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Abstract

Mobile robot applications that involve automated exploration and inspec-

tion of environments are often dependant on novelty detection, the ability

to differentiate between common and uncommon perceptions. Because nov-

elty can be anything that deviates from the normal context, we argue that

in order to implement a novelty filter it is necessary to exploit the robot’s

sensory data from the ground up, building models of normality rather than

abnormality.

In this work we use unrestricted colour visual data as perceptual input

to on-line incremental learning algorithms. Unlike other sensor modalities,

vision can provide a variety of useful information about the environment

through massive amounts of data, which often need to be reduced for real-

time operation. Here we use mechanisms of visual attention to select can-

didate image regions to be encoded and fed to higher levels of processing,

enabling the localisation of novel features within the input image frame.

An extensive series of experiments using visual input, obtained by a real

mobile robot interacting with laboratory and medium-scale real world en-

vironments, are used to discuss different visual novelty filter configurations.

We compare performance and functionality of novelty detection mechanisms

based on the Grow-When-Required neural network and incremental Prin-

cipal Component Analysis. Results are assessed using both qualitative and

quantitative methods, demonstrating advantages and disadvantages of each

investigated approach.
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Chapter 1

Introduction

The ability to identify perceptions that were never experienced before, re-

ferred to as novelty detection, is an essential component of intelligent agents

aspiring to operate in dynamic environments. Animals, for example, are

able to quickly detect and focus their attention in unusual situations by

using different sources of sensory information. This sort of competence

maximises chances of survival, not only because it helps to reduce threats

and exploit opportunities, but also because it enables the animal to learn

from experience.

Novelty detection mechanisms and, more generally, attention mecha-

nisms are also extremely important to autonomous mobile robots with lim-

ited computational resources. From an operational point of view, the robot’s

resources can be used more efficiently by selecting those aspects of the sur-

roundings which are relevant to the task in hand or uncommon aspects

which deserve closer analysis. By using such mechanisms, previously un-

known aspects of the environment can be incrementally learnt by the robot,

while already known aspects can be used for the purposes of the desired

task.

In fact, identification of new concepts is central to any learning pro-

cess, especially if knowledge is to be acquired incrementally and without

supervision. In order to learn concepts it is necessary to determine first if

1



Chapter 1. Introduction 2

they are not already part of the current knowledge base of the agent. Si-

multaneous learning and recognition (Artač et al., 2002) is a fundamental

ability to robots aiming at true autonomy, adaptability to new situations

and continuous operation.

From the point of view of applications, reliable novelty detection mech-

anisms would facilitate automated environment inspection and surveillance

tasks using mobile robots. Novelty detection and incremental learning are

also vital in applications that demand unsupervised environment explo-

ration and mapping.

In this thesis we are particularly interested in environment inspection

using mobile robots to assist in the detection of faults. A practical applica-

tion is the automatic identification of cracks, tree roots or any other kind

of fault in sewer pipes. Sewer inspection is currently performed manually

by human operators watching video footage for hours on end, a very tiring

and error-prone duty. Human operators would benefit immensely from the

assistance of an inspection robot able to highlight just the unusual features

in the sewer which are likely to correspond to potential faults.

This type of fault inspection task is different from usual pattern recog-

nition problems in which the features of interest are usually determined

beforehand. The aim in fault inspection is to detect unusual entities whose

features are likely to be very difficult to be fully determined a priori. There-

fore, we argue that the most feasible approach to be followed is to learn a

model of normality of the environment and use it later on to filter out any

abnormal sensory perceptions — abnormal perceptions are thus defined as

anything that does not fit the model of normality. Previous work has demon-

strated that the approach of learning models of normality and then using

them to highlight abnormalities is very effective for mobile robots that use

sonar readings as perceptual input (Marsland et al., 2002a).

Obviously, the sensor modality used as perceptual input plays an im-
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portant role in the agent’s performance for a given task or behaviour. If

relevant features in the environment can not be properly sensed and dis-

criminated, it will be impossible for the agent to respond appropriately.

Mobile robots are usually equipped with tactile (bumpers), distance (infra-

red, sonar and laser range finders) and vision sensors (cameras). From the

range of sensors available, vision allows measurement and estimation of sev-

eral environmental features, some of them exclusive to the visual domain

(texture and colour) and others not (shape, size and distance to a physical

object, for instance). Therefore, vision is clearly the most versatile sensor

modality available. Moreover, vision also has the advantage to provide high

resolution readings in two dimensions, making the detection of small details

of the environment more feasible.

We argue that it is necessary to use vision as primary source of informa-

tion for a mobile robot in real world applications such as the sewer fault in-

spection mentioned earlier. The main reason is that the environment needs

to be sensed with high resolution and a two-dimensional field of view, so

that the chances of missing important details are minimised. Furthermore,

vision is a sense shared with humans and therefore provides common ground

for collaboration between robots and human operators while performing the

inspection task.

Much of the previous research done in novelty detection applied to en-

vironment inspection using real mobile robots was made using exclusively

sonar sensing (Crook et al., 2002; Marsland et al., 2002a) and little work

was done using monochrome visual input in very restricted ways (Crook

and Hayes, 2001; Marsland et al., 2001). There is also work related to

novelty detection in simulated robots using sonar readings (Lin̊aker and

Niklasson, 2000, 2001). These approaches have the strength of using on-

line unsupervised learning mechanisms to acquire models of normality for

the environment. More details about related work and relevant background
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for this thesis will be given in Chapter 2.

Marsland, Nehmzow, and Shapiro (2002a) developed the Grow-When-

Required (GWR) neural network and used it to highlight novel patterns in

sonar scans, while Crook and Hayes (2001) used a novelty detector based on

the Hopfield neural network (Hopfield, 1982). Their approaches were qual-

itatively compared in (Crook et al., 2002) during a novelty detection task

using sonar readings in a corridor. Lin̊aker and Niklasson (2000) developed

the Adaptive Resource Allocating Vector Quantisation (ARAVQ) network

and used it in simulations. All of these approaches work very well with low

resolution sonar data according to qualitative assessment criteria. However,

none of them was employed using high-resolution visual data in real world

application scenarios. Also, there was a lack of quantitative criteria to assess

and compare the performance of novelty filters objectively.

Here we are interested in investigating novelty detection using colour

visual input in real robots — the particular application in mind is auto-

mated visual inspection of sewer-like environments. For that, we use the

work of Marsland, Shapiro, and Nehmzow (2002b) on the GWR network

as foundation. The GWR network uses a model of habituation, a reduc-

tion in response to stimuli that are repeatedly presented, to identify new

perceptions and quantify their degree of novelty (Marsland et al., 2000).

Perceptions with a high degree of novelty can therefore be incrementally

incorporated to the structure of the GWR network.

As mentioned earlier, our interest in using vision for novelty detection

purposes stems from the much wider range of information about the envi-

ronment, in high resolution, that this sensor modality can provide. However,

a major difficulty that comes with vision is how to select which aspects of

the data are important to be encoded and processed. In mobile robots, it is

undesirable to process raw high-dimensional visual data directly due to re-

strictions in computational resources. Therefore, a natural solution to cope
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with massive amounts of visual input (tens of thousands of pixels per image

frame) is the use of a mechanism of attention to select aspects of interest

and concentrate the available resources on those (Itti and Koch, 2001).

A mechanism of visual attention basically selects interest points within

the input image according to some criteria (for instance, edges or corners).

Interest points selected by such attention mechanisms are usually locations

containing very descriptive information — they are visually salient in the

scope of the image frame. A small region in the vicinity of an interest point

can then be encoded to represent the local visual features. This process

not only localises salient features within the image, but also concentrates

computational resources where it is necessary. Local encoding of a small

image region also has the advantage of reducing data dimensionality while

preserving details.

In the context of visual novelty detection, a particularly interesting at-

tention mechanism is the saliency map model (Itti et al., 1998). This ap-

proach combines different visual features (such as intensity, colour and ori-

entation in multiple scales) to obtain a general measurement of saliency for

each image location. Saliency can be thought as the property to stand out

from the background. This approach is very convenient for novelty detec-

tion and, more specifically, inspection tasks in which the identification of

uncommon features is precisely what is desired. Also, the use of a model

of visual attention is essential to localise where the unusual features are in

the image. Details about interest point detectors relevant to this work are

given in Chapter 2.

In order to be processed efficiently by the novelty filter, the input image

needs to be encoded. Here we refer to the general term “novelty filter”

to describe any learning mechanism which acquired a model of normality

from the environment and is able to use it to filter out abnormal inputs.

The purpose of image encoding is to reduce dimensionality of the data to
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be processed by the novelty filter while trying to preserve the ability to

discriminate between different classes of features as much as possible. It is

therefore necessary to devise some sort of internal representation through

the encoding of visual aspects in the form of feature vectors. These fea-

ture vectors, which are simplified abstractions of the original visual aspects,

are expected to describe relevant characteristics and eliminate unnecessary

details.

However, designing the image encoding stage is not a trivial job be-

cause it is not always clear to the designer which elements of the data are

relevant and which are unnecessary. It is therefore desirable to select the

important parts of the data using information from the data itself, following

a bottom-up approach. An example of such an approach is the Principal

Component Analysis (PCA) algorithm, which consists of projecting the data

onto principal axes (the axes in which variance is maximised) and selecting

the components with larger variances.

The image encoding is also desired to be robust to geometric transfor-

mations that result from the fact that images are acquired from a moving

platform. As the robot navigates around the environment, visual features

are subject to changes in scale, translations and other affine transforma-

tions. The visual novelty filter should not classify known visual features as

novel just because they were sampled from a different perspective. Also, in

the context of the target application of fault inspection, the location of vi-

sual features does not determine novelty, although it is important to identify

the location of novel features. For example, faults on the walls of a sewer

should be always detected in spite of where they appear, but to determine

their precise location is also important.
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1.1 Research Objectives

The main objectives of the research presented in this thesis were:

1. To develop an experimental framework for the investigation of visual

novelty detection;

2. To conduct experiments using real mobile robots operating in labora-

tory and medium-scale real world environments;

3. To devise qualitative and quantitative assessment tools that allow

performance comparisons between different visual novelty detection

algorithms;

4. To devise image encoding procedures that enable real-time processing∗

and localisation of novel visual features in the operating environment;

5. To compare and discuss different strategies for the image encoding,

visual attention mechanism and novelty filter.

Item 1 in the research objectives is dealt with in Chapter 3, where we

introduce a general framework for detection and localisation of novelty in

visual data. The approach we follow is to use a mechanism of attention to

select a number of salient regions in the input frame, which are encoded into

feature vectors and then fed to an unsupervised learning mechanism. The

learning mechanism is used to build a model of normality for the perceptions

acquired in the environment and, after the learning process, is used as a

novelty filter to highlight arbitrary novel features that may be encountered

in the environment. Figure 1.1 shows a block diagram which summarises

the entire process.

∗Real-time processing in this context means that the time to process an image frame
should not interfere with the efficiency of the robot’s navigation behaviour in the envi-
ronment, i.e. we desire the robot to navigate continuously while processing visual data
at a frame rate that is high enough to avoid losing any environmental details because of
motion.
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Colour Camera

Selective Attention

Image Encoding

Novelty Filter

Feature Vectors

Salient Regions

Raw Image

Environment

Indication of Novelty

Figure 1.1: The framework for investigation of visual novelty detection: an
attention mechanism selects patches from the input image frame, which are
then encoded and classified by the novelty filter as novel or non-novel.

Because a model of normality needs to be acquired prior to the use of the

novelty filter in inspection tasks, our experimental procedure is divided into

two phases. First, exploration of the environment takes place with learning

enabled so that the model of normality can be acquired. During the ex-

ploration phase, performance of the learning mechanism can be evaluated.

After the model of normality is acquired for a particular environment, the

trained system can be used in inspection tasks to filter out any abnormal

perceptions in that context. By carrying out the inspection in controlled

environments, where novel features are deliberately introduced and whose

locations are known beforehand, the performance of the system can be ob-

jectively assessed.

Still in Chapter 3, we present the mobile robot platform and the envi-

ronments used in our experimental setup (item 2 in the research objectives).

Laboratory environments were built to resemble a corridor or tube-like en-

vironment that allowed continuous navigation of the robot while using a

simple obstacle avoidance behaviour, also described in detail. Finally, qual-

itative and quantitative assessment tools, based on contingency table anal-
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ysis and statistical tests are presented and discussed (item 3 in the research

objectives).

Chapter 4 describes experiments using image encoding techniques based

on colour statistics. Performances using both global (entire image frame)

encoding and local (attention-based) encoding are compared and discussed

(items 4 and 5 in the research objectives). The relevance of the attention

mechanism to determine the location of visual features within the image

frame is made evident with these experiments, as well as its contribution

towards general robustness to translations in the image encoding stage.

Contrasting with previous work in novelty detection using visual input, im-

ages from the environment were acquired in colour and with no restrictions

in field of view.

More experiments are presented in Chapter 5, this time using raw im-

age patches to encode not only colour, but also structural information (tex-

ture and shape). Besides producing more specific representation of image

features, this approach provides extra functionality to the framework by

allowing the reconstruction of the image patches acquired in the model of

normality. Hence, visual assessment of which aspects of the environment

were actually learnt becomes available to the operator of the robot.

Also in Chapter 5, performances of the GWR network and an alternative

novelty filter based on incremental PCA (Artač et al., 2002) are compared

and discussed (item 5 in the research objectives). Experiments concerning

the influence of the robot’s navigation trajectory in the performance of the

system are also discussed.

Experiments with visual attention mechanisms are presented in Chap-

ter 6, where different implementations of two interest point detection tech-

niques are evaluated (item 5 in the research objectives). Stability and accu-

racy in the location of interest points are discussed, as well as the possibility

of performing automatic scale selection for regions of interest in the image.
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1.2 Contributions

The main contributions of this thesis are:

• Implementation and extensive experimentation of visual novelty de-

tection mechanisms with applications in automated inspection using

mobile robots. In contrast with previous work done in novelty detec-

tion using low resolution sonar readings (Crook et al., 2002; Marsland

et al., 2002a) or very restricted monochrome visual input (Crook and

Hayes, 2001; Marsland et al., 2001), the work presented here uses

colour visual stimuli with unrestricted field of view.

• Development of quantitative assessment methods based on contin-

gency table analysis and statistical tests to support performance com-

parisons between different visual novelty filters objectively. Such as-

sessment tools were previously lacking in the literature, but were used

in our work to contrast the efficiency of the GWR network and the

incremental PCA algorithm as novelty filters against manually gener-

ated ground truth.

• Demonstration that on-line unsupervised learning mechanisms are

able to readily acquire a visual model of normality and later use it

to detect novelties introduced in various operating environments cor-

rectly, without the installation of any a priori models or human inter-

vention, contrasting with other proposed novelty detection algorithms

for visual input (Diehl and Hampshire II, 2002; Singh and Markou,

2004).

• Demonstration that the use of attention mechanisms extends the func-

tionality of visual novelty filters to localise where the novel regions

are in the input frame, while simultaneously improving robustness to

geometric transformations due to robot motion, particularly transla-

tions and changes in scale. Explicit segmentation of the input image is
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avoided, contrasting with the approach followed by Singh and Markou

(2004).

• Demonstration that the use of raw image patches adds the functional-

ity of image patch reconstruction from the acquired model of normal-

ity, allowing the user to perform a visual evaluation of which aspects

of the environment were actually learnt.

The next chapter presents related work in novelty detection and visual

attention models, also providing technical and implementation details of the

algorithms used throughout this thesis. Emphasis is given on unsupervised

clustering methods capable of on-line learning to be used as novelty filters

and interest point detectors to be used as visual attention mechanisms.



Chapter 2

Related Work and Background

Learning models of normality. Novelty detection has been used in

numerous problems, from medical diagnosis of masses in mammograms

(Tarassenko et al., 1995) to fault monitoring and detection (Taylor and

McIntyre, 1998). These problems share a common characteristic, which is

the existence of large amounts of data in which the result of the test is

negative (no disease diagnosed or no fault detected), and relatively few ex-

amples of the important features that have to be detected. It is therefore

usually not possible to install or learn models of abnormality, because too

little training data is available, if any (in some cases, one often does not

know even what to look for). Instead, a model of normality is acquired

and used to filter out any input stimulus that does not fit the learnt model

(Marsland, 2003).

The implementation of novelty detection systems is usually based on

statistical approaches (Markou and Singh, 2003a) or artificial neural net-

works (Markou and Singh, 2003b). In either case, a model of normality is

built and used to filter out any previously unobserved situation. From an

application point of view, an important aspect that distinguishes different

novelty detection mechanisms is their ability to perform on-line learning.

In mobile robotics, on-line learning is of particular interest for applications

that demand simultaneous learning and recognition (Artač et al., 2002).

12
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Identification of previously not perceived or uncommon information is cen-

tral to unsupervised self-organising learning mechanisms and, in fact, is

fundamental to any agent aiming at true autonomy, continuous operation

and adaptability to new situations.

A typical task for mobile robots is to navigate and self-localise in their

operating environment as a basis to other, more complex, tasks. In order

to do this, one can resort to identify distinguished landmarks and use them

to build an internal model of the robot’s surroundings. The most useful

landmarks are the perceptions that differ from the common observations

from the environment and therefore can be used to determine the robot’s

location. When dynamic environments are concerned, which is the case of

the most interesting applications, unusual perceptions also need to be iden-

tified so that the robot can react accordingly. These unusual observations

in the environment, be it static or dynamic, can be conveniently highlighted

by a novelty filter and then used by higher levels of processing.

Low resolution sensor input. On-line learning of landmarks in a mobile

robot’s environment through novelty detection was successfully done in the

past by using mostly sonar sensor readings as perceptual input (Crook et al.,

2002; Marsland et al., 2000). In these approaches, real robots identified

and learned landmarks from the environment through unsupervised learning

mechanisms. Their goal was to use the learnt model to identify changes

(novel landmarks) in the environment, such as open doors in a corridor.

Using the same idea and training several distinct novelty filters for different

environments also made possible to identify in which environment the robot

was operating. In this case, the novelty filter that produced less novelty

indications was the most likely to correspond to the particular environment

(corridor) in which the robot was operating at the moment (Marsland et al.,

2002a).

A different approach used to identify landmarks is to perform change
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detection in the flow of a robot’s sonar readings while it navigates in the

operating environment. Changes in the flow of sensory patterns according

to a moving average window enable the robot to identify and learn local

environmental configurations such as corners, walls and corridors. This

approach was tested in simulated robots by Lin̊aker and Niklasson (2000)

and was also used to identify the robot’s operating environment (Lin̊aker

and Niklasson, 2001).

The strength of the approaches described above is that they are based

on unsupervised on-line learning, allowing the robot to acquire a model of

normality for the operating environment without human intervention. Nev-

ertheless, a major disadvantage is the use of unreliable low resolution sonar

sensor readings (Crook et al., 2002; Marsland et al., 2000). An additional

drawback concerning the work of Lin̊aker and Niklasson (2000, 2001) is that

only results using simulated robots are presented and discussed.

High resolution sensor input. The noisy low resolution sensory percep-

tions provided by sonars pose serious limitations for real world scenarios. In

real world applications, more reliable sensors are necessary to provide higher

resolution and multi-modal information. The use of artificial vision gives the

extra information needed to operate in situations where distance measure-

ments do not suffice. Cracks, stains or graffiti on walls, for example, cannot

be detected by distance measuring devices and yet constitute important

features to be found in automated inspection or surveillance applications.

Because we are particularly interested in inspection applications, vision is

going to be our sensor modality of choice to perform novelty detection.

Some previous work in novelty detection using visual input and mo-

bile robots was conducted by Marsland, Nehmzow, and Shapiro (2001) and

used to inspect corridors. They have used a wall-following behaviour and

a monochrome camera positioned to acquire close-up images of the wall

being followed. The experimental setup used in this approach implicitly
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constrained the visual input to a very limited field of view and therefore

restricted visual features mostly to the texture of the wall. Because the

camera was positioned to take close-up images, only a small portion of the

wall could be inspected.

