Visual Attention and Novelty Detection:

Experiments with Automatic Scale Selection

Ulrich Nehmzow and Hugo Vieira Neto
Department of Computer Science
University of Essex
Wivenhoe Park
Colchester CO4 3SQ
{udfn, hvieir} @essex.ac.uk

Abstract

We present experiments with an autonomous in-
spection robot, whose task was to highlight novel
features in its environment using camera images.

Experiments were conducted with two different
attention mechanisms — saliency map and multi-
scale Harris detector — and two different nov-
elty detection mechanisms — the Grow-When-
Required neural network and incremental PCA.
For both mechanisms we compared fixed-scale
image encoding with automatically scaled image
patches.

Results show that using automatic scale selec-
tion provides a more efficient representation of the
visual input space, but that performance is gen-
erally better using a fixed-scale image encoding.

1. Introduction

Novelty detection mechanisms and, more generally, at-
tention mechanisms are extremely important to au-
tonomous mobile robots with limited computational re-
sources. From an operational point of view, the robot’s
resources can be used more efficiently by selecting those
aspects of the surroundings which are relevant to the
task in hand or uncommon aspects which deserve fur-
ther analysis. By using such mechanisms, previously un-
known aspects of the environment can be incrementally
learnt by the robot, while already known aspects can be
used for the purposes of the desired task.

In fact, identification of new concepts is central to
any learning process, especially if knowledge is to be ac-
quired incrementally and without supervision. The abil-
ity to identify perceptions that were never experienced
before — novelty detection — is therefore an essential
component for mobile robots aiming at true autonomy,
adaptability to new situations and continuous operation.

Obviously, the sensor modality used as perceptual in-
put also plays an important role in the agent’s perfor-
mance for a given task or behaviour. If relevant features

in the environment cannot be sensed and discriminated,
it will be impossible for the agent to respond appropri-
ately. Within the variety of sensors normally available
to a mobile robot, vision allows measurement and esti-
mation of several environmental features, such as tex-
ture, colour, shape, size and distance to a physical ob-
ject. Therefore, vision is very versatile and also has the
advantage of being able to provide high resolution read-
ings in two dimensions, making the detection of small
details of the environment more likely.

Novelty detection through vision. Our work in-
vestigates novelty detection mechanisms using vision
as perceptual input, with potential application in
automated inspection. Because novelty detection en-
tails the identification of any unusual perceptions,
which are unknown beforehand, it is not possi-
ble to construct and install models of abnormal-
ity. Therefore, we follow the approach of acquiring
a model of normality from the operating environ-
ment and then filter out perceptions that fail to fit
this model. This approach was successfully used in
real robots using sonar sensing (Marsland et al., 2002a)
and more recently using colour vision with unre-
stricted field of view (Vieira Neto and Nehmzow, 2004,
Vieira Neto and Nehmzow, 2005) in inspection tasks.

In order to deal with the large amount of data provided
by a camera, we used an attention model to select raw
image patches from the input image frame in previous
work (Vieira Neto and Nehmzow, 2005). These image
patches were normalised to unit-length vectors and fed
to a novelty filter that indicated the presence or not of
novelty. Here we follow the same approach, shown in
Figure 1.

The attention model plays an important role in the
overall performance of our visual novelty detection
framework. It not only allows the localisation of where
novel visual features are within an input image frame,
but also contributes to reduce the dimensionality of in-
put vectors through the use of local image patches rather
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Figure 1: Visual novelty detection using raw image patches:
an attention model selects candidate regions, which are then
normalised and fed to a novelty filter.

than the whole image frame. Moreover, because visual
input is acquired from a moving platform and therefore
subject to several geometrical transformations, the use
of visual attention intrinsically deals with translations
of features within the image frame by centring image
patches on salient locations. However, other alterations
in appearance such as changes in scale, rotations or
affine-transformations need more elaborated image en-
coding to be dealt with efficiently.

