnormality.

We have discussed two experiments in this paper, one
using image encoding with global histograms, the other
using local histograms. Both approaches are able to de-
tect a foreign object introduced into the experimental
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Figure 6: Original environment explored with the use of local

histograms (to be contrasted with figure 4): the graphs depict

the amount of novelty (average of the novelty values for the

ten most salient regions) measured at every location in five con-

secutive loops around the empty arena. Learning of the GWR

network was enabled.

arena, but the method using local histograms has the
additional advantage of detecting the locus of the novel
stimulus.

One important issue concerning industrial applica-
tions is the question of whether this approach will scale
up. Ongoing work at Essex therefore investigates the
application of these mechanisms to larger real world en-
vironments, with the objective to detect faults such as
cracks and foreign objects in real-world environments.
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the white circles indicate novelty values above the habituation

threshold hT .