A similar approach was employed by Crook and Hayes (2001), who also

used a wall-following robot equipped with a camera that acquired close-

up images of the wall being followed. Although the camera was able to

sense colour, the pre-processing stage selected a particular colour (orange),

effectively resulting in monochrome image sensing. The input space of the

experiments was restricted to a “gallery” of pictures of simple geometric

arrangements. Neither Marsland, Nehmzow, and Shapiro (2001) nor Crook

and Hayes (2001) investigated the performance of different image encoding

procedures thoroughly, using only oversimplified techniques to represent

perceptual stimuli.

Diehl and Hampshire II (2002) have implemented a real-time novelty

detection mechanism for video surveillance using a real mobile robot. Their

method was based on the extraction of monochrome spatial features in

image sequences to represent moving objects. A classifier based on support

vector learning was then trained off-line with examples of moving people

and moving cars, being used later to bring different moving items — such

as bicycles, vans and trucks — to the attention of a human operator. The

human operator was then responsible for labelling the new classes generated

by the novelty filter. Their main objective was to allow the human operator

to provide additional classes of moving items to the model of normality in

order to adapt to contextual changes, while avoiding the process of reviewing

and relabelling large portions of the available data. The update of the model

of normality, however, could only be made off-line.

More recently, a new framework for novelty detection applied to region-

segmented outdoor scenes in video sequences was proposed by Singh and
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Markou (2004). Their approach makes use of a feature-selection mechanism

for a large set of visual features in order to encode segmented image regions

and a feedforward neural network as a classifier. Training of the classifier

was performed using still images and an off-line supervised learning strategy.

The trained classifier was then used to rejected any encoded input that was

not present in the training dataset so that the network could be retrained

off-line. Like in (Diehl and Hampshire II, 2002), their main objective was

to allow the user to append additional classes to the model of normality

without having to relearn all the available data from scratch.

The last two novelty detection methods that were described use unre-

stricted visual input from outdoor environments, opposed to the former ap-

proaches, which used just close-ups of walls. The image encoding procedures

employed in (Diehl and Hampshire II, 2002; Singh and Markou, 2004) are

much more elaborate in order to cope with the various geometrical transfor-

mations that unrestricted visual stimuli are subject to when acquired from

a moving camera. The classifier proposed in (Singh and Markou, 2004)

yielded excellent results. However, off-line supervised training makes the

proposed classifier unattractive to mobile robotics applications in which

continuous on-line learning and adaptation are often desired (e.g. for map

building and navigation in dynamic environments).

This thesis. In this thesis we are interested in performing on-line unsu-

pervised novelty detection using unrestricted visual input acquired from real

robots. Our approach contrasts with the ones mentioned before because it

combines unsupervised continuous learning and colour vision without re-

strictions in the camera’s field of view. Instead of explicit image segmenta-

tion as in (Singh and Markou, 2004), we are interested in using mechanisms

of selective visual attention to generate candidate regions of interest to the

novelty filter. The use of visual attention, which follows a recent trend in

the Computer Vision community, is meant to help tackling the problem of
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geometrical transformations in the input images because of robot motion.

Furthermore, we are interested in qualitatively and quantitatively assessing

the performance of different configurations of image encoding mechanisms

and novelty filters for the inspection of sewer-like environments.

The following sections describe the relevant techniques used throughout

the thesis in two main areas: unsupervised clustering for novelty detection

and mechanisms of visual attention (interest point detectors). Details about

the motivation and use of each of these algorithm in this work will be given

in Chapter 3. Methods regarding image encoding using colour statistics

(which are conceptually simpler than the algorithms about to be presented)

will be described and discussed later in Chapter 4.

2.1 Unsupervised Clustering Mechanisms

Several novelty detection techniques exist in the literature (Marsland, 2003),

which are mostly based on statistical (Markou and Singh, 2003a) or neural

network classifiers (Markou and Singh, 2003b). The usual approach is to

train a classifier with examples of normal data and then use it to filter out

any abnormal perception. Depending on the algorithm being used, learning

can be performed in a supervised or unsupervised manner, either in batch

(off-line) or continuous (on-line) mode.

In this thesis we are interested in unsupervised on-line learning strate-

gies, as we desire to build a model of the robot’s environment from scratch,

with minimal human intervention. We also desire to have the possibility

of continuous adaptation of this model. A natural choice of algorithm for

this task is the Self-Organising Map (SOM) originally proposed by Kohonen

(1984). In fact, many novelty filters proposed in the literature make use of

the SOM (Taylor and McIntyre, 1998; Ypma and Duin, 1997).

A new approach for novelty detection based on a model of habituation

was proposed by Marsland, Nehmzow, and Shapiro (2000). The use of
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habituation, a reversible response reduction to repeated stimuli, allows not

only to detect new perceptions but also to quantify their degree of novelty.

Habituation for novelty detection purposes was initially tested with the

Habituating Self-Organising Map (HSOM) (Marsland et al., 2000) and even-

tually resulted in the development of the Grow-When-Required (GWR) neu-

ral network (Marsland et al., 2002a), which has a constructive architecture

that allows the addition of new concepts to the model as they are presented

during training.

The GWR network was successfully used in mobile robotics with sonar

readings. In contrast to this, here we investigate its capability to work with

visual data. To make this possible, it is necessary to encode the input images

appropriately in order to reduce data dimensionality while preserving the

ability to discriminate between different visual features. The complex task

of image encoding is further discussed in Chapter 3.

2.1.1 The Grow-When-Required Neural Network

The Grow-When-Required network (Marsland et al., 2002a,b), which consti-

tutes the basis of our visual novelty detection framework, is a self-organising

neural network based on the same principles as Kohonen’s Self-Organising

Map (Kohonen, 1984). It is composed of nodes that represent the centres of

clusters (model weight vectors) in input space — every time that an input

is presented, each network node will respond with higher or lower activity

depending on how good its weight vector matches the input vector.

Figure 2.1 shows a schematic representation of the GWR network, which

basically consists of a clustering layer of nodes and a single output node.

The connecting synapses to the output layer are subject to a model of

habituation, which is a reduction in behavioural response to inputs that are

repeatedly presented. In other words, the more a node in the clustering

layer fires, the less efficient its output synapse becomes.
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Multi−dimensional Input Vector

Habituable Synapses

Output Node

Clustering Nodes and
Topological Connections

Figure 2.1: The GWR neural network architecture: A clustering layer responds
to a multi-dimensional input vector using a winner-take-all strategy. The cluster-
ing nodes are connected to the output node through habituable synapses, whose
efficacies decrease with repetitive stimulation. This characteristic enables the
output node to report the degree of novelty for a given input stimulus. The
dotted lines represent topological connections between neighbouring nodes in
the clustering layer.

Learning is performed using a winner-take-all approach, which means

that only the best matching node responds to a given input, inhibiting all

other nodes. The match of the winner node to the given input vector is

then reinforced and, in addition, topological information is used to adapt

neighbouring nodes, although to a lesser extent than the winner. This

learning mechanism is very similar to the one used in the SOM.

What makes the GWR network superior to the SOM is its ability to

add nodes to its structure — hence the name Grow-When-Required — by

identifying new input stimuli through the habituation model. Given an

input vector, both the winner node’s activity and habituation are used to a

determine if a new node should be allocated in order to represent the input

space better.

The habituation rule of a clustering node’s output synaptic efficacy is

given by the following first-order differential equation:



Chapter 2. Related Work and Background 20

τ
dh(t)

dt
= α[h0 − h(t)]− S(t), (2.1)

where h0 is the initial value of the efficacy h(t), S(t) is the external stim-

ulus, τ and α are time constants that control the habituation rate and the

recovery rate, respectively.

Figure 2.2 demonstrates the dynamics of equation 2.1 for a given stim-

ulus S(t). S(t) = 1 causes habituation (reduction in efficacy) and S(t) = 0

causes dishabituation (recovery of efficacy). It is important to mention that

only habituation was modelled in our implementation. Dishabituation was

disabled by setting S(t) = 1.
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Figure 2.2: Habituation and dishabituation: synaptic efficacy decreases while
the stimulus is present (S = 1) and increases when the stimulus is removed
(S = 0). Larger values for τ result in slower rates of change.

The parameter τ influences in how fast habituation occurs, as shown in

Figure 2.2. The curves were plotted using α = 1.05 and h0 = 1, resulting in

efficacy values ranging from approximately 0.05 (meaning complete habit-

uation) to 1 (meaning complete dishabituation). As synaptic efficacy has a

bounded output, it can be used neatly as a measure of the degree of novelty
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for any particular input: higher efficacy values correspond to higher degrees

of novelty.

Because the network grows when required, it is first initialised with two

completely dishabituated nodes (c1 and c2) in its clustering map M :

M = {c1, c2}. (2.2)

The weight vectors for the two initial nodes are suggested to be taken

randomly from the input distribution (Marsland et al., 2002a). Weight

vectors correspond to model input vectors which are stored in the network

nodes to represent acquired concepts.

An alternative, used throughout this thesis, is to initialise them with

the first two input vectors presented to the network. This approach allows

repeatability and fair comparison of results obtained in different experi-

ments. At first there are no topological connections between the nodes and

therefore the connection set C is initialised to the empty set:

C = ∅. (2.3)

Training is done with an unsupervised winner-take-all approach, as men-

tioned before, where the node that best matches the input and its topolog-

ical neighbours have their output synapses habituated using equation 2.1

and their weights adapted as follows.

The match of the input vector x to the weight vector of each node in

the clustering layer is computed using the Euclidean distance:

di = ‖x−wi‖, (2.4)

where wi is the weight vector of node i, with i covering all the existing

nodes in the current map M .

The best matching (winner) node is selected as follows:

s = arg min
i∈M
‖x−wi‖ (2.5)
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and the second best matching node as:

t = arg min
i∈M−{s}

‖x−wi‖. (2.6)

If there is already a connection between nodes s and t, its age is set

to zero (the age of a connection corresponds to how many iterations of the

algorithm have elapsed since the connection was created), otherwise a new

connection is created with age zero:

C = C ∪ {(s, t)}. (2.7)

Activation of the winner node is computed using the following radial

function:

as = exp(−‖x−ws‖2). (2.8)

Both activation and habituation values of the winner node are used to

decide whether a given input is considered novel or not. Every time that

both activation and habituation values are below predefined thresholds aT

and hT , respectively, a new node r is added to the clustering layer:

M = M ∪ {r}. (2.9)

According to the original GWR algorithm, the weight vector wr of the

new node is set to the average between the winner node’s weight vector ws

and the input vector. However, this approach introduces the new node in

a location in input space that does not correspond to a “real” data sample.

An alternative strategy is to set the new weight vector wr to the current

input vector x.

After inserting a new node, it is also necessary to update the network’s

topological connections by removing the link between nodes s and t:

C = C − {(s, t)}, (2.10)
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and by connecting node r to node s and to node t:

C = C ∪ {(r, s), (r, t)}. (2.11)

Cluster centres of the winner node and all of its topological neighbours

are adapted according to the following learning rule:

∆wi = ε(x−wi), (2.12)

where ε is the learning rate for each of the nodes concerned (the winner and

its connected neighbours only).

The implementation of the GWR network training algorithm used in this

thesis is slightly different from the original presented in (Marsland et al.,

2002a), because we have altered the way learning and habituation are ap-

plied to topological neighbours of the winner node. The original approach

used fixed values for parameters ε (equation 2.12) and τ (equation 2.1) for

the neighbour nodes, which were a constant fraction of the winner node’s

parameters. Therefore, ε and τ of the neighbour nodes were completely

independent of the distance between neighbour and winner nodes in input

space. In our approach, we made the learning and habituation rates of the

neighbour nodes (denoted here by εn and τn, respectively) proportional to

the ratio between winner and neighbour nodes activations:

εn =
ηan
as

ε, (2.13)

τn =
as
ηan

τ, (2.14)

where as and an are the activation of the winner and neighbour nodes,

respectively, and η is a proportionality factor (0 < η < 1).

It can be noticed from equation 2.13 that the neighbour nodes will have

their weights adapted to a lesser extent than the winner node, while equa-

tion 2.14 shows that neighbour nodes will habituate in a slower rate than

the winner node. This happens because an < as.
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The final step of the GWR training iteration consists of incrementing

the age of every existing connection and checking for nodes and connections

to be deleted. Nodes that no longer have any neighbours and connections

whose age is greater than a predefined threshold agemax are all removed.

A summary of the operation of the GWR network is given in algorithm 1.

Algorithm 1: GWR network novelty detection

Input: current set of nodes M , current set of connections C, new
input vector x.

Output: updated set of nodes M , updated set of connections C,
novelty indication N .

Find the best and second best matching nodes s and t:1

s = arg min
i∈M
‖x−wi‖, t = arg min

i∈M−{s}
‖x−wi‖, where wi is the weight

vector of the node i.
If there is a connection between s and t, set its age to zero, otherwise2

create it: C = C ∪ {(s, t)}.
Compute the activity of the best matching node:3

as = exp(−‖x−ws‖2).
Test if the activity and habituation values of the best matching node4

characterise novelty:
if as < aT and hs < hT then

Add a new node: M = M ∪ {r}.5

Set the weight vector of the new node: wr = (x + ws)/2.6

Remove the connection between the best and second best7

matching nodes: C = C − {(s, t)}.
Create connections between the new node and the best and8

second best matching nodes: C = C ∪ {(r, s), (r, t)}.
Indicate novelty detected: N = 1.9

end10

else Indicate no novelty detected: N = 0.11

Compute the activity of the best matching node’s neighbours (nodes12

with connections to the best matching node): an = exp(−‖x−wn‖2).
Adapt the positions of the best matching node and its neighbours:13

ws = ws + ε(x−ws), wn = wn + ηan

as
ε(x−wn).

Age connections to the best matching node: age(s,n) = age(s,n) + 1.14

Habituate the best matching node and its neighbours:15

τ dhs(t)
dt

= α[h0 − hs(t)]− S(t), as

ηan
τ dhn(t)

dt
= α[h0 − hn(t)]− S(t).

Remove any nodes without any neighbours.16

Remove any connections with age greater than agemax.17
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2.1.2 Incremental Principal Component Analysis

Principal Component Analysis (PCA) is a very useful tool for dimension-

ality reduction that allows optimal reconstruction of the original data, i.e.

the squared reconstruction error is minimised. It consists of projecting the

input data onto its principal axes — the axes along which variance is max-

imised — and is usually computed off-line because the standard algorithm

requires that all data samples are available a priori, making it unsuitable

for applications that demand on-line learning.

However, a method for the incremental computation of PCA recently in-

troduced by Artač, Jogan, and Leonardis (2002) makes simultaneous learn-

ing and recognition possible. Their technique is an improvement to the

one originally proposed by Hall, Marshall, and Martin (1998) and allows

the original input data to be discarded immediately after the eigenspace is

updated, storing only the reduced dimension projected data.

Standard PCA consists in solving an eigensystem for the covariance

matrix C of normalised input vectors xi ∈ Rm×1, i = 1 . . . n:

CU = UΛ, (2.15)

C =
1

n

n∑
i=1

(xi − µ)(xi − µ)T, (2.16)

where µ = 1
n

∑n
i=1 xi is the mean vector, the columns of U contain the

eigenvectors ui and the diagonal of Λ contains the eigenvalues λi.

A subspace of up to the original m dimensions is spanned by the eigen-

vectors ui, i = 1 . . . n, which correspond to non-zero eigenvalues. However,

for dimensionality reduction purposes, one has the option to select only

eigenvectors corresponding to the k largest eigenvalues to be included in

the eigenmodel. Hence, each input vector xi can be projected to some vec-

tor ai in this k-dimensional subspace spanned by the selected eigenvectors:

ai = UT(xi − µ). (2.17)
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Obviously, the process can be reversed and the input vector can be

reconstructed with minimal squared error:

xi = Uai + µ. (2.18)

For the incremental PCA algorithm proposed in (Hall et al., 1998), it is

assumed that an initial eigenmodel is already available and was computed

using xi, i = 1 . . . n input vectors. The eigenmodel is composed by the

mean vector µ(n), eigenvectors U(n) = [uj], j = 1 . . . k and eigenvalues Λ(n),

where the superscript (n) indicates the current iteration of the algorithm.

When a new input vector xn+1 is available, the set of eigenvectors is

updated by appending a new orthogonal basis vector and then applying a

rotational transformation (Hall et al., 1998):

U(n+1) = U′R, (2.19)

where U′ is the appended eigenvector set and R is the rotation matrix.

The new basis vector to be appended is obtained by projecting the new

input vector in the current eigenspace using equation 2.17 and then com-

puting the residual vector of its reconstruction (see equation 2.18):

r = xn+1 −U(n)an+1 + µ(n). (2.20)

The normalised residual vector is orthogonal to the current eigenspace

and therefore is a natural choice for the new basis vector (Hall et al., 1998):

U′ =

[
U(n) r

‖r‖

]
. (2.21)

The rotational transformation matrix R is obtained by computing the

solution to the following eigenproblem:

DR = RΛ(n+1). (2.22)
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D ∈ R(k+1)×(k+1) is composed as:

D =
n

n+ 1

 Λ(n) 0

0T 0

+
n

(n+ 1)2

 aaT γa

γaT γ2

 , (2.23)

where a = an+1 (computed using equation 2.17), γ = rT(xn+1 − µ) and 0

is a column vector (k × 1) of zeros.

D can be constructed in alternative ways (Chandrasekaran et al., 1997;

Murakami and Vijaya Kumar, 1982), but the method described above is the

only one that also takes into account the update of the mean vector (Hall

et al., 1998):

µ(n+1) =
n

n+ 1
(nµ(n) + xn+1). (2.24)

Updating the mean vector is important to keep track of the centre of the

hyper-ellipsoidal cluster represented by the eigenmodel in the input space.

Approaches that disregard the mean vector consider the centre of the cluster

to be at the origin, which is obviously not always the case.

In order to enable simultaneous on-line learning and recognition, infor-

mation about the original input vectors included in the model need also to

be stored. The contribution made by Artač, Jogan, and Leonardis (2002)

was to develop a method that allows the projected vectors ai, to be stored

and updated, so that the original input vectors xi can be discarded. There-

fore, besides the mean vector µ(n) and eigenvectors U(n), the model also

needs to include an additional matrix A(n) = [ai] of projected vectors.

Adding a new eigenvector to the eigenspace results in increasing the di-

mensionality of the stored projected vectors ai, which must then be updated

as follows:

A′ =

 A(n) a

0 ‖r‖

 . (2.25)
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Instead of solving equations 2.22, 2.23 and 2.24, one can perform stan-

dard PCA on the projected vectors (A′), obtaining a mean vector η and

eigenvector matrix, which corresponds to the desired rotation matrix R

(Skočaj and Leonardis, 2003) to be used for the eigenspace update in equa-

tion 2.19.

Finally, the mean vector and the projected vectors are updated by using:

µ(n+1) = µ(n) + U′η, (2.26)

A(n+1) = U′(A′ − η1), (2.27)

where 1 is a row vector (1× n+ 1) of ones.

The algorithm is made completely incremental by initialising the eigen-

space and projected vectors as follows: µ(1) = x1, U(1) = 0 and A(1) = 0,

where x1 is the first input vector and 0 denotes a column vector (m× 1) of

zeros, m being the dimensionality of the input.

In this thesis we use incremental PCA as an alternative method to the

GWR network to perform on-line novelty detection. The magnitude of the

residual vector — effectively the RMS error between original data and the

reconstruction of its projection onto the current eigenspace — is used to

decide if a given input is novel and therefore should be added to the model.

If the residual vector is above some threshold rT , the corresponding input

vector is not well represented by the current model and therefore must be

a novel input.

A summary of our implementation of the incremental PCA algorithm

as a novelty filter is given in algorithm 2.
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Algorithm 2: Incremental PCA novelty detection

Input: current mean vector µ(n), current eigenvectors U(n), current
projected vectors A(n), new input vector x.

Output: updated mean vector µ(n+1), updated eigenvectors U(n+1),
updated projected vectors A(n+1), novelty indication N .