Image scaling. The motivation to investigate auto-
matic scale selection (image patch size) stems from the
fact that obtaining an image encoding method that is
robust to changes in scale would improve the novelty
filter’s ability to generalise, reducing the number of ac-
quired concepts by the learning mechanism in use. In
previous work (Vieira Neto and Nehmzow, 2005), gener-
alisation according to scale is achieved through the ac-
quisition of multiple image patches, in different scales,
for the salient visual features found in the environment.
The use of raw image data is advantageous in the sense
that it allows patch reconstruction from the acquired
model of normality, providing visual feedback of which
aspects of the environment were actually learnt.

In this work, we exploit the characteristic scale prop-
erty (Lindeberg, 1998) present in multi-scale attention
mechanisms to determine the size of interest regions
(image patches) automatically. We compare results ob-
tained during a novelty detection task using the saliency
map (Itti et al., 1998) and the multi-scale Harris detec-
tor (Mikolajezyk and Schmid, 2001) as attention mech-
anisms. The Grow-When-Required (GWR) neural net-
work (Marsland et al., 2002b) and the incremental PCA
algorithm (Artac et al., 2002) are used as novelty filters.

2. Novelty Detection

In novelty detection tasks one commonly desires to de-
tect any previously unknown feature, as opposed to

recognition tasks in which features of interest are al-
ready known. Therefore, the feasible approach to be
followed is to learn a model of normality from the envi-
ronment using an unsupervised learning mechanism, and
then to use this acquired model to filter out abnormal
perceptions. In our work we concentrate on on-line un-
supervised learning based either on neural networks or
statistical approaches.

Here we use the GWR network, which was espe-
cially designed for the task of on-line novelty detec-
tion. This neural network combines a clustering mech-
anism and a model of habituation to decide if a given
input vector is novel and therefore needs to be incor-
porated to the current model (Marsland et al., 2002b).
Another alternative is the incremental PCA algorithm
introduced in (Arta¢ et al., 2002). In this case, we used
the magnitude of the residual vector (the RMS error
between original data and its reconstruction from the
eigenspace projection) as a means to determine nov-
elty. Incremental PCA offers the advantage of in-
trinsically reducing input dimensionality, allowing op-
timal reconstruction (minimal squared error). Details of
both novelty detection methods used here are given in
(Vieira Neto and Nehmzow, 2005).

2.1 FExperimental Setup

Our experiments were conducted with a Magellan Pro
robot (Radiz) operating in a square arena (2.56 x 2.56m)
made from cardboard boxes. The robot used a sim-
ple force-field obstacle avoidance behaviour to navigate
slowly around the arena while acquiring images at one
frame per second.

Initially a learning phase was carried out so that the
robot could acquire a model of normality from the en-
vironment. The learning phase comprised five loops
around the empty arena, resulting in the acquisition of
225 image frames. After the acquisition of the model
of normality, a novel object (either an orange football
or a grey box) was deliberately placed inside the arena
and the trained robot was used to inspect the environ-
ment. Examples of acquired images containing the novel
objects inside the arena are given in Figure 2.

(a)

Figure 2: Input images containing novel objects inside the arena:

(a) orange football; (b) grey box.



The expected outcome of the experiments was that
the novelty filter would highlight the location of novel
stimuli. The inspection phase also comprised five loops
around the arena containing each of the novel objects,
resulting in 450 acquired image frames.

2.2 Quantitative Assessment of Results

After acquiring images from the arena, we manually gen-
erated ground truth data in the form of a binary image
for each input image where novel objects were present
(the pixels corresponding to novelty were highlighted in
these binary images). Using this ground truth informa-
tion, contingency tables were built relating system re-
sponse to actual novelty status, as shown in Table 1.
For the novelty status of a given region of the input im-
age to be considered as “novelty present”, it had to have
at least 10% of highlighted pixels in the corresponding
region of the respective ground truth template.

Table 1: Example contingency table for the quantitative assess-
ment of novelty filters.

Novelty Novelty
Detected Not Detected
Novelty A B
Present
Novelty
D
Not Present ¢

Cramer’s V and uncertainty coefficient U. We es-
tablished statistical significance of the association be-
tween actual novelty status (ground truth) and the nov-
elty filter response using a x? analysis of the contingency
tables (Nehmzow, 2003). The strength of this associa-
tion was quantified through Cramer’s V (0 < V < 1,
with smaller values indicating a weaker association) and
the uncertainty coefficient U (0 < U < 1, again with
smaller values indicating a weaker association). Full de-
tails are given in (Vieira Neto and Nehmzow, 2005).

Index of agreement . A further statistic used in this
paper is the k index of agreement, which is computed as
follows (Sachs, 2004):

B 2(AD — BC) (1)
"TA¥O)(C+D)+(A+B)(B+D)
where A, B, C' and D are the entries in Table 1.

This statistic is used to assess the agreement between
ground truth and novelty filter response, in a similar
fashion to the V and U statistics. However, k has
the advantage of having an established semantic mean-
ing associated with some intervals, as shown in Table 2
(Sachs, 2004).

Unlike V' and U, the « statistic may yield negative val-
ues (—1 < x < 1). If & is negative, the level of disagree-

Table 2: k intervals and corresponding levels of agreement be-
tween ground truth and novelty filter response.

Interval Level of Agreement
k <0.10 No

0.10 < k <0.40 Weak

0.40 < k < 0.60 Clear

0.60 < k <0.80 Strong

0.80 < k <£1.00 Almost complete

ment between system response and manually generated
ground truth can be assessed.

3. Models of Visual Attention

In previous work (Vieira Neto and Nehmzow, 2004,
Vieira Neto and Nehmzow, 2005) we reported experi-
ments using the saliency map (Itti et al., 1998) as a
mechanism of visual attention using a fixed number of
salient points. This model is inspired by the early pri-
mate visual system and consists of multi-scale feature
maps that allow the detection of local changes in inten-
sity, colour and orientation in different scales.

The feature maps are computed from image pyramids
obtained from the original input image. In our imple-
mentation, Gaussian and oriented Gabor pyramids with
five scales were built, as described in (Itti et al., 1998).
Across-scale differences were then computed between
finer and coarser scales from the pyramids to yield the
feature maps, which were combined in conspicuity maps
for intensity, opponent colours and orientation. Full im-
plementation details are available in (Vieira Neto, 2006).

A normalisation operator is used in order to combine
intensity, opponent colour and orientation conspicuity
maps with different dynamic ranges into a single saliency
map and, as a result, gives more weight to unusual fea-
tures in the input image frame (Itti et al., 1998). The
final saliency map was computed in pyramid level 2,
meaning that there was a 1:4 reduction in scale of the
saliency map with respect to the original image size.

The highest value within the saliency map needs
to be searched in order to determine the loca-
tion of the first focus of attention, then the sec-
ond highest value needs to be found to establish
the location of the second focus of attention and so
on. In previous work (Vieira Neto and Nehmzow, 2004,
Vieira Neto and Nehmzow, 2005), the location of the
salient points in the image frame was obtained from the
coordinates in the saliency map multiplied by four to
compensate for the 1:4 reduction in each dimension. The
simplicity of this approach has a serious shortcoming:
the resulting resolution for the location of salient points
in this case is four pixels. A solution to this problem is to
interpolate the location of local maxima in the saliency
map to sub-pixel accuracy using a Taylor expansion up
to the second order term.



We also devised and implemented a method to deter-
mine the number of salient locations automatically. The
average saliency value (S) and the maximum saliency
value (S), which corresponds to the first location to be
attended by the attention mechanism, are used to deter-
mine a saliency threshold (St) for the selection of salient
points:

Sp=8+kS—-25),0<k<1, (2)

where k is a constant that determines the number of
salient points. The lower the value of k, the larger the
number of resulting salient points. Here we have used
k =0.25.

Salient locations are then determined by a search for
local maxima whose value is above the saliency threshold
St. The determined coordinates and their neighbours
are then used to interpolate the location of maxima with
sub-pixel accuracy using a Taylor expansion up to the
second derivative:

P Sy S(x—1,y) —S(z+1,y) -
T Ses Sz +1y)—2S(z,y) + (a:—1y)

i Sy _ S(,y—1) = S(z,y +1)

- Syy_S(x,y+ 1) —2S8(z,y) + S(z,y — 1)’ (4)

where S, and S, are the first partial derivatives and Sy,
and Sy, are the second partial derivatives of the saliency
function S relative to coordinates x and y, respectively.