Compute the projection of the new input vector using the current1

basis: a = U(n)T(x− µ(n)).
Compute the reconstruction of the new input vector:2

y = U(n)a + µ(n).
Compute the residual vector (orthogonal to U(n)): r = x− y.3

Test if the magnitude of the residual vector is large enough to4

characterise novelty:
if ‖r‖ > rT then

Append residual vector as a new basis vector: U′ =
[

U(n) r
‖r‖

]
.5

Append projected vector: A′ =

[
A(n) a

0 ‖r‖

]
.

6

Perform batch PCA on A′, obtaining its mean vector η and7

eigenvectors R.
Update projected vectors using the new basis:8

A(n+1) = U′(A′ − η11×n+1).
Update eigenvectors: U(n+1) = U′R.9

Update mean vector: µ(n+1) = µ(n) + U′η.10

Indicate novelty detected: N = 1.11

end12

else Indicate no novelty detected: N = 0.13

2.2 Mechanisms of Visual Attention

Applications that demand real-time processing of large amounts of sensory

data, such as vision, using the limited computational resources available

to a mobile robot are often challenging. Generally it is not desirable to

process the entire image frame delivered by the camera, even when using

relatively low resolution, due to processing time constraints. A natural so-

lution to cope with massive amounts of input stimuli is to use a mechanism

of attention to select aspects of interest and concentrate the available com-

putational resources on those. Selective attention is widely used in this

manner in biological vision systems (Itti and Koch, 2001).
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Furthermore, images acquired from a moving robot are subject to sev-

eral transformations, such as translations, rotations, affine transformations,

changes in scale and changes in illumination. Therefore, it is necessary to

use encoding mechanisms that are able to generalise and cope with such

transformations.

In the past few years many approaches for the selection of interest points

were proposed, most of them being bottom-up approaches based on multi-

scale pyramidal structures (Burt and Adelson, 1983; Crowley et al., 2002;

Greenspan et al., 1994; Lindeberg, 1998; Simoncelli and Werman, 1995).

These approaches demonstrate invariance or at least some degree of ro-

bustness to many of the aforementioned transformations. One of the most

interesting approaches to select points of attention in an image builds a

saliency map from different visual features.

The saliency map model for visual attention was proposed by Itti, Koch,

and Niebur (1998) and is inspired by the neural architecture of the early

primate visual system. Their model combines different modalities of visual

features (basically intensity, colour and orientation) at different scales and

is in agreement with the Feature-integration Theory of Attention (Treisman

and Gelade, 1980). Interest points detected using the saliency map approach

were successfully used in a number of applications, including multi-foveated

MPEG compression (Dhavale and Itti, 2003) and object recognition (Naval-

pakkam and Itti, 2003).

In the context of visual novelty detection, the saliency map model is of

particular interest. The algorithm that computes the saliency map uses a

specially designed normalisation operator for each individual feature modal-

ity (i.e. intensity, colour and orientation), which renders unusual features

more salient than common features in the scope of the image frame. This

ability to localise the most unusual visual features in the input image is very

useful for the pre-selection of candidate novel regions to be classified later
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by a novelty filter, as we shall demonstrate later in our experiments (Chap-

ters 4, 5 and 6). More details about the saliency map and its normalisation

operator will be discussed in Subsection 2.2.1.

The use of a salient point detector to select local regions of the input im-

age to be processed by the novelty filter also has the advantage to determine

where the novel features are in the image frame, as opposed to processing

the entire image frame in a global fashion, which only allows to determine

which image frame contains novelty. Moreover, the use of multi-scale salient

points to characterise regions of interest helps the system to cope with ge-

ometrical transformations that happen in images acquired from a moving

platform. Perhaps the most obvious advantage is that salient points are

stable in scale-space and therefore are invariant to image translation and

scaling due to robot motion. Hence, the candidate regions selected by the

saliency map are not affected by translations and can be made robust to

changes in scale.

There are also many other interest point detector algorithms in the lit-

erature that are useful for the purposes of selecting candidate regions in

the input image (Ferreira and Borges, 2004; Harris and Stephens, 1988;

Kadir and Brady, 2003; Kadir et al., 2004; Mikolajczyk and Schmid, 2001,

2002, 2004; Shi and Tomasi, 1994). Among the best-known is the Harris

detector (Harris and Stephens, 1988), which was extended by Mikolajczyk

and Schmid (2001) to a multi-scale version. The multi-scale Harris detector

offers invariance to translation and scaling, and eventually led to the de-

velopment of the the Harris-affine detector (Mikolajczyk and Schmid, 2002,

2004), which also offers additional invariance to affine transformations.

The multi-scale Harris detector is based on the search for extrema in

scale-space, which is a set of images at different resolutions created by con-

volution with the Gaussian kernel (a Gaussian pyramid). The main ad-

vantage of this approach is the fact that it allows automatic scale selection
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for the region of interest. Furthermore, it can be implemented in a very

efficient way. This interest point detector has been used as part of the Scale

Invariant Feature Transform (SIFT) (Lowe, 1998, 2004), a very successful

algorithm for object recognition.

In this thesis we concentrate on the use of the saliency map and the

multi-scale Harris detector as mechanisms of visual attention, mainly be-

cause they both consist of multi-scale approaches that can be efficiently

implemented for real-time operation. Here we exploit their ability to pro-

vide interest points that are invariant to translation and scaling and we also

investigate their suitability for the automatic scale selection of regions of

interest (see experiments in Chapter 6).

A detailed description of the scale-space models for visual attention that

were implemented and used in this thesis is given next.

2.2.1 The Saliency Map

The simplified architecture for the computation of the saliency map model

(Itti et al., 1998), which consists in the construction and combination of

multi-scale feature maps that allow the detection of local variations in in-

tensity, colour and orientation, is presented in Figure 2.3

The feature maps (intensity, colour and orientation) are computed from

Gaussian and Gabor pyramids (Greenspan et al., 1994), which are obtained

by successive filtering and subsampling of the input image. The number of

levels of these pyramids is limited by the dimensions (width and height in

pixels) of the input image, because of the successive subsampling procedure.

Basically, the maximum number of subsampling steps, which corresponds

to the maximum number of pyramid levels, depends on the dimensions of

the image.

Clearly, resolution of the input image defines how well the saliency map

is able to detect fine details. However, the higher is the resolution of the



Chapter 2. Related Work and Background 33

Linear Filtering and Subsampling

Centre−surround Differences and Normalisation

Input Image

Colours

Maximum Detection Inhibition

Salient Location

Linear Combination

Intensity Orientations

Across−scale Combinations and Normalisation

Image
Raw

Pyramids
Feature

Maps
Conspicuity

Map
Saliency

Maps
Feature

Figure 2.3: The saliency map model architecture: Multi-scale image pyramids
are constructed from intensity, colour and orientation features of the input
image. Centre-surround differences are computed from the image pyramids to
yield feature maps, which are then combined and normalised into a final saliency
map.

image, the longer it takes to build the pyramids, compute feature maps and

the final saliency map. Therefore, the final number of levels to be used is

a trade-off between the desired sensitivity to fine details and the available

time to compute the algorithm. In the experiments reported in this thesis

(Chapters 4, 5 and 6), five pyramid levels were used with reduction factors

ranging from 1:1 (scale 0) to 1:16 (scale 4).
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The first step in the extraction of early visual features is to obtain an in-

tensity channel (I) from the original red (r), green (g) and blue (b) channels

of the input image:

I =
r + g + b

3
. (2.28)

After that, intensity normalised channels r̂, ĝ and b̂ are computed in

order to decouple hue from intensity, but only at those locations where I is

larger than 1/10 of the maximum intensity (Imax):

r̂ =

 r/I if I > Imax/10,

0 otherwise
(2.29)

ĝ =

 g/I if I > Imax/10,

0 otherwise
(2.30)

b̂ =

 b/I if I > Imax/10.

0 otherwise
(2.31)

Four broadly tuned colour channels for red (R), green (G), blue (B) and

yellow (Y ) are then computed using the following equations:

R = max{0, r̂ − (ĝ + b̂)/2}, (2.32)

G = max{0, ĝ − (r̂ + b̂)/2}, (2.33)

B = max{0, b̂− (r̂ + ĝ)/2}, (2.34)

Y = max{0,−2(B + |r̂ − ĝ|)}. (2.35)

The intensity channel I and the broadly tuned colour channels R, G,

B and Y are used to construct the Gaussian pyramids I(σ), R(σ), G(σ),

B(σ) and Y (σ), respectively. I is also used to construct oriented Gabor

pyramids O(σ, θ) in the same way as described in (Greenspan et al., 1994).

An alternative method to perform fast oriented Gabor filtering is to use
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recursive filtering (Young et al., 2000). In our experiments, we used five

scales (σ ∈ {0 . . . 4}), as already mentioned, and four orientations (θ ∈

{0◦, 45◦, 90◦, 135◦}). The four oriented Gabor filters at steps of 45◦ span

the 360◦ of orientation space with more than 99% accuracy, as shown by

Greenspan et al. (1994).

Centre-surround linear operations similar to receptive fields found in

neurons along the visual pathway of mammals are used to obtain the feature

maps and are implemented as the difference between a fine centre scale and a

coarser surround scale. Across-scale difference (denoted by	) is obtained by

bilinear interpolation from the coarse scale to the fine scale and subsequent

pixelwise subtraction. In our implementation, the centre consists of pixels

at scale c ∈ {1, 2} and the surround of the corresponding pixels at scale

s = c+ 2, as shown in Figure 2.4.

Pixelwise
subtraction

Level c=s+2

Level s

σ

Bilinear interpolation

x

y

Figure 2.4: The pyramidal across-scale difference 	: the coarse scale c is in-
terpolated to the fine scale s, followed by pixelwise subtraction. Interpolated
pixels in the coarse scale are shown in grey.

The first type of feature map is related to intensity contrast, detected by

neurons sensitive to bright centres and dark surrounds or vice-versa. Both

types of sensitivity are simultaneously obtained by the use of rectification:

I(c, s) = |I(c)	 I(s)|. (2.36)
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The second type of feature map accounts for colour double-opponency,

which is detected by neurons whose centres are excited by one colour and

inhibited by another, while the opposite excitation relationship holds for

the surrounds. Therefore colour feature maps are computed for red/green

and blue/yellow double-opponent pairs as follows:

RG(c, s) = |(R(c)−G(c))	 (G(s)−R(s))|, (2.37)

BY(c, s) = |(B(c)− Y (c))	 (Y (s)−B(s))|. (2.38)

Finally, the third type of feature map is concerned with local orientation

contrast between centre and surround scales. They are computed separately

for every orientation, as shown below:

O(c, s, θ) = |O(c, θ)	O(s, θ)|. (2.39)

In order to combine feature maps with different dynamic ranges into a

single saliency map it is necessary to use a normalisation operator N (.),

otherwise salient features that are strongly present in a few maps may be

masked by noise or less salient features that appear more frequently. This

normalisation operator ultimately results in giving more weight to unusual

features in the input image frame and therefore makes the saliency map an

excellent choice for the task of selecting candidate regions to be processed

by a novelty filter, as discussed before.

The original normalisation operator suggested in (Itti et al., 1998) in-

volves searching feature maps for local maxima. However, in our implemen-

tation we have used a simpler way of normalising feature maps that yields

comparable results: first we subtract the average value from the feature

map F ; then, we divide the resulting zero-mean feature map F0 by its vec-

tor norm ‖F0‖; and finally we take the absolute value of the result. This

form of normalisation derives from the colour angular encoding technique

described in Subsection 4.3.
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The feature maps are combined in three conspicuity maps at scale σ = 2,

one for each feature: intensity Ī, colour C̄ and orientation Ō. The conspicu-

ity maps are obtained by computing across-scale addition (denoted by ⊕),

which consists of resampling each feature map to scale 2 and subsequent

pixelwise addition:

Ī =
2⊕
c=1

N (I(c, s)), (2.40)

C̄ =
2⊕
c=1

[N (RG(c, s)) +N (BY(c, s))], (2.41)

Ō =
∑

θ∈{0◦,45◦,90◦,135◦}

N

(
2⊕
c=1

N (O(c, s, θ))

)
. (2.42)

Finally, the three conspicuity maps are normalised and added to yield

the final saliency map S:

S = N (Ī) +N (C̄) +N (Ō). (2.43)

Biasing the saliency map. It should be noted that the final saliency

map can be biased by giving a higher weight for any particular feature in

equation 2.43 (intensity, colour or orientation). By doing this, one can easily

render colour features more salient than intensity or orientation features,

for example. More weight can also be given to a particular scale and/or

orientation in equations 2.40, 2.41 and 2.42. This is an important point

because it makes possible to use top-down biasing (Itti and Koch, 1999) if

some a priori information is available about the features of interest for a

given application. For instance, if it is known beforehand that blue vertical

lines are important to be detected in a certain inspection task, the saliency

map can be easily biased and give more weight to the relevant feature maps

(blue-yellow opponent colour and 90◦ orientation). The saliency map ar-

chitecture also offers flexibility to be extended in order to include other

visual features, such as flicker and motion (Dhavale and Itti, 2003), if the
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application requires so.

The highest values in the saliency map correspond to the most salient

locations within the input image, which can also be ranked according to

their values. We use this information to select regions where further analysis

should be performed (classification by the novelty filter, in our case). After

that, we inhibit a circular region of the saliency map centred around the

current location (by setting saliency values to zero) and search for the next

most salient region to be analysed. This process is repeated until a desired

number of salient locations is reached.

Location of interest points determined using the saliency map have

shown to be robust to geometric transformations, which contributes to the

desired general robustness of the image encoding mechanism. In our ex-

periments we have used the nine highest saliency values to indicate which

locations of the image are likely to be the most interesting so that further

processing for feature encoding could be done in their vicinity.

2.2.2 The Multi-scale Harris Detector

An alternative attention mechanism to the saliency map is the multi-scale

Harris detector (Lowe, 2004; Mikolajczyk and Schmid, 2001), which is based

on the search for extrema in scale-space (Lindeberg, 1998). A fast and ef-

ficient algorithm to build a scale-space representation (a Laplacian image

pyramid) was proposed by Crowley, Riff, and Piater (2002) and was used

in our implementation. In this algorithm, half-octave pyramids are con-

structed by successive Gaussian filtering, subsampling and subtraction, as

shown in Figure 2.5.

The half-octave pyramid algorithm builds simultaneously a Gaussian

pyramid and a Difference-of-Gaussian (Laplacian) pyramid through the sub-

traction of adjacent Gaussian levels before subsampling. Filtering is per-

formed by convolution with separable binomial Gaussian kernels, resulting
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Figure 2.5: The half-octave pyramid construction scheme: The input image
is successively Gaussian filtered and subsampled to yield a Gaussian pyramid.
Subtraction of adjacent levels of the Gaussian pyramid also yields a Difference-of
Gaussian (Laplacian) pyramid.

in a Gaussian pyramid with a scale factor of
√

2 (Crowley et al., 2002). As

in the case of the saliency map model, the half-octave pyramid may be built

with as many levels as the dimensions of the input image allow (because of

the limit imposed by subsampling). More levels result in more resolution in
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scale but also mean more processing time. In our implementation, pyramids

of ten levels (five octaves) were used.

After the scale-space representation is built, search for extrema occurs

in the Difference-of-Gaussian pyramid. In order to do that, each candidate

pixel is compared to its eight neighbours in the same pyramid level and its

eighteen neighbours in the levels above and below, as shown in Figure 2.6.

The computational cost of this operation is relatively low because most

candidate pixels are eliminated within the first few comparisons. It should

be noted that depending on which pyramid level is being searched, either

the level above has to be subsampled (decimated as in Figure 2.6a) or the

level below has to be upsampled (interpolated as in Figure 2.6b) to the

same image size of the current level so that pixelwise comparisons can be

properly made.

Once an interest point candidate has been found by comparing its pixel

value to its neighbours it is necessary to determine its accurate location

in scale-space by fitting a three-dimensional quadratic function (a second

order Taylor expansion) to the neighbouring samples. According to Lowe

(2004), the interpolated location provides a substantial improvement to sta-

bility and allows low contrast points to be rejected. The ratio of principal

curvatures also makes possible to discard locations poorly localised along

edges.

In order to interpolate the location of extrema, their offsets in scale

(ŝ) and in space (x̂, ŷ) are computed by equations 2.44, 2.45 and 2.46,

respectively:

ŝ = − fs
fss

=
f(x, y, s− 1)− f(x, y, s+ 1)

2[f(x, y, s+ 1)− 2f(x, y, s) + f(x, y, s− 1)]
, (2.44)

x̂ = − fx
fxx

=
f(x− 1, y, s)− f(x+ 1, y, s)

2[f(x+ 1, y, s)− 2f(x, y, s) + f(x− 1, y, s)]
, (2.45)

ŷ = − fy
fyy

=
f(x, y − 1, s)− f(x, y + 1, s)

2[f(x, y + 1, s)− 2f(x, y, s) + f(x, y − 1, s)]
, (2.46)
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where fs, fx and fy are the first partial derivatives of the scale-space function

f with respect to s, x and y, respectively; fss, fxx and fyy are the second

partial derivatives; s and (x, y) are the coordinates in scale and space,

respectively. The final coordinates of the interpolated location are given by

s+ ŝ and (x+ x̂, y + ŷ).

comparisons
Pixelwise

comparisons
Pixelwise

s

y

x

Bilinear Interpolation

Level s (odd)

Level s+1

Level s−1

(a)

comparisons
Pixelwise

comparisons
Pixelwise

s

y

Level s (even)

Decimation

x

Level s−1

Level s+1

(b)

Figure 2.6: Search for extrema in scale-space: (a) in odd-numbered levels, the
level above needs to be interpolated; (b) in even-numbered levels, the level
below needs to be decimated. Pixels that are interpolated in (a) or decimated
in (b) are shown in grey. The current pixel in the search (denoted by ×) is
compared to all of its neighbours in scale-space (denoted by ◦).
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The scale-space function value at the interpolated location is calculated

using the following equation:

fi = f + fsŝ+ fxx̂+ fyŷ. (2.47)

In our implementation, this information is then used to reject any ex-

trema with |fi| < 0.02 (assuming normalised values in the range [0,1]). For

stability, however, it is not enough to discard points with low contrast be-

cause the Difference-of-Gaussian function has strong responses along edges,

even if localisation is poor and unstable due to noise (Lowe, 2004). Poorly

defined extrema have a large principal curvature across the edge but a small

curvature in its perpendicular direction.

The spatial principal curvatures at a location in scale-space can be com-

puted from a 2× 2 Hessian matrix:

H =

 fxx fxy

fxy fyy

 . (2.48)

The eigenvalues of H are proportional to the desired principal curva-

tures, but according to Harris and Stephens (1988) they do not need to be

explicitly computed — obtaining their ratio is sufficient. If we let α and β

be the larger and smaller curvature eigenvalues, their sum and product can

be computed from the trace and the determinant of H, respectively:

Tr(H) = fxx + fyy = α + β, (2.49)

Det(H) = fxxfyy − (fxy)
2 = αβ. (2.50)

Defining r as the ratio between the largest and smaller eigenvalues (α =

rβ) gives the following relation:

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
. (2.51)
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Therefore to verify if the ratio of principal curvatures is below some

threshold r, all that needs to be done is verify the following condition (a

threshold value of r = 4 was used in our implementation for the experiments

in Chapter 6):

Tr(H)2

Det(H)
<

(r + 1)2

r
. (2.52)

As it occurs with the saliency map model, the multi-scale Harris detector

finds stable salient locations within the input image frame. However, the

multi-scale Harris detector uses a mathematically well-defined mechanism

that gives preference to edges with high curvature (corners). An additional

functionality of the multi-scale Harris detector is that it can also provide

information about the approximate scale (size) of the visual features in

the vicinity of detected interest points by using a technique proposed by

Lindeberg (1998). Information about size is valuable to the design of scale-

invariant image encoding, as the experiments in Chapter 6 will show.

The next chapter discusses how the on-line clustering algorithms and vi-

sual attention mechanisms described here fit in our experimental framework

for the investigation of visual novelty detection.



Chapter 3

An Experimental Framework

for Visual Novelty Detection

The challenge in this project is to interface visual data to a known nov-

elty detection technique which has been employed to classify robot per-

ceptions using another sensor modality: distance readings obtained from

sonars (Marsland et al., 2002b). Although novelty detection using sonar

sensing proved to be useful to detect open doors in corridors (Marsland

et al., 2000) and even to identify in which corridor the robot was operating

(Marsland et al., 2002a), its very low resolution (a robot’s sonar ring is typ-

ically composed of a small number of sensors) and unreliable noisy readings

pose serious limitations to more demanding real world applications. For

example, it would be impossible to detect small cracks in a wall by using

sonar sensors alone.

Vision, on the other hand, provides detailed information about the en-

vironment in high resolution. Colour, texture and shape are the most obvi-

ous visual features, but more elaborate processing can provide information

about size, pose, motion and even distance to visual objects. Of course,

all of these come at the expense of large amounts of data to be processed,

which constitutes a difficulty when one desires real-time operation.

44



Chapter 3. An Exp. Framework for Visual Novelty Detection 45

Fortunately, the massive information provided by a vision sensor is

highly redundant and therefore can be compressed prior to higher levels

of processing. Selecting which aspects of the visual data are the most rele-

vant, however, is not a straightforward procedure and usually is dependant

on the application. Visual novelty depends on the multi-modal measures

of the properties from the environment that the camera provides the robot

with — some visual feature can be considered novel because of its colour,

texture, shape, size, pose, motion or any combination of these and even

other visual features — a much more complex case than the one of single

mode sensors like sonars. Because multi-modal vision is very difficult to be

accomplished in a mobile robot with limited resources, in this work we had

to decide which visual features were the most important to define novelty

in our application domain.

The primary application we had in mind was environment inspection.

An example of such an application is sewer inspection, which is currently

done by an operator watching video footage in search for cracks and tree

roots inside the sewer pipes. This is obviously a very tiring and error-prone

task that would benefit enormously from an autonomous mobile robot able

to pre-select potential problems — perceptions that differ from perceptions

experienced in fault-free sewer pipes — to the attention of the operator.

In the context of an environment such as the inside of a sewer pipe, the

visual novelties we are interested in are static (they do not move). Never-

theless, the sewer is a dynamic environment in the sense that new visual

features that correspond to faults — cracks and tree roots, for instance —

may appear at any time, hence the need of regular inspections. For this

type of application, higher level visual interpretations (such as the concepts

of size, pose or motion) are not as important as low level features that char-

acterise the essential appearance of visual objects. Therefore, we limited

the visual features of interest in this work to colour, texture and shape.
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Besides characterising novelty by visual appearance, spatial location of

novel visual features in the environment is also important. Therefore, we

are interested not only in detecting which features constitute potential faults

but also where they are in the environment. Changes in location of visual

features may also constitute novelty and are relevant in some application

domains (automated surveillance, for instance). However, in the scope of

this work we will not consider the location of a visual feature to be con-

textually important to determine novelty. In other words, it will not be

possible to consider some visual feature as novel based solely on its location

in the environment.

Another difficulty related to visual novelty detection using a mobile

robot concerns invariance to image transformations. Because the images

are acquired from a moving platform, visual features are subject to several

geometric transformations and it is undesirable that known visual features

happen to be labelled as novel just because there were changes in appear-

ance due to robot movement (e.g. changes in perspective). Hence, the image

encoding procedure should offer robustness to small geometrical transfor-

mations that result from robot motion.

All of these issues have an impact in the way to represent visual informa-

tion so that it can be adequately processed by the novelty filters described

in Section 2.1. The choice of image encoding also has great influence in the

system’s ability to generalise. This issue is important because if the learning

mechanism generalises too much it will hardly ever detect any novelties. On

the other hand, too little generalisation would result in frequent erroneous

novelty detection.

A minimal configuration for a visual novelty detection system is given

in the block diagram in Figure 3.1, in which the raw image acquired by the

camera is globally encoded to generate a feature vector to be fed to the

novelty filter, which is basically an unsupervised clustering mechanism.
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Colour Camera

Raw Image

Environment

Indication of Novelty

Image Encoding

Novelty Filter

Feature Vector

Figure 3.1: Global visual novelty detection framework: the entire image frame
is encoded and the resulting feature vector is classified by the novelty filter.

The role of the image encoding stage is important for the correct func-

tioning of the whole visual novelty detection system because the novelty

filter itself is just a classifier whose performance depends on how different

are the classes generated during image encoding. This is the classic problem

of minimising intra-class distances while maximising extra-class distances

for classification. Therefore, the main objective of the image encoding stage

is to reduce data dimensionality while preserving the ability to discriminate

between different classes of features.

In the case of the minimal configuration depicted in Figure 3.1, a global

approach is used to encode image information. This global encoding method

needs to be robust to the geometrical transformations due to robot motion.

In Chapter 4 we report the results of experiments conducted with the min-

imal configuration using image statistics to encode features (among the

choices of features available, we initially opted to use colour alone) to be

fed to a novelty filter based on the GWR neural network. Because statis-

tical measurements of image properties generally do not take into account

the positions of pixels, they offer many interesting properties concerning ro-

bustness to geometrical transformations (translations and rotations), partial

occlusions and even deformations in flexible objects (Mel, 1997).

The use of a global image encoding procedure enables the novelty filter
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to identify which input image frames contain novel visual features. However,

if one desires to determine where these novel features are localised within the

input frame, further encoding and processing of local details in the frame

are necessary.

In order to be able to localise novel features within the image frame, we

decided to get inspiration from biological vision systems and use a mecha-

nism of attention. This way, smaller image regions, selected by the visual

attention mechanism from the input image, can be encoded as feature vec-

tors. Figure 3.2 depicts the block diagram of such an approach, in which

the image encoding stage is preceded by the attention mechanism. Instead

of a single feature vector for the whole frame, several feature vectors are

encoded per image frame using the vicinity of salient image points. Salient

or interest points normally correspond to places with high information con-

tents, i.e. strong peaks, edges or corners, depending on the criteria for their

selection (see Section 2.2).

By selecting interest regions that are salient according to some criteria

we reduce the dimensionality of the data to be processed by the novelty fil-

Colour Camera

Selective Attention

Image Encoding

Novelty Filter

Feature Vectors

Salient Regions

Raw Image

Environment

Indication of Novelty

Figure 3.2: Local visual novelty detection framework: an attention mechanism
selects patches from the image frame, which are then encoded and classified by
the novelty filter.
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ter and also gain robustness to some geometrical transformations, notably

translations within the image frame due to the robot’s movement. Further-

more, novel visual features can be immediately localised within the input

image frame with the use of local encoding of salient regions.

If the attention mechanism is able to provide reasonably stable interest

points, one can make use of more specific image encoding mechanisms that

incorporate not only colour, but also texture and structural information.

For example, the relative position of pixels plays an important role when

using raw image data — hence the importance of stable and accurate interest

points to minimise misalignment of image regions when comparing them.

Experiments with raw image patches extracted from salient locations

within the input image frame are reported and discussed in Chapter 5, where

we also compare performances of novelty filters based on the GWR neural

network and incremental PCA. There is hardly any other visual representa-

tion more specific than raw image patches, therefore all the generalisation

in these experiments is left to the learning mechanism used as novelty filter.

A nice side-effect, though, is that the use of raw image patches allows visual

feedback of the knowledge acquired during training.

The influence of the attention mechanism on the overall system perfor-

mance is investigated in Chapter 6, where issues related to scaling are also

discussed. The attention mechanisms reported in this work use multi-scale

representations (Gaussian and Laplacian pyramids) to identify salient loca-

tions in space and scale. We compare different strategies to select interest

points and discuss their advantages and disadvantages, also pointing out

alternative methods.

3.1 Experimental Setup

In order to evaluate the ability of the proposed framework to detect novel vi-

sual features that may appear in the robot’s normal operating environment,
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we devised and conducted experiments in controlled scenarios. Every ex-

periment consisted of two stages: an exploration (learning) phase, in which

the robot was used to acquire a model of normality of the environment,

followed by an inspection (application) phase, in which the acquired model

was then used to highlight any abnormal perceptions in the environment.

During the learning phase, images were acquired while the robot was

navigating around a “baseline” environment (usually an empty arena or

corridor). These images were processed to generate input feature vectors

and train the novelty filter. After that, during the application phase, novel

objects were placed in the environment so that a new sequence of images

could be acquired and used to test the trained novelty filter.

The expected outcome of these experiments was that the amount of nov-

elty detected would continuously decrease during exploration as a result of

learning. During the inspection phase we expected that peaks in the nov-

elty measure would appear in areas where a new object had been placed.

This hypothesis was tested using a real robot navigating in engineered (lab-

oratory) and medium-scale real world environments. Figure 3.3 shows the

experimental setup used for the laboratory experiments.

The colour vision system of Radix, the Magellan Pro robot (iRobot Cor-

poration, 2001) shown in Figure 3.3a was used to generate visual stimuli

while navigating in the environment. The robot is equipped with standard

sonar, infra-red and tactile sensors, and also with an additional laser range

scanner whose readings were used for controlling the navigation behaviour.

Radix operates autonomously, thanks to on-board batteries and computer

(850MHz Pentium III processor, 128MB RAM) running Linux. The control

software was implemented in C++ (Eckel, 2000; Horstmann, 1996) using

iRobot’s Mobility Robot Integration Software libraries (iRobot Corporation,

2002) and Robert Davies’ Newmat library for matrix operations (Davies,

2002).
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Figure 3.3: Experimental setup: (a) Magellan Pro mobile robot; (b) top view
of a typical operating environment, delimited by cardboard boxes shown as
rectangles. The robot is represented by a circle with a line that indicates the
front.

The robot’s on-board computer was capable of processing on-line up to

eight frames per second when running our control software, which was opti-

mised for speed. Nevertheless, the images used in the experiments reported

here were acquired at one frame per second (without stopping the robot)

for off-line processing. This procedure was chosen in order to allow fair

performance comparisons between different image encoding techniques and

novelty detection mechanisms by using the same datasets.

Figure 3.3b also shows the top view of the engineered environment used

in most of the laboratory experiments, a square arena delimited by card-

board boxes in whose corners (numbered from 1 to 4) novel objects were

introduced. The cardboard boxes at the borders of the arena acted as walls

(approximately 0.5m high) that limited the robot’s trajectory and also its

visual world. With the sole intention of obtaining a completely controlled

visual world for the experiments, the images were acquired with the robot’s

camera tilted down to −25◦, so that the field of view was constrained to the

arena’s walls and floor.
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3.2 Navigation Behaviour

A simple obstacle-avoidance algorithm using the robot’s laser range scanner

measurements was used as the navigation behaviour for the robot. A force-

field strategy was used, in which every distance measure covering 90◦ in

front of the robot was weighted to act as a virtual spring that pushed

the trajectory to the freest space in the environment. The robot’s motion

control was governed by translational and rotational velocities.

The translational velocity vt (in m/s) was given by:

vt =


vt,nom if min

π/4≤θ≤3π/4
(dθ sin θ) > dmin

0 otherwise,

(3.1)

where vt,nom = 0.15m/s is the nominal translational velocity, dmin = 0.5m

is the minimum distance allowed to an obstacle and dθ is the distance read

by the laser range scanner in the direction of θ (ranging from 45◦ to 135◦,

the 90◦ corresponding to the front of the robot).

The rotational velocity vr (in rad/s) was given by:

vr =
n

kr

3π/4∑
θ=π/4

cosθ

dθ
, limited to the interval [−vr,max, vr,max], (3.2)

where n is the number of iterations since the robot last moved forward

(n = 1 if the robot is moving forward; n is incremented every time the

condition in equation 3.1 repeatedly results in vt = 0), kr = 100 is an em-

pirical gain constant that allows smooth turning and vr,max is the maximum

rotational velocity allowed, set to 35◦/s. A negative value for vr results in

clockwise rotation.

Basically, the robot slowly moved forward at 0.15m/s (vt,nom) until it

found an obstacle within a threshold distance of 0.5m (dmin), which caused

it to stop and rotate at a maximum speed of 35◦/s (vr,max) towards free space

again. In our experiments, this behaviour has shown to be very predictable

and stable, as will be shown later in Section 5.5.
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3.3 Assessment of Results

Qualitative and quantitative assessment tools were devised to analyse the

performance of different arrangements of the proposed framework (attention

mechanism, image encoding and novelty filter) as well as changes in other

factors such as the robot’s trajectory. These assessment tools are very

important in order to establish a reference for comparisons and therefore

determine which of the studied methods perform better according to the

desired application.

Qualitative assessment. In the following chapters we use bar graphs

in which novelty measurements provided by the novelty filter are plotted

against time. They are used in order to obtain a qualitative indication

of performance, in a similar fashion to (Marsland et al., 2002a). In these

graphs, time essentially corresponds to a certain position and orientation of

the robot in the environment because the navigation behaviour used in the

experiments was highly repeatable (see Section 5.5 for details).

As discussed before, during the learning phase of an experiment, the

measure of novelty was expected to decline over time as the robot repeatedly

explored its environment and progressively acquired a model to represent it.

The efficiency of learning during the exploration phase can be graphically

assessed through inspection of the qualitative novelty graphs in multiple

rounds. For instance, by inspecting the novelty graphs for the exploration

phase, one can determine how fast learning occurred and also assess if the

amount of learning was adequate for the acquisition of an environmental

model of normality.

During the inspection phase, a new object was introduced in the nor-

mal environment in order to test the system’s ability to highlight abnor-

mal perceptions. The measure of novelty was expected to be high only in

places where the new object could be sensed, an expectation that should be
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reflected in the novelty graphs obtained. The inspection phase of experi-

ments was also carried out in multiple rounds (usually five) with the learning

mechanism disabled, so that unusual features in the environment were high-

lighted every time that they were perceived. Hence, the consistency of a

novel feature being detected in a particular location of the environment but

in different inspection rounds can also be evaluated using our qualitative

assessment scheme.

Quantitative assessment. The off-line processing of image frames ac-

quired with the robot in exploration and inspection phases also allows a

quantitative assessment and fair performance comparison between different

approaches through the use of the same datasets. For that, we manually

generated ground truth in the form of a binary image for each input image

where the novel object was present. In these binary images, the pixels corre-

sponding to the novel object were highlighted (see an example in Figure 3.4,

where the novel object present in the image is an orange football).

(a) (b)

Figure 3.4: Example of a typical input image containing a novel object (an
orange football) and its corresponding ground truth novelty template.

Using the ground truth information, contingency tables were built re-

lating system response to actual novelty status, as shown in Table 3.1. If a

given region of the input image has a minimum percentage of highlighted

pixels (10% was used in all experiments reported here) in the corresponding

region of its respective ground truth template, then this region’s novelty sta-
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tus is considered as “novelty present”. In this case, if the system response

is “novelty detected” this configures true novelty and therefore entry A in

the contingency table shown in Table 3.1 is incremented; otherwise, if the

system response is “novelty not detected”, this would configure a missed

novelty with entry B being incremented. On the other hand, if the novelty

status of a given image region is considered as “novelty not present” (less

than 10% of highlighted pixels in the corresponding ground truth region)

and nevertheless the system responds as “novelty detected”, this configures

detection of a false novelty and causes entry C to be incremented. Finally, if

the system response agrees with the novelty status by attributing “novelty

not detected” to a region whose novelty status is “novelty not present”, this

represents true non-novelty and entry D is incremented.

Table 3.1: Contingency table for the quantitative assessment of novelty filters.

Novelty Novelty
Detected Not Detected

Novelty
Present

A B

Novelty
Not Present

C D

An ideal association between system response and actual novelty sta-

tus would have a contingency table in which values B and C in Table 3.1

are zero, while values A and D have non-zero values (in practice, A will

be small in comparison to D as usually there are few examples of novel

features in the inspected environment). The statistical significance of the

association between the actual novelty status (ground truth) and the nov-

elty filter response can be tested using the χ2 analysis (Nehmzow, 2003;

Sachs, 2004). For the 2 × 2 contingency table shown in Table 3.1, the χ2

statistic is computed using:

χ2 =
N(AD −BC)2

(A+ C)(C +D)(A+B)(B +D)
, (3.3)

where N = A+B + C +D is the total number of samples in the table.
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If χ2 > 3.84 there is a significant correlation between novelty status and

novelty filter response, with a probability p ≤ 0.05 of this statement being

wrong. If χ2 > 6.64 the significance level of the correlation is higher and

the probability of being wrong decreases to p ≤ 0.01. It is also important

to mention that the χ2 test is valid only for well-conditioned contingency

tables — this entails the computation of a table of expected values, which

must have no entries with expected values below 5 (Nehmzow, 2003).

The strength of the association can be assessed by Cramer’s V , which

is directly based on the χ2 statistic (Nehmzow, 2003):

V =

√
χ2

N
=

√
(AD −BC)2

(A+ C)(C +D)(A+B)(B +D)
. (3.4)

The uncertainty coefficient U — an entropy-based measure — can also

be used to estimate the strength of the association. Computation of the

uncertainty coefficient relies on the fact that each sample in the contingency

table shown in Table 3.1 has two attributes, the actual novelty status S and

the novelty filter response R. The entropy of S, H(S), the entropy of

R, H(R), and the mutual entropy of S and R, H(S,R), are given by the

following equations (Nehmzow, 2003):

H(S) = −A+B

N
ln

(
A+B

N

)
− C +D

N
ln

(
C +D

N

)
, (3.5)

H(R) = −A+ C

N
ln

(
A+ C

N

)
− B +D

N
ln

(
B +D

N

)
, (3.6)

H(S,R) = −A
N

ln

(
A

N

)
− B

N
ln

(
B

N

)
− C

N
ln

(
C

N

)
− D

N
ln

(
D

N

)
. (3.7)

When applying equations 3.5, 3.6 and 3.7, one must remember that

limp→0 p ln p = 0.

The uncertainty coefficient U of S given R, U(S | R), is finally computed

using equation 3.8 (Nehmzow, 2003):

U(S | R) =
H(S)−H(S,R) +H(R)

H(S)
. (3.8)
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Both V and U provide normalised measures of strength ranging from

zero to one. Good associations would result in V and U having values

close to one, while poor associations would result in values close to zero.

Therefore, the values of V and U can be used to determine which among

two or more novelty systems perform better in a given situation.

A further statistic that can be used is the κ index of agreement, which

is computed for 2× 2 contingency tables as follows (Sachs, 2004):

κ =
2(AD −BC)

(A+ C)(C +D) + (A+B)(B +D)
. (3.9)

This statistic is used to assess the agreement between ground truth data

and novelty filter response, in a similar way to what is done with V and U .

However, it has the advantage of having an established semantic meaning

associated with some intervals, as shown in Table 3.2 (Sachs, 2004).

Table 3.2: κ intervals and corresponding levels of agreement between ground
truth and novelty filter response.

Interval Level of Agreement
κ ≤ 0.10 No

0.10 < κ ≤ 0.40 Weak
0.40 < κ ≤ 0.60 Clear
0.60 < κ ≤ 0.80 Strong
0.80 < κ ≤ 1.00 Almost complete

Unlike V and U , the κ statistic may yield negative values. If this hap-

pens, the level of disagreement between system response and manually gen-

erated ground truth can be assessed. Negative values occur when the entries

B and C in the resulting contingency table are larger than the entries A and

D. In such a case, both U and V would still result in positive values because

they are designed to measure the strength of the association (be it positive

or negative) rather than the level of agreement (positive association) or

disagreement (negative association).
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Evaluation of the statistical measures. In order to determine if these

statistics were in fact appropriate for the performance assessment of novelty

filters, we conducted a simple experiment in which ground truth with prob-

ability s of novelty being present was compared against a novelty filter ran-

domly indicating “novelty” with probability r. The aim of this experiment

was to establish which values of V , U and κ would result from randomly

guessing novelty with a probability r equal to the probability s of novelty

actually being present.

Figure 3.5 shows the maximum values (worst cases) obtained for V , U

and κ over a hundred trials, each using a thousand samples. Results are

shown for probabilities r = s ranging from 0.05 to 0.95.