Equations 3 and 4 fit a parabola to the local saliency
function in order to find the offset (Z,¢) to be added
to the coordinates of the salient point previously found.
A parabola is sufficient to interpolate a more accurate
location for local maxima because the saliency function
is reasonably smooth.

We also implemented the multi-scale Harris detec-
tor (Mikolajezyk and Schmid, 2001) as an alternative
interest point selection strategy to the saliency map.
This algorithm basically consists of building an in-
tensity Laplacian pyramid from the input image and
then searching it for extrema. Interest points cor-
respond to extrema because they are stable in both
space and scale (Lowe, 2004). A fast and efficient al-
gorithm to build Laplacian image pyramids proposed in
(Crowley et al., 2002) was used in our implementation.
In this algorithm, half-octave pyramids are constructed
by successive Gaussian filtering, subsampling and sub-
traction.

The half-octave pyramid algorithm builds simultane-
ously a Gaussian pyramid and a Difference-of-Gaussian
(Laplacian) pyramid through the subtraction of adja-
cent Gaussian levels before subsampling. Filtering is
performed by convolution with separable binomial Gaus-
sian kernels, resulting in a Gaussian pyramid with a scale
factor of /2 (Crowley et al., 2002). Our implementa-
tion used a half-octave Laplacian pyramid with ten levels
(scales).

After the Laplacian pyramid is built, search for ex-
trema in scale-space is performed. Each pixel in the
pyramid is compared to its eight neighbours in the same
level and its eighteen neighbours in the levels above and
below. The location of extrema is interpolated using
equations 3 and 4 for better accuracy. Extrema cor-
responding to locations with low contrast (|L| < 0.02,
assuming normalised values in the range [0,1]) were re-
jected. For stability, however, it is not enough to dis-
card points with low contrast because the Difference-of-
Gaussian function has strong responses along edges, even
if localisation is poorly defined and unstable due to noise
(Lowe, 2004). Poorly defined extrema have a large prin-
cipal curvature across the edge but a small curvature in
its perpendicular direction. Therefore, we also rejected
locations with a principal curvature ratio r < 4. For
full implementation details the reader is referred again

o (Vieira Neto, 2006).

4. Experiments With Fixed Scale

In order to compare performances of different strate-
gies to select interest points, we conducted exper-
iments using normalised raw image patches in the
image encoding stage, the same approach as in
(Vieira Neto and Nehmzow, 2005). Raw image patches
were used to allow reconstruction from the acquired
model of normality. Using this image encoding approach,
the overall performance of the visual novelty detection
system is sensitive to patch misalignment, which obvi-
ously depends on the accuracy and stability of the at-
tention mechanism being used. An attention mechanism
that provides better interest point stability and accuracy
is expected to also provide better overall performance
when using raw image patches.

Initially, a fixed scale size of 24 x 24 pixels was used for
the image patches. As attention mechanisms we used the
interpolated saliency map, as described before, and the
multi-scale Harris detector. Both of these approaches
automatically decide the number of salient points to be
selected within the input image according to the thresh-
old parameter mentioned in section 3.

In order to assess the impact of the attention mecha-
nism on the overall visual novelty detection performance,
a GWR network was trained with the normalised raw im-
age patches selected from the empty arena. The acquired
model of normality of the empty arena was then used to
filter out any abnormal perceptions during inspection of
the arena. Inspection was conducted with the presence
of novel objects (an orange football and a grey box) in
the arena and the results obtained with each attention
mechanism are given in Table 3, including the sizes of
the acquired models.

Results. All experiments resulted in statistically sig-
nificant correlation between novelty ground truth and



Table 3: Visual novelty detection performance comparison using
different interest point selection methods (fixed scale) and the
GWR network.

Interpolated Multiscale
Saliency Harris Det.
M(.)del 5 nodes 4 nodes
Size
Orange V =0.93 V =0.89
ball U =0.81 U =0.73
K = 0.92 k= 0.89
Grey V =0.76 V =0.59
box U = 0.53 U = 0.30
k = 0.73 k = 0.51

the classification made by the GWR network (y? analy-
sis, p < 0.01). The same experiments were repeated us-
ing the incremental PCA algorithm as novelty filter (the
residual error threshold for the incremental PCA algo-
rithm was rp = 0.25). The results obtained are shown
in Table 4.

Table 4: Visual novelty detection performance comparison us-
ing different interest point selection methods (fixed scale) and
incremental PCA.

Interpolated Multiscale
Saliency Harris Det.
Model 30 vectors 28 vectors
Size (28 dim.) (27 dim.)
Orange V =0.84 V =094
ball U =0.61 U =0.83
k= 0.84 k=094
Grey V =0.75 V =0.63
box U = 0.50 U =0.31
k =0.73 Kk = 0.62

Once again, all results showed statistically significant
association between system response and actual novelty
status (x? analysis, p < 0.01) when using incremental
PCA as novelty filter. The reconstructed images from
the acquired incremental PCA models using the inter-
polated saliency map and the multi-scale Harris detec-
tor are shown in Figure 3, where one can notice that the
acquired models using either interest point detector are
quite similar.

5. Experiments With Automatic Scale

As discussed previously, as a result of the robot naviga-
tion around the environment, visual features are subject
to several geometric transformations. The use of atten-
tion mechanisms provides robustness to translations by
selecting salient characteristic locations within the image
frame. Both attention mechanisms being investigated in
this paper rely on a multi-scale pyramidal (also known as
scale-space) representation, which provides them with a
good degree of stability when selecting salient locations,
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Figure 3: Image patches (fixed scale) acquired using incremental
PCA: (a) interpolated saliency map; and (b) multi-scale Harris
detector. Both models are similar in contents and in size.

regardless of translations or changes in scale.

Changes in scale are evident when the robot ap-
proaches objects. In our experiments using image
patches with fixed size, generalisation according to scale
was achieved by the acquisition of multiple versions of
salient visual features in different scales by the learning
mechanism. If the image encoding stage is made invari-
ant to changes in scale, this would improve the overall
system generalisation ability and reduce the amount of
acquired concepts in the model of normality of the envi-
ronment.

Lindeberg has shown that the characteristic scale of a
pixel within an image can be determined by locating the
extremum of the Laplacian jet of that particular pixel
(Lindeberg, 1998). The Laplacian jet of a given pixel is
the function across the levels of a Difference-of-Gaussian
image pyramid at the coordinates of that pixel. The re-
sponse of the Laplacian will be the highest at the scale
in which the contrast between close neighbouring pix-
els is maximal, which by definition corresponds to the
characteristic scale of that location.

Because both attention mechanisms used in this
chapter already make use of Laplacian (Difference-of-
Gaussian) pyramids, we can use them to compute the
characteristic scale of the selected interest points and
use it to determine the approximate size of their cor-
responding region of interest, i.e. the size of the image
patch to be cropped from the input frame. This strategy
was used in (Lowe, 2004, Crowley et al., 2002) to deter-
mine the region of interest surrounding visual features.



Once the location of an interest point is found, the
Laplacian jet at that location needs to be searched for
an extremum. A more precise location in scale is also
determined by interpolation using a second order Taylor
expansion:

. Ly L(s—1)—L(s+1) 5

S 7 s y -y %y s S
where s is the level of the pyramid in which the ex-
tremum was found, L and L, are the first and second
partial derivatives of the Laplacian function L relative
to the level s, respectively.

The offset § is then added to the extremum level in or-
der to determine scale with better accuracy. According
to (Crowley et al., 2002), the radius of the region of in-
terest can be computed from the interpolated half-octave
pyramid level by using the following equation:

Troi = 1.18 x (3F3), (6)

where the constant 1.18 is an empirical correction factor
for the scale, which is given by a geometric progression
with base b = v/2. Two levels of the pyramid are neces-
sary to change scale by a factor of two, hence the name
“half-octave pyramid”.

The procedure above can be performed directly in the
case of the multi-scale Harris detector because in our
implementation we use a scale-space with five octaves,
i.e. a half-octave Laplacian pyramid with ten levels,
which provides sufficient scale resolution. However, in
the case of the saliency map, the intensity Laplacian
pyramid used has only five levels. Therefore, an addi-
tional half-octave Laplacian pyramid was built for the
saliency map (using the intensity channel) with the sole
purpose of computing the characteristic scale of salient
points.