It can be noticed in Figure 3.5 that both V and κ had their values

around 0.10, but always below 0.15 (corresponding to no agreement or weak
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Figure 3.5: Maximum values of V , U and κ for random ground truth and
random novelty filter responses with probabilities ranging from 0.05 to 0.95
(r = s). V and κ always resulted in values below 0.15, while U always resulted
in values below 0.03.
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agreement between actual novelty status and novelty filter response). U

yielded a U-shaped graph with higher values at the extremes, but always

below 0.03. The χ2 test correctly revealed no statistical significance (p ≤

0.01) in the association between novelty status and system response in 99%

of the cases. With these results, we concluded that the statistics in question

are valid for the assessment of novelty filter performance. Moreover, we can

say that any novelty filter whose statistical analysis results in V > 0.15,

U > 0.03 and κ > 0.15 performs better than random guessing.

Further evaluation of the statistical measures. Because the nature

of the problem of novelty detection usually implies a much larger amount

of non-novel than novel samples, the experiment was repeated with a fixed

“novel status” ground truth probability s = 0.05 and a “novelty” response

probability r ranging from 0.05 to 0.95.
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Figure 3.6: Maximum values of V , U and κ for random ground truth with
fixed probability s = 0.05 and random novelty filter responses with probability
r ranging from 0.05 to 0.95. Only κ showed to be sensitive to random guess-
ing probability, but still maintained values below 0.10 (no agreement between
novelty filter response and actual novelty status).
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The results of this experiment are shown in Figure 3.6, where one can

notice that guessing “novelty” randomly with different probabilities had

little effect on V and U , which maintained the same trend as in Figure 3.5.

The κ index, on the other hand, showed to be sensitive to the novelty

guessing probability s, but nevertheless remained below 0.10. These results

confirm the hypothesis that U , V and κ are indeed appropriate tools to

assess the performance of novelty filters.

Problems with the χ2 test. One must be careful when using the χ2

analysis to test the statistical significance in the association between vari-

ables in 2 × 2 contingency tables. One of the existing problems concerns

the number of samples in the contingency table. Consider for example the

following contingency table:

10 30

20 100
(3.10)

The analysis for the table above results in χ2 = 1.37 (no statistical

significance in the association between variables), V = 0.09, U = 0.01,

κ = 0.09 (no agreement between variables). However, if the number of data

samples is increased ten times, this results in the following table:

100 300

200 1000
(3.11)

The analysis of this new table yields χ2 = 13.7 (statistical significance in

the association between variables, p ≤ 0.01), V = 0.09, U = 0.01, κ = 0.09

(no agreement between variables).

This effect indicates that statistical significance in the association be-

tween variables in 2 × 2 contingency tables may result solely from the use

of a large number of data samples. In spite of that, values of V , U and κ

are not affected by the number of data samples and continue to be faithful
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to the strength of the association between the variables, regardless of the

number of data samples in the contingency table.

Another problem illustrated by Sachs (2004, p. 456) concerns the addi-

tion of two contingency tables with no statistically significant association

between variables, which may yield statistically significant association be-

tween variables in the resulting table:

1 10

10 100
+

100 10

10 1
=

101 20

20 101

χ2 = 0 χ2 = 0 χ2 = 108

(3.12)

The problem above refers to adding contingency tables with radically

different A and D entries (A << D in one of the terms shown above,

while A >> D in the other). Therefore, one should be aware of these

limitations of the χ2 analysis before using it to test statistical significance

in the association of variables in 2 × 2 tables resulting from addition. In

this particular example, the resulting contingency table yields V = 0.67,

U = 0.35 and κ = 0.67.



Chapter 4

Experiments using Colour

Statistics

4.1 Experiments 1 and 2: Novelty Detection

from Global Colour Histograms

For the first experiments using visual input to the GWR neural network,

we used image encoding mechanisms based on image statistics. The idea

was to use simple and fast image encoding techniques in order to reduce

dimensionality of the input data (152 × 120 pixels), so that it could be

processed efficiently by the novelty filter. Such statistical image encoding

techniques, mainly in the form of histograms, have been successfully used in

the past from content-based image retrieval (Boujemaa et al., 2001; Schmid

and Mohr, 1997; Swain and Ballard, 1991) to pattern recognition (Chang

and Krumm, 1999; Lowe, 1999, 2004; Mel, 1997; Schiele and Crowley, 1996,

2000) and robot localisation (Gonzales-Barbosa and Lacroix, 2002).

The main advantage of histograms is that when applied to image fea-

tures, they show robustness against geometric transformations, changes in

perspective and partial occlusion (Schiele and Crowley, 2000), all of which

are of interest due to the fact that input images are acquired from a moving

62
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platform. In fact, conventional image histograms disregard all the infor-

mation about shape and structure — even if all the pixels in an image are

randomly rearranged, its histogram will contain the same information. On

the other hand, a clear disadvantage is that it is not possible to reconstruct

the original image from its histogram.

In these initial experiments we analysed the performance of colour his-

tograms, without encoding of any other image feature, such as shape or tex-

ture, for example. With the intention to separate intensity and colour infor-

mation, we first converted the images to the HSI (Hue-Saturation-Intensity)

colour space from the original RGB (Red-Green-Blue) colour space using

equations (4.1), (4.2) and (4.3):

I =
R +G+B

3
, (4.1)

S = 1− min(R,G,B)

I
, (4.2)

H = arctan

( √
3(G−B)

2R−G−B

)
. (4.3)

We then divided the hue interval [−π, π] equally into M regions, by

defining the following membership functions fm:

fm =

 1 if− θ < H − (M − 2m) θ ≤ θ

0 otherwise,
(4.4)

where θ = π
M

and m = 0, 1, ...,M − 1.

A standard histogram is computed by evaluating the responses of the

membership functions fm for each pixel in the image and adding them to

the corresponding histogram bin (bm), as shown in (4.5):

bm =
X−1∑
x=0

Y−1∑
y=0

fm(Hx,y), (4.5)

where (x, y) are the pixel coordinates, X and Y are the image width and

height, respectively, and m = 0, 1, ...,M − 1.

However, for the colour histograms used in the experiments reported
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here, we have also included information about colour saturation by weight-

ing the response of the membership functions as given in equation (4.6):

bm =
X−1∑
x=0

Y−1∑
y=0

fm(Hx,y)Sx,y. (4.6)

Finally, the weighted histogram was normalised to satisfy the constraint∑M−1
m=0 bm = 1.

4.1.1 Experiment 1: Global Colour Histograms with

32 Bins

Experimental setup. Our initial approach employed the above defined

weighted histograms using M = 32 bins as input vectors for the GWR-based

novelty filter. These histograms were computed in a global fashion, i.e. for

the entire input image frame, and fed to the GWR network.

A first square arena was built in the Brooker Laboratory at the Univer-

sity of Essex, using wooden panels, cardboard boxes and plastic cylinders.

The internal visual appearance of the arena was basically of light yellow hue

(floor and lower part of the walls made of wooden panels) and dark blue

(upper part of the walls made of cardboard boxes), with a large amount of

visible marks on the floor and also on the cardboard boxes. Figure 4.1 shows

a view of the arena from the top, where the robot can be seen on the top

left corner and an orange football, used as novel object during inspection,

can be seen on the bottom right corner.

The cylinders on the centre of the arena constitute an obstacle that

forces the robot to navigate around the arena in a closed loop. The idea

was to build a laboratory environment that would resemble a corridor or a

tunnel, such as sewer pipes or air-conditioning ducts. Figure 4.2 shows an

image acquired from the robot’s start position.
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Figure 4.1: Top view from the first arena built in the Brooker Laboratory at the
University of Essex. The robot is shown at the top left corner and an orange
football, used as novel stimulus during inspection, at the bottom right corner.

Figure 4.2: View of the arena from the robot’s start position. The camera was
tilted down to -25◦, so that the field of view included only the interior of the
arena (floor and walls).

Normality model acquisition. The experiment started with an explo-

ration phase, when the robot was used to acquire a model of normality

of the empty arena. Exploration was conducted in five consecutive loops

around the empty arena, with the robot being stopped and repositioned at

the starting point in every loop. This procedure was used in order to ensure

that the robot’s trajectory would be as similar as possible for every loop,
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resulting in consistent novelty graphs for qualitative assessment.

Images were acquired at the rate of one frame per second, resulting in

a total of 45 images per loop around the arena. A global colour histogram

was computed for every acquired image frame and fed as input vector to a

GWR neural network with the following parameters: aT = 0.9, hT = 0.5,

η = 0.1, ε = 0.1, τ = 3.33, α = 1.05, h0 = 1, S(t) = 1 and agemax = 20.

These parameters were chosen in order to facilitate the insertion of nodes in

the GWR network structure and allow fast habituation to the environment.

As previously explained in Chapter 2, the GWR network parameters

hT , τ , α, h0 and S(t) control node habituation (equation 2.1 on page 20),

while aT controls cluster size (equation 2.8 on page 22) and η controls node

adaptation (equation 2.12 on page 23). The amount of habituation and

adaptation within the topological neighbourhood of the firing node are gov-

erned by η (equations 2.13 and 2.14 on page 23).

During the exploration phase, learning of the GWR network was obvi-

ously enabled to allow the acquisition of a model of normality. This can

be observed in the novelty graphs depicted in Figure 4.3, corresponding to

each of the five consecutive loops around the empty arena.

It can be noticed in Figure 4.3, as expected, that the amount of novelty

measured — namely the efficacy of the habituable synapse of the winner

node for a given input vector — decreases exponentially as the network

habituates on repeated stimuli. The range of values for the novelty measure

in the vertical axis of the graphs goes from approximately 0.05 to 1 as a

result of the choices for the parameters α, h0 and S(t). Because the images

were acquired at the rate of one frame per second, the horizontal axis of the

graphs can also be interpreted as time in seconds. Pictograms indicating

the approximate position and orientation of the robot in the arena are also

shown in Figure 4.3 (we use the notation “Corner 1+” to indicate position

and orientation immediately after the robot has completely turned the first
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Figure 4.3: Exploration of the empty arena using global colour histograms (32
bins) as image encoding scheme. The graphs show that the amount of novelty
decreases exponentially as the network habituates on repeated stimuli. Com-
plete habituation is achieved by the end of the first loop. The pictograms below
the graphs indicate the approximate position and orientation of the robot in the
arena while performing the exploration loops.

corner). The network was completely habituated after the first loop around

the arena. After training, the model of normality acquired by the GWR

network had only two nodes, each containing a prototype colour histogram

learnt from the explored environment.

Novelty detection. Having trained the GWR network during the ex-

ploration phase, we then used the acquired model to highlight any unusual

visual features introduced in the empty arena: an orange football was placed
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as novel object in one of the corners and the robot was used to inspect the

arena. The ball was selected not only because it contrasted well with the

arena’s colour features, but also because it did not interfere with the robot’s

trajectory around the arena (it could not be sensed by the laser range scan-

ner). Learning of the GWR network was disabled during inspection, so

that consistency in novelty indications could be verified over different loops

around the arena. The results obtained for the inspection phase of the arena

containing the ball are shown in Figure 4.4.

The set of frames where the orange football appeared in the camera’s

field of view are indicated by dotted arrows on the top of Figure 4.4. These

frames correspond to locations where high values for the novelty measure

were expected to happen (the ball appeared always in the same frames in

every loop because the navigation behaviour was very stable, as will be

shown in Section 5.5), but it can be noticed from the presented graphs that

this particular experiment has failed in this respect. Not only were the

frames containing the orange ball not labelled as containing novel colour

features, but also frames with supposedly already known colour features

were misclassified by the system as being novel. It is interesting to notice

that false novelties were consistently detected in each loop in the same

part of the arena, when the robot was turning the first corner immediately

before the ball was encountered. Later we discovered that the false novelties

detected when turning corners were due to changes in illumination (to be

discussed in Subsection 4.2.2).

This experiment yielded an ill-conditioned contingency table for the χ2

test (the corresponding table of expected values had entries with values

below 5, see Section 3.3). Hence, it was not possible to assess the statistical

significance in the association between actual novelty status and novelty

filter response. The quantitative assessment resulted in V = 0.08, U = 0.02

and κ = −0.07 (no agreement between ground truth and system response).
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Figure 4.4: Inspection of the arena with an orange football (novel stimulus)
using global colour histograms (32 bins) as image encoding scheme. Locations
where the ball was in the camera’s field of view are indicated by dotted arrows
on the top of the figure. The graphs show that the system failed to detect the
actual novel stimulus and erroneously labelled known features of the arena as
being novel. Pictograms below the graphs indicate the approximate position
and orientation of the robot in the arena while performing the inspection loops
and also the location of the novel stimulus.

The explanation for the experiment’s failure is that the resulting nov-

elty filter is generalising too much, something that could be anticipated

by the fact that only two nodes were learnt by the neural network during

exploration of the environment — a simple environment perhaps, but not

that simple. Possible causes of this over-generalisation could be either a

bad choice of parameters for the GWR network or the use of an image en-

coding that is too poor to represent significant changes in visual features
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experimented by the robot.

We rejected the hypothesis that a bad choice of parameters for the GWR

network was the cause of over-generalised results because these parameters

were actually chosen to facilitate the addition of nodes to the network struc-

ture (more nodes acquired means more specificity and less generality from

the network’s point of view). The combination of parameters hT = 0.5,

τ = 3.33, α = 1.05, h0 = 1 and S(t) = 1 results in a particular node having

to fire (i.e. be the winner) only three times, due to the dynamics of equa-

tion 2.1 (page 20), in order to be considered sufficiently habituated and well

positioned in input space. The activation threshold aT = 0.9 provides some

room for generalisation in order to handle noise — aT basically sets the size

of the clusters used by the GWR network in input space (see equation 2.8

on page 22). Finally, the learning rate ε = 0.1 allows a bit of cluster centre

adaptation (see equation 2.12 on page 23), but makes sure that centres will

not move too far from their original location in input space.

4.1.2 Experiment 2: Global Colour Histograms with

64 Bins

Having made the considerations about the GWR network parameters, we

decided to investigate the influence of the image encoding method. A sim-

ple way to reduce the generalisation of a histogram-based image encoding

scheme is to enlarge its number of bins. Therefore, we repeated our pre-

vious experiments but this time using twice as many bins (M = 64) for

the weighted colour histograms. Figure 4.5 shows the amount of novelty

measured in five consecutive loops around the empty arena during the ex-

ploration (learning) phase.

Using global colour histograms with 64 bins as input vectors to the

GWR network, the model acquired after five loops had four nodes, twice

the amount of nodes acquired in the first experiment, indicating that gen-
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Figure 4.5: Exploration of the empty arena using global colour histograms (64
bins) as image encoding scheme. Learning and habituation are slower than
when histograms with 32 bins are used, confirming an expected reduction in
generalisation. Although the network was well habituated to the arena, by
the end of the fifth loop a new node was acquired and did not have time
to be completely habituated. The pictograms below the graphs indicate the
approximate position and orientation of the robot in the arena while performing
the exploration loops.

eralisation has been reduced. Also, comparing the first exploration loop in

Figure 4.5 to the first exploration loop in Figure 4.3, one can notice that

the network takes longer to habituate to the environment when using colour

histograms with 64 bins.

It is interesting to notice that at the end of the fifth loop, when the robot

was turning the last corner, the colour distribution of the environment was

considered novel by the GWR network and resulted in the addition of a
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new node, which could not be completely habituated. In fact, the efficacy

of the habituable synapse of this newly added node was kept at 0.7 because

it only had time to fire twice (in frames 43 and 44 of the last exploration

loop). Nevertheless, the acquired model was used to inspect the arena with

the orange football, yielding the results depicted in Figure 4.6.

Examining Figure 4.6, one can verify that some of the frames in which

the orange ball appeared were correctly assigned as containing novel colour
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Figure 4.6: Inspection of the arena with the orange football (novel stimulus)
using global colour histograms (64 bins) as image encoding scheme. The system
was able to detected the novel stimulus in some of the loops around the arena.
However, erroneous novelty indications occurred repeatedly when the robot was
turning the last two corners of the arena, due to incomplete habituation of the
last node acquired during exploration. Pictograms below the graphs indicate the
approximate position and orientation of the robot in the arena while performing
the inspection loops and also the location of the novel stimulus.
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features (in the first, fourth and fifth loops). However, several frames to-

wards the end of the loops were misclassified as if they contained novel

features. Interestingly, all of these misclassifications involved firing of the

incompletely habituated node discussed above (this can be easily identified

by the novelty measure of 0.7 reported by the GWR network in Figure 4.6).

Also, it can be noticed from the novelty graphs that the misclassification of

these image frames seem to be somehow associated with the robot turning

the last two corners of the arena.

The χ2 analysis of this experiment was inconclusive because the resulting

contingency table was ill-conditioned (see Section 3.3). The quantitative

analysis resulted in V = 0.08, U = 0.01 and κ = 0.08 (no agreement

between system response and ground truth data).

Repeating the experiment. However, by repeating the second experi-

ment and training the GWR network with data from the first four explo-

ration loops only, we were able to eliminate most of the false novelties due to

the weakly habituated node acquired during the end of the fifth exploration

loop. The reason of the acquisition of this node and its firing during the

inspection phase in the second experiment is going to be temporarily left

aside, until the next set of experiments are presented.

The new results obtained, which avoided most of the false novelties that

happened in the previous trial, are shown in Figure 4.7. In spite of this fact,

the resulting contingency table was still ill-conditioned for the χ2 analysis.

Nevertheless, the quantitative analysis yielded V = 0.34, U = 0.09 and

κ = 0.24, revealing a weak agreement between system response and ground

truth (better than random guessing, see Section 3.3).

The results from the experiments above are important for at least two

reasons. First, they show the importance of having a well trained and

habituated GWR network in order to minimise false novelties during its use

as novelty filter; and second, the influence of the image encoding scheme
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Figure 4.7: Re-inspection of the arena with the orange football (novel stimulus)
using global colour histograms (64 bins) as image encoding scheme. The GWR
network was retrained with data from the first four exploration loops only, in
order to avoid acquiring a new node at the end of the fifth exploration loop.
This resulted in the removal of false novelty detections when the robot was
turning the last two corners of the arena.

in the overall system performance, particularly concerning the ability to

generalise, was made evident.

Table 4.1 summarises the results obtained for the experiments using

global histograms, all of which yielded ill-conditioned contingency tables

for the χ2 test, making it impossible to assess the statistical significance in

the association between actual novelty status and novelty filter response.

V , U and κ were computed for comparison purposes.
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Table 4.1: Performance comparison using global colour histograms (225 sam-
ples) while detecting the orange football as novel stimulus in the arena (Exper-
iments 1 and 2). Resulting contingency tables were ill-conditioned for the χ2

test.

Experiment 1 Experiment 2a Experiment 2b
32 Bins 64 Bins 64 Bins#

V = 0.08∗ V = 0.08∗ V = 0.34∗

Orange ball U = 0.02 U = 0.01 U = 0.09
κ = -0.07 κ = 0.08 κ = 0.24

∗Ill-conditioned contingency tables for the χ2 test
#Exploration using only four loops — see text for details

4.2 Experiments 3 and 4: Novelty Detection

from Local Colour Histograms

Although histograms of visual features can be powerful descriptors in many

applications, their use in a global fashion weakens their ability to capture

and represent small details present in the visual field. Strictly speaking, any

statistical representation tends to dilute the contribution of features that

appear less frequently in a sea of more common features. The fact is that

an object or visual feature that occupies a small area relative to the size

of the image will have a small contribution to a global histogram. Such a

small feature would be probably disregarded by higher levels of processing

as if it was noise.

As small details are often relevant for novelty detection tasks (for in-

stance, a crack in a sewer pipe), global histograms — in reality, global rep-

resentations in general — are not a good solution for the image encoding

problem. The results shown in Table 4.1 demonstrate this. Furthermore, a

novelty filter that highlights which image frames contain some novel visual

features is not as useful as a filter that also locates where within these image

frames the novel features are.

Local histograms. Having this in mind, we decided to conduct experi-

ments using colour statistics at selected locations rather than global colour
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statistics, which means computing weighted colour histograms in several

distinct regions of the image. It was also decided to follow a recent trend

in the Computer Vision community and use interest point or saliency de-

tectors, instead of classical image segmentation methods. The main idea is

to locate points that stand out within the input frame and then select their

vicinities as candidate regions to be encoded and processed by the novelty

filter.

Among many available saliency detectors (Ferreira and Borges, 2004;

Itti et al., 1998; Kadir and Brady, 2003; Kadir et al., 2004; Lindeberg,

1998; Loupias et al., 2000; Lowe, 1999, 2004; Mikolajczyk and Schmid, 2001,

2002, 2004; Shi and Tomasi, 1994), the saliency map model developed by

Itti, Koch, and Niebur (1998) was the one chosen for our experiments (a

detailed description of the saliency map model and its advantages is given

in Chapter 2).

The main reason for the choice of the saliency map is that this particular

attention model identifies the most unusual features — the salient ones —

within the image frame according to their intensity, colour and orientation

in several scales. This effect happens due to the use of a normalisation

operator N (.) that promotes less frequent features while suppressing the

most frequent ones in any individual feature map (see Subsection 2.2.1).

Features that are considered salient in this context are then more likely to

represent novelty and therefore constitute good candidates to be encoded

and classified by the novelty filter. In fact, recent research has shown that

biological visual systems use local changes in image features to perform

predictive coding at the retinal level, dynamically adapting to the visual

statistics of the environment (Hosoya et al., 2005).

In the following experiments, we computed saliency maps for each in-

put frame and used the points corresponding to the nine highest saliency

values — the nine most salient points — to establish the centre of image
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patches of 24 × 24 pixels in size (the image patch size was selected to be

one fifth of the input frame height, 120 pixels). Each of the selected im-

age patches had corresponding weighted colour histograms computed, which

were individually fed to the GWR network (see Figure 3.2 on page 48).

4.2.1 Experiment 3: Local Colour Histograms with

32 Bins

Normality model acquisition. The first experiment with local statistics

used once again colour histograms of 32 bins. The same set of images

acquired in the arena built for Experiments 1 and 2 was used. Results

obtained for the exploration of the empty arena (learning enabled) is shown

in Figure 4.8. Because nine feature vectors were generated and classified for

each input frame, the novelty graphs for qualitative assessment of results

had to be adapted. Now, for experiments using the local approach, the

novelty graphs depict the average measure of novelty given by the GWR

network in each frame.

The clear exponential decay due to progressive habituation is not evi-

dent like in the experiments using global encoding because the measure of

novelty shown is now the average of the nine salient regions in each frame.

Nevertheless, it is still possible to notice that the novelty activity declines

as the robot repeatedly explores the arena and that the network nodes are

completely habituated by the end of the last loop. It is interesting to note

that, once more, increases in novelty measure happen when the robot is

turning corners. At the end of the exploration phase, the GWR network

had acquired 8 nodes, four times as much as when using global colour his-

tograms with the same 32 bins.

Visual feedback. Because a local image encoding procedure is now in use

in conjunction with an attention mechanism, it is also possible to generate
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Figure 4.8: Exploration of the empty arena using local colour histograms (32
bins) as image encoding scheme. Nine salient regions were selected per image
frame in order to assess local novelty and the graphs show the average novelty
measure for each input image frame. Complete habituation is achieved after
the third loop around the arena.

output images indicating which features of the environment were considered

salient and, among those, which were considered novel. Figure 4.9 depicts

the output image at the robot’s start position in the first exploration loop

(the input image corresponds to the one shown in Figure 4.2).

In Figure 4.9 salient points are marked with numbers (0 corresponding

to the most salient location) and their corresponding regions, if classified

as novel, are marked with white circles. We find our earlier hypothesis that

global encoding schemes will suppress small features confirmed: regions 0

and 1 correspond to small marks on the arena’s floor, constituting details
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Figure 4.9: Output for the image at the robot’s start position (first exploration
loop). The numbers indicate the location of salient points in order of importance
(0 corresponds to the most salient) and the white circles indicate that the region
corresponding to a particular salient point was considered novel. Because this
was the very first image to be presented to the robot, there are several regions
that were marked as novel. As the robot explored the arena and the GWR
network habituated on it, fewer and fewer regions were labelled as novel.

of the environment that would be ignored by the global image encoding

approach. Of course, the detection of small details may be seen as an

advantage or disadvantage depending on the application.

Novelty detection. The trained network (learning disabled) was used to

inspect the arena containing the orange football and highlight any novelties,

in the same fashion as in previous experiments. Performance of the system

during the inspection phase of the arena can be evaluated by means of

Figure 4.10.

Qualitative assessment. The impact of using a local approach for im-

age encoding was clearly positive from a qualitative perspective. The ball

was correctly detected as the novel feature in the environment (see also

Figure 4.11) and there were almost no false novelties detected, except some

cases that occurred close to the corner immediately before the orange ball

appeared — coincidentally, the same area of the arena that generated false

positives in the experiments using global image encoding (see Figure 4.4 on

page 69).
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Figure 4.10: Inspection of the arena with the orange football (novel stimulus)
using local colour histograms (32 bins) as image encoding scheme. The ball is
clearly and consistently detected in every inspection loop around the arena.

Figure 4.11: Output for an image where the orange football (novel stimulus)
appears. The ball is clearly highlighted with white circles as being novel.

Quantitative assessment. It can be seen in Figure 4.11 that the system

was able to indicate regions containing part of the orange ball, which was the
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novel object present in the arena. Contingency table analysis through the

χ2 test revealed statistical significance between the novelty filter response

and actual novelty status (p ≤ 0.01). The strength of this association was

also measured by computing V = 0.75, U = 0.53 and κ = 0.74, revealing

strong agreement between system response and actual novelty status.

4.2.2 Experiment 4: Local Colour Histograms with

64 Bins

A second experiment was conducted using local colour histograms with 64

bins, similar to what was done before in the experiments using global colour

histograms. The novelty graphs obtained for the exploration phase of the

empty arena are given in Figure 4.12.

Analysis of the novelty measure over time during the five exploration

loops indicates that the GWR network was completely habituated to the

arena. Using local colour histograms with 64 bins as input vectors resulted

in the acquisition of nine nodes, one node more than the number acquired

when using 32 bins.

Qualitative assessment. Qualitatively speaking, the results obtained

for the inspection phase of the arena using 64 bins (shown in Figure 4.13)

are very similar to the ones obtained using 32 bins for the local colour

histograms (Figure 4.13).

Unlike the case of global colour histograms, a significant change in the

resolution of local colour histograms showed not to have such a big impact

in overall performance. We attribute this to the fact that the local approach

uses histogramming to characterise colour distributions with much less sam-

ples (24 × 24 = 576 pixels) than the global approach (152 × 120 = 18240

pixels) and therefore less resolution is needed. The mechanism of attention

clearly offers a contribution to the efficient representation of visual data
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Figure 4.12: Exploration of the empty arena using local colour histograms (64
bins) as image encoding scheme. Nine salient regions were selected per image
frame in order to assess local novelty and the graphs show the average novelty
measure for each input image frame. Complete habituation was achieved after
the second loop around the arena.

by splitting a relatively large image frame into several small image patches

with high information contents (salient regions). Furthermore, detection of

interest points using the saliency map model offers other important charac-

teristics, such as robustness to translations, which will be discussed further

later on.

Quantitative assessment. Because the results obtained using the at-

tention model and local colour histograms were qualitatively very good, a

quantitative assessment was also performed using contingency table analy-
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Figure 4.13: Inspection of the arena with the orange football (novel stimulus)
using local colour histograms (64 bins) as image encoding scheme. The ball is
clearly and consistently detected in every inspection loop around the arena.

sis. A χ2 analysis of the novelty filter responses (5 loops × 45 images × 9

patches = 2025 samples) revealed statistical significance (p ≤ 0.01) for the

association between system response and ground truth in both experiments.

The quantitative performance comparison using Cramer’s V , uncertainty

coefficient U and the κ index of agreement is given in Table 4.2.

By comparing the values for V , U and κ in Table 4.2, one can notice

that the performance of the system using local colour histograms with 32

bins was slightly better.
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Table 4.2: Performance comparison using local colour histograms (2025 sam-
ples) while detecting the orange football as novel stimulus in the arena (Ex-
periments 3 and 4). Both experiments resulted in strong agreement between
novelty filter response and actual novelty status.

Experiment 3 Experiment 4
32 Bins 64 Bins
V = 0.75 V = 0.68

Orange ball U = 0.53 U = 0.46
κ = 0.74 κ = 0.67

It is interesting to point out that the use of colour histograms, which

resulted in almost a complete failure when used in a global fashion, yielded

very good results when applied locally in regions selected by the saliency

map.

False novelties. Persistence in the detection of false novelties, particu-

larly when the robot was close to the arena’s corners, demanded an analysis

of the corresponding images, which revealed the reason of such a problem.

We analysed the pixel values of equivalent regions of images acquired in each

corner and discovered that there were fluctuations, probably due to changes

in illumination, caused by changes in viewpoint as the robot moved, or the

camera’s automatic gain control, which could not be disabled by the robot’s

control software.

The noise was observed in intensity and saturation, as hue alone is in-

variant to changes in sampled illumination. Eliminating saturation from

the weighted colour histograms encoding scheme was not a solution be-

cause then the ability to discriminate between saturated and unsaturated

colours — red and pink, for instance — would be lost. In fact, as one would

expect, it is also necessary to include intensity information in the image

encoding process so that shades of grey, which do not have defined hue or

saturation, can also be detected and discriminated. Therefore, we needed

an alternative colour-based image encoding procedure, invariant to changes

in illumination, to minimise the problem of false novelties.
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4.3 Experiments 5 to 8: Novelty Detection

from Colour Angles

Sensitivity to illumination is identified by many researchers as a serious

problem to colour matching and led them to develop colour constant image

representation schemes (Finlayson et al., 1996, 1998; Funt and Finlayson,

1995; Gevers and Smeulders, 1997; Healey and Slater, 1994; Healey and

Wang, 1995). Among those, the colour angular indexing proposed by Fin-

layson, Chatterjee, and Funt (1996) is particularly interesting because it

provides a very compact colour constant representation based on statistics

(colour channel covariances), which encodes the characteristics of the colour

distribution as angles between colour channel vectors in image space.

The colour vectors r, g and b respectively contain all pixel values in the

R, G and B colour channels of the image in scanning order. Hence, each

colour vector has the dimensionality of the image area in pixels (width ×

height). In order to compute colour angles, it is first necessary to obtain

zero-mean colour vectors (r0, g0 and b0) by subtracting the corresponding

average pixel value from each original colour vector:

r0 = r− r̄, (4.7)

g0 = g − ḡ, (4.8)

b0 = b− b̄, (4.9)

where r̄, ḡ and b̄ are the average pixel values of the original colour vectors,

r, g and b, respectively.

The next step is to normalise the zero-mean colour vectors to unitary

length by dividing each one by their respective norm:
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rN =
r0

‖r0‖
, (4.10)

gN =
g0

‖g0‖
, (4.11)

bN =
b0

‖b0‖
, (4.12)

where rN , gN and bN are the normalised zero-mean colour vectors.

Colour channel covariances are equivalent to dot products, which in

this case geometrically correspond to the cosine of the angles between the

corresponding unitary length colour vectors. These angles are invariant to

changes in illumination and can be computed by the inverse cosine of colour

vector dot products:

φrg = arccos(〈rN ,gN〉), (4.13)

φgb = arccos(〈gN ,bN〉), (4.14)

φrb = arccos(〈rN ,bN〉), (4.15)

where 〈a,b〉 denotes the dot product of vectors a and b.

The interesting aspect of this colour representation is that changes in

the colour of the illuminant (the illuminating device) or changes in sampled

illumination due to robot motion result in a rotation of the colour channel

vectors for an image region. Nevertheless, the angles between those vectors

remain the same and this is what grants robustness to illumination changes.

4.3.1 Experiment 5: Local Colour Angles

For the new set of experiments about to be presented we have used local

colour angles to encode the colour distribution of the regions selected by the

attention model. Therefore, the feature vectors fed to the GWR network in

this case had only three dimensions (φrg, φgb and φrb). Figure 4.14 shows

the novelty graphs obtained for the exploration of the empty arena.
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Figure 4.14: Exploration of the empty arena using local colour angles as image
encoding scheme. The GWR network is sufficiently habituated to the environ-
ment by the end of the fifth exploration loop.

After exploration, 25 nodes were acquired by the GWR network, indi-

cating the excellent ability of local colour angular encoding to discriminate

colour distributions — network nodes increased three times when compared

to the case using colour histograms. As can be seen in Figure 4.14, by the

end of the fifth loop the network was still responding to the environment

with novelty measures above the level of complete habituation. Inspection

of node synaptic efficacies revealed that seven nodes had values above 0.1.

Nevertheless, the level of habituation was considered sufficient and once

more the acquired model was used to inspect the arena containing the or-

ange ball. Results of the inspection phase are given in Figure 4.15.
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Figure 4.15: Inspection of the arena with the orange football (novel stimulus)
using local colour angles as image encoding scheme. The ball is clearly and
consistently detected in every inspection loop around the arena. Also, false
novelties were minimised.

Qualitative assessment. Figure 4.15 shows some qualitative improve-

ment in the system’s performance in spite of the fact that not all of the

GWR network nodes were completely habituated. Very few false novelties

were detected, while the image frames where the ball appears were clearly

identified as having high levels of novelty. One can also notice that the false

novelties that were present in the previous experiments immediately after

turning of the first corner (see Figure 4.10 on page 80 and Figure 4.13 on

page 83) are now suppressed.
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Quantitative assessment. The contingency table analysis of Experi-

ment 5 revealed statistically significant association between novelty filter

response and actual novelty status (χ2 test, p ≤ 0.01) and yielded the fol-

lowing quantitative results: V = 0.84, U = 0.73 and κ = 0.82 (almost

complete agreement between ground truth and system response).

4.3.2 Experiment 6: Global Colour Angles

In spite of resulting in input vectors with just three dimensions, encoding

based on colour angles has shown an excellent ability to discriminate colour

distributions. This property was confirmed by running experiments in which

the attention mechanism was removed, i.e. by using colour angles in a global

fashion, as in Experiments 1 and 2 presented earlier in this chapter.

Figure 4.16 shows the novelty graphs for the five exploration loops

around the empty arena when using global colour angles as image encoding

scheme. Like in previous experiments using global colour histograms, the

whole input frame (152 × 120 pixels) was encoded and used to train the

GWR network.

It can be noticed that learning was extremely fast — only one loop

around the arena resulted in complete habituation of the GWR network.

As a result of training the network with global colour angles, only two nodes

were acquired, the same number as in the experiment using global colour

histograms with 32 bins. However, unlike the experiments that used global

colour histograms, the results obtained during the inspection phase were

excellent, as Figure 4.17 demonstrates.

Figure 4.17 shows that only input frames where the orange football was

visible to the robot’s camera were correctly labelled as novel (high novelty

value), except for frame 18 in every loop. However, visual inspection of

image frame 18 in each loop reveals that in reality very little of the ball is

visible, justifying the system response (see Figure 4.18).
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Figure 4.16: Exploration of the empty arena using global colour angles as image
encoding scheme. The GWR network achieves complete habituation by the end
of the first exploration loop around the arena.

In Figure 4.18 one can notice that the ball is largely out of the camera’s

field of view — the area occupied by the ball corresponds to 0.55% of frame

18 in the first loop. In frames that were correctly identified as novel (frames

13 to 17), the area occupied by the orange ball varies from 2.4% to 4.8%.

Table 4.3 shows a quantitative comparison between the results obtained

in the experiments using local and global colour angular encoding. In both

cases, the χ2 analysis revealed statistical significance (p ≤ 0.01) between

novelty detected and novelty actually present.

The local colour angle approach gave better results than its histogram-

based counterparts (Experiments 3 and 4 — see Table 4.2 on page 84) and



Chapter 4. Experiments using Colour Statistics 91

Corner 4Start Corner 1 Corner 2 Corner 3
Ball

0 5 10 15 20 25 30 35 40 45
0

0.5

1
Loop 1

0 5 10 15 20 25 30 35 40 45
0

0.5

1
Loop 2

0 5 10 15 20 25 30 35 40 45
0

0.5

1

N
ov

el
ty Loop 3

0 5 10 15 20 25 30 35 40 45
0

0.5

1
Loop 4

0 5 10 15 20 25 30 35 40 45
0

0.5

1
Loop 5

Image Frame

Approximate Robot Position and Orientation in the Arena

Corner 3+ Corner 4+Corner 1+ Corner 2+Start

Figure 4.17: Inspection of the arena with the orange football (novel stimulus)
using global colour angles as image encoding scheme. The ball is clearly and
consistently detected in every inspection loop around the arena. Also, there are
no false novelties.

(a) (b)

Figure 4.18: Image frame 18 (first loop) and its ground truth novelty map. The
area occupied by the orange football corresponds to only 0.55% of the image
frame.
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Table 4.3: Performance comparison using local and global colour angles while
detecting the orange football as novel stimulus in the arena (Experiments 5 and
6). Both experiments resulted in almost complete agreement between novelty
filter response and actual novelty status.

Experiment 5 Experiment 6
Local (2025 samples) Global (225 samples)

V = 0.84 V = 0.89
Orange ball U = 0.73 U = 0.72

κ = 0.82 κ = 0.89

the global colour angle method (Experiment 6) provided the best results

so far. In fact, if frame 18 is deemed to have insufficient information to

be labelled as novel, the global colour angular scheme yields perfect results

(V = 1, U = 1 and κ = 1). However, as previously discussed, only the

local approach is able to localise the novel colour features within the image

frame.

Inspection of Table 4.3 also reveals an apparent contradiction between

the statistics V , U and κ (V and κ for the global approach are greater than

for the local approach, while U is slightly less). The reason for these results

is probably due to the large difference in the number of samples used in

each approach (2025 samples for the local approach versus 225 samples for

the global approach). We also consider the uncertainty coefficient U to be

more reliable than V and κ because of its foundation on information theory

(entropy).

4.3.3 Experiment 7: Local Colour Angles Revisited

Having obtained successful results in the first arena with the orange ball, we

decided to confirm them by conducting more experiments in a new setup.

Therefore, we built another engineered environment, this time in the new

robotics research laboratory at the University of Essex. The new arena was

built with cardboard boxes only (no yellow wooden panels were used this

time), resulting in its walls being mostly dark blue. Also, the floor of the
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new arena was of shiny grey colour, as opposed to the matt yellow floor of

the previous one.

As novel objects to be introduced in the new arena for the inspection

phase of the experiments, besides the very conspicuous orange football, we

have also used a much less conspicuous grey box (the colour of the box was

very similar to the colour of the floor).

The idea behind the new experimental setup was to test the colour

angular encoding in an environment which had predominantly grey and

dark blue colours. We also wanted to check the system’s ability to detect a

novel object similar in colour to the environmental background and therefore

not very salient.
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Figure 4.19: Exploration of the new empty arena using local colour angles as
image encoding scheme. The graphs show that the GWR network is completely
habituated to the new arena by the end of the fifth exploration loop.
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Normality model acquisition. Training of the GWR network during

exploration of the new empty arena was executed in the same fashion as in

previous experiments and using the same parameters. However, exploration

and inspection loops have now a total of 50 frames. Figure 4.19 shows the

novelty graphs obtained for the exploration of the new arena, with the

locations where the robot was turning corners indicated.

After the five loops around the new arena, the GWR network had com-

pletely habituated and acquired 18 nodes. Figure 4.20 shows the output

image acquired at the robot’s start position in the first exploration loop of

the new arena.

Figure 4.20: Output for the image at the robot’s start position (first explo-
ration loop of the new arena). As in previous examples, the numbers indicate
the location of salient points in order of importance (0 corresponds to the most
salient) and the white circles indicate that the region corresponding to a partic-
ular salient point was considered novel. Because this was the very first image to
be presented to the robot, there are several regions that were marked as novel.
As the robot explored the new arena and the GWR network habituated on it,
fewer and fewer regions were labelled as novel.