In our implementation of automatic scale selection, we
selected regions of interest with twice the radius com-
puted with Equation 6, in order to guarantee that edges
would be present in the image patches. Also, the patch
radius was limited to a minimum of 6 pixels and a max-
imum of 24 pixels, as shown in the following equation:

r = min{max{6,2 X 7., }, 24}. (7)

This results in the selection of square image patches
centred around the interest points ranging from 12 x 12
to 48 x 48 pixels in size. Figure 4 shows examples of
interest points selected by the interpolated saliency map
and the multi-scale Harris detector, and their respective
regions of interest, whose sizes were calculated according
to Equation 7.

The circles in Figure 4 designate the size of the regions
of interest according to the automatic scale selection of
the corresponding interest point. There was no novelty
detection involved in the generation of these output im-
ages, just the use of the attention models with automatic
scale selection to determine the size of the regions. It is

(a)

Figure 4: Output images with automatic scale selection: (a)
interpolated saliency map; (b) multi-scale Harris detector. In-
terest points are indicated by numbers in (a) or crosses in (b)
and the size of their respective regions of interest are indicated
by white circles.

important to notice that when both attention mecha-
nisms happen to decide on interest points in similar lo-
cations, the size of the corresponding regions of interest
are also similar. In these examples it is also possible to
notice the preference of the multi-scale Harris detector
for the selection of interest points on edges with high cur-
vature, while the saliency map prefers to locate interest
points on blobs and straight edges.

Experiments using the whole visual novelty detection
framework were conducted to assess the impact caused
in overall performance by the use of automatic scale se-
lection. In order to obtain input vectors with fixed size
for the learning mechanisms, the image patches selected
by the attention models were scaled to a fixed image
patch size of 24 x 24 pixels (the original size of image
patches when fixed scale was used) through bilinear in-
terpolation, allowing changes in scale from 1:2 to 2:1.

First, we trained a GWR network using images ac-
quired when the robot was exploring the empty arena, as
in previous experiments. The acquired model of normal-
ity was then used to filter out abnormal visual features
in images acquired during inspection of the arena con-
taining either of two novel objects (the orange football
or the grey box). Table 5 shows the quantitative results
obtained.



Table 5: Performance comparison between different interest
point selection methods (automatic scale) using the GWR net-
work. Only the multi-scale Harris detector contributed to sta-
tistically significant association between novelty filter response
and actual novelty status at all times.

Interpolated Multiscale
Saliency Harris Det.
M9del 4 nodes 2 nodes
Size
Orange V =0.83 V =0.47
ball U = 0.69 U =0.17
Kk = 0.88 Kk = 047
Grey V =0.02" V =0.25
box U = 0.00 U = 0.05
k = -0.02 k = 0.15

*No statistical significance according to the x2 test

Results. The results in Table 5 show that only the
use of the multi-scale Harris detector as attention mech-
anism resulted in statistically significant association be-
tween the GWR network response and ground truth
data (x? test, p < 0.01) at all times. Overall perfor-
mances of both learning approaches were worse than
the obtained with fixed scale (see Table 3). This fact
is attributed to the use of bilinear interpolation scaling,
which causes image patch smoothing (a low-pass filter-
ing effect). Smoothing makes differentiation of image
patches using the Euclidean metric, used by the GWR
network algorithm, more difficult and this is reflected in
the small number of acquired nodes. A solution to this
problem is to use a higher activation threshold ar for
the GWR network.

The experiments were repeated using the incremen-
tal PCA algorithm as learning mechanism, which was
expected to be less sensitive to bilinear interpolation
smoothing. The expected outcome of using automatic
scale selection was that smaller models of normality
would be acquired because generalisation according to
scale would be improved by the image encoding mecha-
nism itself, rather than the acquisition of multiple scaled
versions of the same features by the learning mecha-
nism. A quantitative comparison of the results obtained
is given in Table 6.