Novelty detection. As usual, we used the trained GWR network as nov-

elty filter during the inspection of the environment with a new object. The

results of the inspection of the new arena with the orange ball are given in

Figure 4.21.

The orange ball appeared in the camera’s field of view after the robot

turned the second corner of the new arena. All frames in which the foot-

ball appeared are indicated in Figure 4.21, which also shows the successful

detection of the novel object (see also Figure 4.22).
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Figure 4.21: Inspection of the new arena with the orange football (novel stim-
ulus) using local colour angles as image encoding scheme. The ball is clearly
and consistently detected in every inspection loop around the arena.

Figure 4.22: Output for an image where the orange football appears in the new
arena. The ball is correctly highlighted with white circles as the novel stimulus.

It can be seen in Figure 4.22 that the orange ball is correctly located

and highlighted as the new object in the arena (numbers indicate salient

locations found within the image frame, which appear circled when classified

as novel by the GWR network).
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A new inspection phase was performed in the new arena with the grey

box and without the orange ball. The frames in which the grey box appeared

in the camera’s field of view (after the robot turned the first corner of the

arena) are indicated with dotted arrows in Figure 4.23, where the results of

this new inspection round are also given.
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Figure 4.23: Inspection of the new arena with a grey box (novel stimulus) using
local colour angles as image encoding scheme. The system fails to detect the
novel stimulus.

One can notice in Figure 4.23 that the local colour angular encoding

scheme has failed completely to highlight the grey box as novel object in

the arena (see also Figure 4.24). This happens because regions containing

only shades of grey have identical (or very similar) R, G and B colour

components, meaning that all angles between the colour channel vectors

are zero — shades of grey are literally invisible to colour angular encoding.
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Figure 4.24 shows an image frame in which the grey box appears in the

field of view but, despite having regions selected by the attention mecha-

nism, is not highlighted as novel by the GWR network.

Figure 4.24: Output for an image where the grey box (novel stimulus) appears
in the new arena (colour angular encoding). In spite of parts of the box being
selected by the saliency map (regions 0 and 3), the system was unable to
highlight them as novel stimuli.

The reason for not being able to detect the grey box is that colour angles

cannot discriminate shades of grey. This situation happens because shades

of grey have colour components R = G = B and therefore colour angles

always result in φrg = φgb = φrb = 0. To solve this problem, it is nec-

essary to include intensity information in our feature vectors. Experiments

with colour angles with added information about intensity are reported in

Section 4.4.

Quantitative assessment. Our contingency table analysis revealed sta-

tistical significance in the association between novelty filter response and

ground truth data (χ2 test, p ≤ 0.01) when the inspection involved the

orange football. The strength of this association is measured by V = 0.50,

U = 0.37 and κ = 0.50, meaning clear agreement between ground truth and

system response. However, the χ2 test could not be performed when the

inspection involved the grey box because the resulting contingency table

was ill-conditioned (see Section 3.3). The quantitative analysis in this case

resulted in V = 0.07, U = 0.01 and κ = −0.04, meaning no agreement

between ground truth and novelty filter response.
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4.3.4 Experiment 8: Global Colour Angles Revisited

For the sake of completeness and performance comparison, the experiments

with the new arena were repeated using global colour angular encoding.

Results for the exploration phase (empty arena) are given in Figure 4.25.
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Figure 4.25: Exploration of the new empty arena using global colour angles as
image encoding scheme. The GWR network was completely habituated by the
end of the second exploration loop.

The GWR network acquired six nodes, all of which were completely

habituated by the end of the second loop, which again demonstrates how

fast the network training is when using such a compact and robust colour

encoding scheme. More nodes were acquired than in the first arena (Ex-

periment 6) and this is attributed to the fact that more details of the walls

(drawings and inscriptions on the cardboard boxes) were visible this time —

in the first arena, the wooden panels covered most of the details on the walls.
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Figure 4.26 shows the successful detection of the orange ball as the new

object in most of the frames where it appeared during the inspection phase,

with no occurrence of false novelties. The novel object was only missed in

frame 26 during the third inspection loop.
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Figure 4.26: Inspection of the new arena with the orange football (novel stim-
ulus) using global colour angles as image encoding scheme. The novel stimulus
is correctly and consistently identified by the system.

Inspection was repeated for the arena containing the grey box, but the

novelty filter has completely failed to highlight the new object (Figure 4.27)

as in the case of local colour angular encoding.

Table 4.4 shows the results of the quantitative analysis for the inspection

of the new arena with the orange football using both local and global en-

coding approaches. The overall results for each experiment, combining the

results for both novel objects in a single contingency table are also shown.
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Figure 4.27: Inspection of the new arena with the grey box (novel stimulus)
using global colour angles as image encoding scheme. The system fails to detect
the novel stimulus.

The results reported in Table 4.4 are quantitatively poorer when com-

pared to the results obtained for the first arena using the same image en-

coding strategy (see also Table 4.3 on page 92). Inspection of the arena

containing the grey box in both approaches (local and global) yielded ill-

conditioned contingency tables for the χ2 test. Failure to detect the grey

box correctly has also impaired the “overall” performance (combined perfor-

mance for the orange ball and the grey box) because colour angular encoding

is unable to represent shades of grey, which are largely present in the the

new arena. Therefore, an improved colour encoding scheme was needed in

order to discriminate grey features in the environment.
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Table 4.4: Performance comparison using local and global colour angles while
detecting the orange football and the grey box as novel stimuli in the new arena
(Experiments 7 and 8). Only inspections of the arena containing the orange
ball resulted in statistically significant (χ2 test, p ≤ 0.01) association between
novelty filter response and actual novelty status.

Experiment 7 Experiment 8
Local (2250 samples) Global (250 samples)

V = 0.50 V = 0.81
Orange ball U = 0.37 U = 0.58

κ = 0.50 κ = 0.80
V = 0.07∗ V = 0.00∗

Grey box U = 0.01 U = 0.00
κ = -0.04 κ = 0.00
V = 0.35 V = 0.52

Overall U = 0.10 U = 0.22
κ = 0.33 κ = 0.42

∗Ill-conditioned contingency tables for the χ2 test

4.4 Experiments 9 and 10: Novelty Detec-

tion from Colour Angles and Intensity

Spread

From the previous experiments it became obvious that the angles between

the colour vectors of a distribution, although robust to illumination condi-

tions, cannot discriminate unsaturated colours, i.e. shades of grey whose R,

G and B components have the same value. To overcome this situation, we

decided to also include intensity statistics in the image encoding.

Including intensity information. The intensity information included in

the colour representation should also be robust to changes in illumination.

Therefore, we need to quantify the intensity distribution in relative terms.

The mean intensity of a given region is an absolute measure and therefore

is not robust with respect to illumination conditions. Brighter illumination,

for example, would increase the mean intensity of the region in question —



Chapter 4. Experiments using Colour Statistics 102

what is wanted is an intensity measure that yields the same value for the

same image region, as independent as possible of the actual illumination

levels.

An adequate statistic in this case is the intensity standard deviation,

which represents the variation around the mean intensity, a relative mea-

surement. In fact, changes in illumination intensity would shift all sampled

intensity levels, but their standard deviation would tend to remain the same,

except when saturation occurs (under-exposure or over-exposure).

We decided to use the normalised standard deviation σi of the inten-

sity values (see equation 4.1 on page 63) of image regions as an additional

element in our image encoding, resulting in feature vectors with four dimen-

sions (φrg, φgb, φrb and σi).

The normalised standard deviation is defined here as the ratio between

the actual standard deviation computed from the intensity distribution and

its maximum theoretical value, which provides values ranging from zero to

one. The maximum theoretical value for the standard deviation corresponds

to the mean value of a distribution with equal number of samples divided

between the extreme values (for example, an image containing half pure

black and half pure white pixels). In our case, intensity values range from

0 to 255 and therefore the maximum theoretical value for the standard

deviation is 127.5.

In mathematical terms, the normalised standard deviation is computed

using the following equation:

σi =

√∑X−1
x=0

∑Y−1
y=0 (Ix,y − Ī)2

127.5XY
, (4.16)

where (x, y) are the pixel coordinates, X and Y are the image width and

height, respectively, and Ī is the mean intensity value.
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4.4.1 Experiment 9: Local Colour Angles and Inten-

sity Spread

The data acquired in the new arena was used again for our experiments

using local colour angular encoding with added intensity spread. Figure 4.28

shows the GWR network training results obtained for the exploration of the

empty arena.
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Figure 4.28: Exploration of the new empty arena using local colour angles and
intensity spread as image encoding scheme. The GWR network is completely
habituated to the environment by the end of the fourth exploration loop.

The GWR network acquired 21 nodes — three nodes more than the ac-

quired using local colour angles alone — and had completely habituated on

the environment after the fourth loop. The arena containing new objects

was then inspected using the trained GWR network. Results of the inspec-
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tion of the arena containing the orange football are given in Figure 4.29,

while the results of the inspection of the arena containing the grey box are

given in Figure 4.30.
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Figure 4.29: Inspection of the new arena with the orange football (novel stim-
ulus) using local colour angles and intensity spread as image encoding scheme.
The ball is clearly and consistently detected in every inspection loop around the
arena. Also, there are very few false novelties.

Using local colour angular encoding with added intensity spread en-

abled not only the correct detection of the orange football, as in previous

experiments, but also the correct detection of the grey box, which had been

“invisible” in the experiments using colour angles alone. In Figure 4.29

the locations where the orange ball was detected are clearly shown and in

Figure 4.30 the same happens for the locations where the grey box was

detected.
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Figure 4.30: Inspection of the new arena with the grey box (novel stimulus)
using local colour angles and intensity spread as image encoding scheme. The
box is correctly and consistently detected in every inspection loop around the
arena, with the occurrence of very few false novelties.

Figure 4.31 depicts an example output image in which the grey box is

correctly highlighted as being the novel stimulus (compare with Figure 4.24

on page 97).

Contingency table analysis revealed statistically significant association

between novelty filter response and actual novelty status (χ2 test, p ≤ 0.01)

for both orange ball and grey box during inspection. The quantitative

analysis for the case concerning the orange ball yielded V = 0.63, U = 0.32

and κ = 0.63, revealing strong agreement between ground truth and

system response. For the case concerning the grey box, the quantitative

assessment resulted in V = 0.66, U = 0.36 and κ = 0.65, also revealing
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Figure 4.31: Output for an image where the grey box (novel stimulus) ap-
pears in the new arena ( colour angular encoding with added intensity spread).
The system correctly identified region 0 as being a novel stimulus, but missed
region 3.

strong agreement between ground truth data and novelty filter response.

Therefore, the experiment using local colour angles and intensity spread for

the image encoding stage was the first to yield consistent qualitative and

quantitative results for both novel objects.

4.4.2 Experiment 10: Global Colour Angles and In-

tensity Spread

Our final experiments involving colour statistics were conducted using colour

angles and intensity spread for the image encoding in a global fashion, i.e.

without the use of the saliency map as attention mechanism. The same

data acquired in the new arena (used in Experiments 7, 8 and 9) was used

again in these experiments. Results obtained during the exploration of the

arena can be seen in Figure 4.32.

Complete habituation of the GWR network was achieved after the sec-

ond loop around the empty arena. Six nodes were acquired by the end of the

GWR network training, the same amount acquired previously when using

global colour angles alone (Experiment 8). A closer analysis of the GWR

network trained with global colour angles and intensity spread revealed that

the acquired nodes stored very similar information to the information stored

in the nodes of the GWR network trained with global colour angles alone.
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Figure 4.32: Exploration of the new empty arena using global colour angles and
intensity spread as image encoding scheme. The GWR network is completely
habituated to the environment by the end of the second exploration loop.

Figure 4.33 illustrates the results obtained during the inspection of the

new arena containing the orange football. It can be noticed that the ball was

correctly highlighted as the novel stimulus. The performance of the novelty

filter was slightly better than when using colour angles alone in Experi-

ment 8 (compare the system responses for frame 26 in the third inspection

loop in Figure 4.33 and Figure 4.26 on page 99).

However, inspection of the new arena with the grey box revealed that the

global approach to colour angular encoding with added intensity spread was

unable to identify input image frames in which the novel object appeared

(Figure 4.34). Although colour angles with added intensity spread were

successful in this task when using the local approach (Experiment 9), the
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Figure 4.33: Inspection of the new arena with the orange football (novel stim-
ulus) using global colour angles with added intensity spread as image encoding
scheme. The ball is correctly detected in every inspection loop around the arena,
with no occurrence of false novelties.

additional information provided by the normalised standard deviation of

the intensity distribution was not sufficient to discriminate the presence of

a relatively small grey object (4.3% of the pixels of the input frame) against

a similar background colour.

Results of a quantitative analysis for the inspection of the new arena

using the colour angular encoding with added intensity spread are given in

Table 4.5. All experiments reflected statistical significance between novelty

detected and actual novelty status (χ2 test, p ≤ 0.01), except the one in-

volving the global approach as encoding method and the grey box as novel

stimulus.
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Figure 4.34: Inspection of the new arena with the grey box (novel stimulus) us-
ing global colour angles with added intensity spread as image encoding scheme.
The system completely fails to detect the novel stimulus.

Table 4.5: Performance comparison using local and global colour angles with
added intensity spread while detecting the orange football and the grey box as
novel stimuli in the new arena (Experiments 9 and 10).

Experiment 9 Experiment 10
Local (2250 samples) Global (250 samples)

V = 0.63 V = 0.84
Orange ball U = 0.32 U = 0.63

κ = 0.63 κ = 0.83
V = 0.66 V = 0.00∗

Grey box U = 0.36 U = 0.00
κ = 0.65 κ = 0.00
V = 0.65 V = 0.54

Overall U = 0.35 U = 0.24
κ = 0.65 κ = 0.42

∗Ill-conditioned contingency table for the χ2 test
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Although global encoding using colour angles and intensity spread pro-

vided the best quantitative results for inspection of the arena with the or-

ange ball, it failed completely during inspection of the arena with the grey

box. Local encoding using colour angles and intensity spread was the only

approach investigated so far that yielded consistent qualitative and quan-

titative results (revealing strong agreement between actual novelty status

and novelty filter response) for both orange football and grey box.

4.5 Summary and Discussion

In this chapter we have presented experiments using colour statistics to

perform image encoding within our visual novelty detection framework. The

image encoding stage is intended to reduce dimensionality of the input data

prior to higher level processing by the actual GWR-based novelty filter.

Also, comparisons between global and local statistics through the use of

an attention mechanism were made in order to evaluate the possibility of

determining not only which image frames contained potential novel visual

features, but also where these novel features were located within the frames.

The use of salient regions to generate local colour statistics made the ac-

quisition of a representation of the operating environment possible, without

the installation of any specific a priori knowledge.

Experiments using global colour histograms have shown that the resolu-

tion of the histograms, i.e. their number of bins, have a great influence in the

novelty filter’s overall ability to generalise. On the other hand, histogram

resolution did not play such an important role when local colour histograms

were used in conjunction with the saliency map acting as an attention mech-

anism. This happens because local histograms are computed within image

regions with much smaller number of data samples (pixels) than the entire

image frame. When using local image encoding, generalisation is dependent

on the number of candidate regions selected by the saliency map.
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The colour histograms used here have shown to be useful image descrip-

tors, but they also presented some disadvantages. From the image encoding

point of view, they are sensitive to illumination conditions and also do not

encode intensity — therefore the colour histograms defined here cannot dis-

criminate shades of grey. Furthermore, from the clustering point of view,

the Euclidean distance, used by the GWR network algorithm, is not the

ideal metric to measure similarity between histograms. A more appropri-

ate similarity measure would be something like the histogram intersection

proposed by Swain and Ballard (1991). The histogram intersection was not

used as similarity measure in the experiments reported here because we de-

cided to use exactly the same GWR algorithm and parameters for every

experiment, in order to allow consistent performance comparisons between

different image encoding mechanisms.

Colour angular encoding (Finlayson et al., 1996) proved to be a very

compact and descriptive colour distribution representation that is robust

to changes in illumination. Even when colour angles were used in a global

fashion, this resulted in successful novelty detection by the GWR network,

demonstrating how descriptive this image encoding procedure is. However,

colour angles suffer from the same problem as the colour histograms used

in this thesis, as they are also unable to discriminate intensity variations.

We found a solution to the issue of discriminating shades of grey by

adding the normalised standard deviation of intensity to the standard colour

angular encoding scheme. This new approach was able to detect grey fea-

tures present in the environment which were previously “invisible” to the

other discussed image encoding techniques. The best and most consistent

experimental results were achieved by computing the colour angular encod-

ing with added intensity spread in the vicinity of locations determined by a

saliency-based mechanism of visual attention to form feature vectors. The

image encoding procedure as a whole (including the saliency map model)
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has shown to be very stable and robust to changes in perspective and per-

ceived illumination. Experiments conducted in engineered environments

with a moving robot have demonstrated that this approach has the ability

to highlight new, arbitrary objects based on their colour characteristics as

soon as they first appear in the camera’s field of view.

The visual novelty detection configuration discussed in this chapter was

able to learn a representation of the robot’s normal operating environment

quickly. The acquired representation was later used to detect any unusual

colour features that were introduced after training. Our implementation

is capable of on-line learning at eight frames per second when running au-

tonomously on the Essex Magellan Pro robot (Radix), which is equipped

with an 850MHz Pentium III processor.

Finally, we compared the performance of our mechanism to manually-

generated ground truth and observed statistically significant correlation be-

tween them (χ2 analysis, p ≤ 0.01). Most results from our experiments

interfacing visual stimuli to the GWR-based novelty filter were very good.

Our framework proved to be stable and robust to general image transfor-

mations and to provide consistent novelty detection based on local colour

statistics. Tables 4.6 and 4.7 summarise the quantitative results achieved

for each image encoding strategy discussed in this chapter.

The results in Table 4.6 refer to the experiments conducted in the first

arena with the orange football as novel stimulus. Except for the global

encoding using colour histograms with 32 and 64 bins, all other approaches

presented statistically significant correlation between system response and

actual novelty status (χ2 analysis, p ≤ 0.01). The best results (almost

complete agreement between system response and novelty ground truth)

were achieved with the use of local colour angles.

Results in Table 4.7 correspond to the experiments carried out in the

second arena, having the orange football and the grey box as novel stimuli.
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Table 4.6: General performance comparison using local and global approaches
while detecting the orange football as novel stimuli in the first arena.

Orange Ball
Local (2025 samples) Global (225 samples)

V = 0.75 V = 0.08∗
Colour Histograms

U = 0.53 U = 0.02
(32 bins)

κ = 0.74 κ = -0.07
V = 0.68 V = 0.08∗ (0.34∗)

Colour Histograms
U = 0.46 U = 0.01 (0.09)

(64 bins)
κ = 0.67 κ = 0.08 (0.24)
V = 0.84 V = 0.89

Colour Angles U = 0.73 U = 0.72
κ = 0.82 κ = 0.89

∗Ill-conditioned contingency tables for the χ2 test, values in brackets corres-
pond to exploration using only four loops — see subsection 4.1.2 for details

Table 4.7: General performance comparison using local and global approaches
while detecting the orange football and the grey box as novel stimuli in the
second arena.

Orange Ball
Local (2250 samples) Global (250 samples)

V = 0.50 V = 0.81
Colour Angles U = 0.37 U = 0.58

κ = 0.50 κ = 0.80
V = 0.63 V = 0.84

Colour Angles +
U = 0.32 U = 0.63

Intensity Spread
κ = 0.63 κ = 0.83

Grey Box
Local (2250 samples) Global (250 samples)

V = 0.07∗ V = 0.00∗

Colour Angles U = 0.01 U = 0.00
κ = -0.04 κ = 0.00
V = 0.66 V = 0.00∗

Colour Angles +
U = 0.36 U = 0.00

Intensity Spread
κ = 0.65 κ = 0.00

∗Ill-conditioned contingency tables for the χ2 test

Overall (Orange Ball and Grey Box)
Local (2250 samples) Global (250 samples)

V = 0.35 V = 0.52
Colour Angles U = 0.10 U = 0.22

κ = 0.33 κ = 0.42
V = 0.65 V = 0.54

Colour Angles +
U = 0.35 U = 0.24

Intensity Spread
κ = 0.65 κ = 0.42
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All experimented approaches yielded statistically significant association be-

tween the system response and manually generated novelty ground truth

(χ2 analysis, p ≤ 0.01) for the cases in which the orange ball was the novel

stimulus. However, for the cases in which the novel stimulus was the grey

box, only the local colour angular encoding with added intensity spread was

able to discriminate the novel object correctly.