Despite revealing statistically significant association
between system response and ground truth data (x? test,
p < 0.01 except otherwise noted), the results in Table 6
are poorer than the results obtained using fixed scale,
except for the case of the orange ball when using the
saliency map as attention mechanism (see Table 4). Nev-
ertheless, both visual novelty detectors were still able to
highlight novel objects correctly. The acquired models
of normality are smaller than the ones acquired using
image patches with fixed size, as expected.

The interpolated saliency map results in better perfor-
mance (strong agreement between novelty filter response

Table 6: Performance comparison between different interest
point selection methods (automatic scale) using incremental
PCA. All experiments resulted in statistically significant asso-
ciation between novelty filter response and actual novelty status
(x? test, p < 0.01).

Interpolated Multiscale
Saliency Harris Det.
Model 20 vectors 11 vectors
Size (19 dim.) (10 dim.)
Orange V =094 V =0.51
ball U =0.80 U =0.20
k= 0.94 k = 0.50
Grey V =0.56 V =0.17"
box U =0.28 U =0.02
x = 0.50 k = 0.10
*p <0.05

and actual novelty status) than the multi-scale Har-
ris detector (weak agreement) in this context. The re-
constructed images from the acquired incremental PCA
models using automatic scale selection are shown in Fig-
ure 5, where the fact that the acquired models using au-
tomatic scale selection are smaller can also be confirmed
by comparisons with Figure 3.
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Figure 5: Image patches (auto scale) acquired using incremental
PCA: (a) interpolated saliency map; and (b) multi-scale Harris
detector. Both models are smaller than the ones acquired using

fixed scale.

6. Conclusion

In this paper we have made an assessment of the in-
fluence of the attention mechanism within our visual
novelty detection framework, particularly with respect
to the use of automatic scale selection. Two dis-
tinct interest point detection schemes were investigated,
the saliency map (Itti et al., 1998), which presents a
preference to locate interest points on blob-like fea-
tures and straight edges, and the multi-scale Harris
detector (Mikolajczyk and Schmid, 2001), which prefers



high curvature edges to locate interest points. Both
approaches had their localisation accuracy improved
through function interpolation using a second order Tay-
lor expansion as suggested in (Lowe, 2004).

Because there are advantages in using encoding tech-
niques that allow image reconstruction, the accuracy and
stability in interest point selection became an important
issue. Accurate localisation reduces errors due to mis-
alignment of image patches during matching, having an
impact in the overall performance of the visual novelty
filter, also contributing to reduce the size of the model
of normality that is learnt from the environment.

Another issue of concern is the robustness to changes
in scale of visual features as a result of robot nav-
igation around the environment. In previous work
(Vieira Neto and Nehmzow, 2005), generalisation with
respect to scale happened through the acquisition of
many scaled versions of the same visual features by the
learning mechanism. We tested the hypothesis that some
degree of scale invariance incorporated in the image en-
coding stage would reduce the size of the learnt mod-
els and improve overall robustness to changes in scale,
through experiments using the automatic scale selection
method originally proposed in (Lindeberg, 1998).

The results in Figure 5 and Table 6 corroborate our
hypothesis because the use of automatic scale selection
reduced the size of the acquired PCA model of normal-
ity. However, overall performance of the novelty filters
was generally worse than when using fixed scale image
patches, requiring further research in this topic. Perfor-
mance comparisons were made quantitatively through
contingency table analysis and computation of Cramer’s
V', uncertainty coefficient U and the s index of agree-
ment (Sachs, 2004).

Among the investigated models of attention, the inter-
polated saliency map is the one that offers the most con-
sistent results, particularly when using incremental PCA
as novelty filter. Concerning automatic scale selection,
the implementation of the saliency map reported here is
not the most efficient because it uses an additional Lapla-
cian pyramid. An implementation built from half-octave
pyramids as in (Crowley et al., 2002) instead of the pyra-
midal structure originally used in (Itti et al., 1998) con-
stitutes a better scenario for further investigations in au-
tomatic scaling.

Future research aims at improving performance re-
sults and adding robustness to general affine trans-
formations through the use of affine-invariant in-
terest point detectors (Mikolajczyk and Schmid, 2004,
Shi and Tomasi, 1994).
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