Chapter 5

Experiments using Raw Image

Data

The experiments using colour statistics to perform image encoding within

our visual novelty detection framework have yielded successful results, both

qualitatively and quantitatively, in an engineered environment. However,

image encoding based on colour statistics does not take other important

visual features into account — topological relationship between pixels, for

example — and does not hold enough information to reconstruct the original

image. In fact, if one desires to examine the weights of the GWR network

nodes and analyse which visual aspects of the environment were acquired

during learning, the best information that can be retrieved in this case is

the relative amount of different colours present in a given image region.

Often, depending on the application not only colour, but also texture

and shape need to be encoded. This would allow the system to differentiate

between two objects with exactly the same colour distribution, but with

differences in shape or texture, for instance. Obviously, by adding more

information to the image encoding, some of its generalisation properties

are lost and may need to be accounted for in alternative ways. Again, the

degree of robustness to changes in appearance is application-specific.

115
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Therefore, at this stage in our experiments we wanted to go one step

further and encode image structure as well as colour information. Also, we

wanted to obtain an image encoding procedure that allows image recon-

struction so that examination of the GWR network nodes would provide

useful information about which elements of the environment were actually

learnt.

The design of an image encoding procedure that meets these require-

ments is not easy because it is not always clear which elements of the data

are the most relevant. Hence, we decided to use normalised raw image

patches as input vectors to the GWR network. For that, we rely on the as-

sumption that the attention model provides reasonably stable and accurate

interest points. Good accuracy is necessary to minimise alignment errors

when matching image patches using the Euclidean distance metric, which

is part of the GWR algorithm and operates in a pixel-by-pixel basis.

Using RGB image patches with 24 × 24 pixels in size — the same size

used before during the experiments reported in Chapter 4, results in input

vectors with 24 × 24 pixels × 3 colours = 1728 elements, which were nor-

malised to unit length in order to even out lighting conditions. Also, as

a side-effect, normalisation of input vectors reduces the input domain to

the surface of a unit hyper-sphere in input space, which makes the task of

classification easier for the clustering mechanism in use.

An input space of 1728 dimensions is large and may in fact not be neces-

sary. We were therefore interested in reducing the input space dimensional-

ity. One way to achieve this is to use Principal Component Analysis (PCA),

which works by projecting the data onto principal axes (eigenvectors), in

which variance is maximised. Because the principal axes are obtained from

the data itself, PCA is effectively a bottom-up mechanism that automati-

cally selects the most relevant parts of the data.

A particularly interesting characteristic of the incremental PCA algo-
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rithm used in this work (Artač et al., 2002) is that the process of deciding

if the current PCA model (eigenspace) needs to be incremented is by it-

self a novelty filter. If a given input is not well represented by the current

eigenmodel and it needs to be updated, then this input must be novel. In

the scope of incremental PCA, dimensionality reduction is achieved by ex-

ploiting the fact that the number of eigenvectors in the model are likely

to be less in number than the dimensionality of the input vectors. Further

dimensionality reduction can be achieved by keeping only the eigenvectors

corresponding to the largest variances (eigenvalues) in the model at the

expense of losses in reconstruction (and possibly in the overall recognition

rate of the system). If all eigenvectors are kept in the model, perfect re-

construction of the original data is achieved. Reconstruction of the input

image patches from the stored projected vectors provides valuable informa-

tion about which aspects of the environment were learnt.

In this chapter we report experiments using raw image patches and two

distinct novelty filters, one based on the GWR neural network and the other

on incremental PCA. Their performances were compared while operating

in engineered laboratory environments and also medium-scale real world

environments. We maintained the same parameter values from previous

experiments with the GWR network (aT = 0.9, hT = 0.5, η = 0.1, ε = 0.1,

τ = 3.33, α = 1.05, h0 = 1, S(t) = 1 and agemax = 20) and, concerning

the incremental PCA algorithm, we have set the residual error threshold to

rT = 0.25 and kept only the eigenvectors whose corresponding eigenvalues

were larger than 1% of the largest eigenvalue in the model. The residual

error threshold (rT ) establishes if the input vector reconstruction from the

current PCA model is similar enough to the original input vector. In other

words, it determines if the input vector is well represented by the PCA model

or if it constitutes a novel input (more details are given in Subsection 2.1.2).

Figure 5.1 shows the block diagram of the approach followed in this
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chapter. The saliency map was used as an attention mechanism to select

raw image patches in the input frame. These patches were then normalised

to unit-length vectors and fed to either of two distinct novelty filters, one of

them based on the GWR neural network and the other based on incremental

PCA, which indicated the presence or not of novelty.

GWR Novelty Filter

Indication of Novelty Indication of Novelty

PCA Novelty Filter

Colour Camera

Selective Attention

Raw Image

Environment

Normalised Patches

Figure 5.1: Novelty detection using raw image patches: the attention model
selects candidate patches and feeds them (after normalisation) to a novelty filter
based either on the GWR network or incremental PCA.

5.1 Experiment 11: Novelty Detection from

Raw Image Patches

Using the GWR network as novelty filter. In this experiment using

raw image patches, we used the same set of images used for the experi-

ments using local colour angles and instensity spread (see Subsection 4.4),

acquired from the arena built at the robotics research laboratory at Essex.

As in previous experiments, learning of the GWR network occurred during

the exploration of the empty arena in five loops. The graphs depicted in

Figure 5.2 show the average novelty detected in each frame during explo-

ration.

The novelty graphs in this chapter were plotted in a different way than
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the previous ones presented in Chapter 4. Because the incremental PCA

algorithm provides a binary indication of novelty as output — as opposed

to the GWR network, which provides a measure of novelty in the range

[0.05, 1] — the measure of novelty yielded by the GWR network needs to

be thresholded in order to allow fair qualitative comparisons. Therefore,

the output of the GWR network was thresholded using its own habituation

threshold parameter hT , resulting in a binary indication of novelty.
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Figure 5.2: Exploration of the empty arena using raw image patches and the
GWR network. Most of the novelty indications happen in the first image frame.
By the end of the fifth exploration loop, the network acquired four nodes.

From Figure 5.2 it can be noticed that learning of the GWR network

was very fast, with most of the novelty activity having happened in the

first image frame. Only four nodes were acquired by the GWR network

by the end of the fifth exploration loop, which is surprising given that 21
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nodes were acquired when using local colour angles and intensity spread (see

Subsection 4.4.1 on page 103). We expected that the use of raw image data,

which is much more specific than colour statistics for image representation,

would result in a larger number of acquired nodes.

The number of acquired nodes is related to the input data distribution

and the choice of activation threshold aT , which controls the size of clusters

of the GWR network. However, increasing aT (i.e. reducing the size of

GWR clusters) in order to increase the number of acquired nodes can also

result in poor generalisation. In future research we intend to determine the

size of clusters automatically from the input data distribution.

As in previous experiments, the acquired model of normality was used

to inspect the arena containing an object that was not present during ex-

ploration. Results of inspection of the arena with the orange football are

presented in Figure 5.3.

The graphs depicted in Figure 5.3 demonstrate the ability of the GWR

network to detect consistently the locations in which the orange ball ap-

peared, when using normalised raw image patches as input vectors. Inspec-

tion was repeated, but this time the orange football was removed from the

arena and the grey box was inserted in a different corner. Figure 5.4 shows

the results obtained for this new inspection.

The grey box was also correctly identified as novel by the GWR network,

according to the graphs in Figure 5.4. However, unexpected novelty peaks

also appeared consistently for image frame 46, which demands further anal-

ysis to find an explanation. Figure 5.5 shows the visual output for image

frame 46 in the fifth inspection loop.

The output image frame depicted in Figure 5.5 shows that in this case

the robot was turning a corner, very close to the wall of the arena. In this

particular image frame, six of the nine most salient regions correspond to

a large edge between two of the cardboard boxes that constitute the wall.
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Figure 5.3: Inspection of the arena with the orange ball (novel stimulus) us-
ing raw image patches and the GWR network. The orange ball is clearly and
consistently highlighted as novelty.

Although the robot was exposed before to edges between the cardboard

boxes, it has never before been as close to them as happened in this case —

this resulted in image patches containing edges larger in scale than the

GWR network was habituated to, ultimately resulting in their classification

as novel. In this same output image, it can be noticed also that regions 0, 1

and 5 are aligned with the darkest part of the edge, while regions 2, 4 and 7

are misaligned. Both robustness to scale and misalignment will therefore

be addressed further in Chapter 6.

Using incremental PCA as novelty filter. In order to have a base-

line to compare the performance of the GWR network using raw image
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Figure 5.4: Inspection of the arena with the grey box (novel stimulus) using
raw image patches and the GWR network. The grey box is clearly and con-
sistently highlighted as novelty. Unexpected novelty indications also appeared
consistently for image frame 46.

Figure 5.5: Image frame 46 (fifth loop of inspection of the arena with the grey
box). A large edge between two cardboard boxes exposes weaknesses regarding
feature scale and patch misalignment.

patches, we repeated the experiment using the incremental PCA approach.

Figure 5.6 shows the novelty graphs obtained during the five loops of the

exploration of the empty arena using incremental PCA.
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Figure 5.6: Exploration of the empty arena using raw image patches and in-
cremental PCA — novelty activity decreases as the robot explores the arena.

It can be seen in Figure 5.6 that most of the eigenspace updates hap-

pened in the beginning of the first loop, becoming less frequent as the en-

vironment was explored. The incremental PCA approach has acquired 35

model vectors with 33 dimensions, representing a compression factor of more

than 98%. However, an eigenvector with the original 1728 dimensions was

also stored for each of the 33 dimensions of the acquired model vectors.

Therefore, the total amount of memory used by incremental PCA was more

than eight times larger than that used by the GWR network.

As before, the model learnt during the exploration phase was used to

highlight novel visual features in the arena during the inspection phase,

when the learning mechanism was disabled. The results obtained for the

inspection of the arena with the orange ball are given in Figure 5.7.
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Figure 5.7: Inspection of the arena with the orange ball (novel stimulus) us-
ing raw image patches and incremental PCA. The orange ball is clearly and
consistently highlighted with very few unexpected novelty indications.

The orange ball was correctly identified as the new entity in the envi-

ronment as the graphs in Figure 5.7 show. Also, there were very few false

indications of novelty. Inspection was repeated for the arena containing the

grey box (the orange football was removed from the arena) and the results

obtained are given in Figure 5.8.

The grey box was also correctly highlighted by the incremental PCA ap-

proach with very few spurious novelty indications. Incremental PCA coped

better with the robot getting closer to the arena’s walls (e.g. the large scale

edge present in frame 46). This can be attributed to the choice of pa-

rameters which influence generalisation and does not necessarily mean that

incremental PCA performs better than the GWR network in this respect.
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Figure 5.8: Inspection of the arena with the grey box (novel stimulus) using
raw image patches and incremental PCA. The grey box is correctly highlighted
as novelty with very few unexpected novelty indications.

Table 5.1 shows a quantitative comparison between the results obtained

using raw image patches for both the GWR network and the incremental

PCA approach. All cases presented statistically significant correlation be-

tween novelty filter response and actual novelty status according to the χ2

analysis (p ≤ 0.01).

Overall performances (combined performances for the orange ball and

the grey box) of both approaches are quantitatively very similar (almost

complete agreement between novelty filter response and ground truth), al-

though the incremental PCA algorithm yielded slightly better and more

consistent overall results.
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Table 5.1: Performance comparison using raw image patches — Experiment 11
(2250 samples). All results correspond to statistically significant correlation
between system response and actual novelty status (χ2 analysis, p ≤ 0.01).

GWR Network Incremental PCA
V = 0.91 V = 0.86

Orange ball U = 0.74 U = 0.68
κ = 0.91 κ = 0.86
V = 0.70 V = 0.83

Grey box U = 0.44 U = 0.60
κ = 0.70 κ = 0.83
V = 0.82 V = 0.85

Overall U = 0.58 U = 0.64
κ = 0.82 κ = 0.85

Reconstruction of image patches from the model of normality.

Using raw image patches provides the extra functionality of being able to

reconstruct the acquired image patches from the GWR network weight space

or the PCA space, depending on the case. Figure 5.9 shows these recon-

structed patches for both GWR and PCA approaches.

(a)

(b)

Figure 5.9: Image patches acquired during Experiment 11: (a) reconstructed
from the GWR network; (b) reconstructed from incremental PCA.

It can be noticed that the reconstruction of the weight vectors from the

GWR network results in averaged image patches. This happens because

of the learning procedure used in the GWR network algorithm (see equa-

tion 2.12 on page 23). On the other hand, the reconstructed images from the

PCA space are very faithful. The incremental PCA also has provided a more

detailed representation of the arena, including some models of large edges
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(see image patches in the middle-right of the second row in Figure 5.9b),

which are similar to the one present in frame 46 during the inspection of the

arena with the grey box (see Figure 5.5). This explains why the incremental

PCA performed better during the inspection phase of the arena with the

grey box. The reconstructed image patches in Figure 5.9a show that the

averaging due to the GWR node insertion and adaptation rules does not

produce good results and in fact causes significant distortions in the orig-

inal input patterns. An alternative on-line clustering approach that only

uses “real” input data samples as cluster centres was proposed by Angelov

(2004) and constitutes a good option for future research.

5.2 Experiment 12: Saliency versus Novelty

Having obtained successful results in the previous experiments, we wanted

to establish that the task of novelty detection was actually achieved by the

novelty filters, rather than by the attention mechanism, which was employed

to make a pre-selection of image patches to be evaluated for possible novelty.

Therefore, we conducted a sixth round of experiments in which the robot

explored the arena containing the conspicuous orange football and after-

wards inspected it with the inclusion of the inconspicuous grey box. Two

different situations were analysed:

• First, the grey box was placed in a different corner than the ball,

fact that does not affect the performance of the attention mechanism

observed in previous experiments (the two objects of interest are never

going to be present in the same image frame). However, training the

novelty filters with the orange ball present in the arena allows the

assessment of performance degradation during inspection. In other

words, we wanted to investigate if the orange ball was ignored during

the inspection phase, while the grey box continued to be highlighted.
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• Second, the grey box was placed next to the ball, in the same cor-

ner of the arena. This obviously affects the response of the attention

mechanism because the two objects of interest are present at the same

time in some of the image frames, competing for saliency. Once more,

we wanted to evaluate if the grey box was correctly identified as new

even in the presence of the more conspicuous but already known or-

ange football, which should be ignored by the novelty filters.

Both GWR network and incremental PCA algorithm were able to detect

the novel object successfully in each situation, regardless of the presence or

not of the distractor (the orange ball) in the same image frame. This is

illustrated in Figure 5.10, which shows an example of output image for each

of the novelty filters used.

(a) (b)

Figure 5.10: Output images for Experiment 12: (a) GWR network; (b) incre-
mental PCA. The grey box (novel stimulus) is correctly highlighted as novel
regardless of the presence of the orange ball (normal stimulus).

From Figure 5.10 it can be noticed that the GWR network has correctly

identified region 0 as novel. Incremental PCA highlighted all of the regions

containing the grey box, although region 1 also contained a large portion

of the orange ball. In this experiment, the GWR network has acquired 18

nodes while incremental PCA has acquired 45 vectors with 32 dimensions.

Results of the χ2 analysis revealed statistical significance (p ≤ 0.01)

in the associations between novelty filter response and manually generated

ground truth. A quantitative comparison in terms of Cramer’s V , uncer-

tainty coefficient U and κ index of agreement is given in Table 5.2.
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Table 5.2: Performance comparison using raw image patches — Experiment 12
(2250 samples). All results correspond to statistically significant correlation
between system response and actual novelty status (χ2 analysis, p ≤ 0.01).

GWR Network Incremental PCA
V = 0.73 V = 0.79

Grey box (alone) U = 0.46 U = 0.52
κ = 0.73 κ = 0.78
V = 0.37 V = 0.54

Grey box (with ball) U = 0.10 U = 0.23
κ = 0.33 κ = 0.53

It can be noticed that the performance of both systems in the case when

the grey box appears alone — i.e. in a different location than the ball —

was not affected very much by the inclusion of the orange ball during the

exploration phase (compare “grey box (alone)” in Table 5.2 with “grey

box” in Table 5.1). However, performance of both systems deteriorated

noticeably when the orange ball was present in the same frame as the grey

box.

The fact that performance remained virtually the same when the grey

box appeared alone (i.e. in similar conditions as in Experiment 11) indi-

cates that having the orange football present in the arena during training

did not impair the ability of both novelty filters to discriminate between

classes correctly. Therefore, we concluded that the combination of attention

mechanism and image encoding is the one to be blamed for the reduction

in performance when the orange ball was present at the same location as

the grey box. Causes of the poor performance obtained when both objects

of interest were in the same image frame are possibly related to accuracy

and stability in the location of salient points, which will be investigated in

Chapter 6.

The reconstructed image patches for both GWR network and incremen-

tal PCA are shown in Figure 5.11, where the averaging effect discussed

in Experiment 11 can be noticed again in some of the image patches ac-

quired by the GWR network (see, for example, the last image patch in Fig-
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ure 5.11a). Concerning the incremental PCA approach, the reconstructed

image patches show some deterioration of the PCA space (compare the qual-

ity of reconstructed patches in Figures 5.11b and 5.9b on page 126) because

of the inclusion of the orange ball during training. However, the incremental

PCA model shows very good consistency (all image patches in Figure 5.9b

are still present plus some more corresponding to the ball), contrasting to

the results obtained for the GWR network.

(a)

(b)

Figure 5.11: Image patches acquired during Experiment 12: (a) reconstructed
from the GWR network; (b) reconstructed from incremental PCA.

5.3 Experiment 13: Saliency versus Novelty

Revisited

In order to obtain confirmation of the results obtained previously, we in-

verted the roles of the objects of interest in Experiment 12. A new exper-

iment, in which the robot explored the arena containing the inconspicuous

grey box and afterwards inspected it with the inclusion of the conspicuous

orange ball, was conducted. In this new context, the grey box became the

known object and the orange football became the novel object. Again, two

different situations were analysed, when the ball and the box were at the

same corner and also when they were in different corners of the arena.
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Both the GWR network and the incremental PCA algorithm were able

to detect the orange ball successfully as the novel object in each situation,

regardless of the presence or not of the known grey box in the same image

frame. Figure 5.12 shows an example of output image for each of the novelty

filters used, where one can notice that both novelty filters correctly identified

the orange ball as being novel and ignored the grey box. The GWR network

acquired 11 nodes in this experiment and the incremental PCA acquired 47

vectors with 29 dimensions.

(a) (b)

Figure 5.12: Output images for Experiment 13: (a) GWR network; (b) incre-
mental PCA. The orange ball (novel stimulus) is correctly highlighted as novel
regardless of the presence of the grey box (normal stimulus).

The χ2 analysis once more revealed statistical significance (p ≤ 0.01)

in the associations between novelty filter response and manually generated

ground truth. Table 5.3 shows the quantitative performance comparison

using Cramer’s V , uncertainty coefficient U and κ index of agreement.

Table 5.3: Performance comparison using raw image patches — Experiment 13
(2250 samples). All results correspond to statistically significant correlation
between system response and actual novelty status (χ2 analysis, p ≤ 0.01).

GWR Network Incremental PCA
V = 0.81 V = 0.84

Orange ball (alone) U = 0.55 U = 0.65
κ = 0.81 κ = 0.83
V = 0.88 V = 0.79

Orange ball (with box) U = 0.68 U = 0.56
κ = 0.88 κ = 0.78
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The performance of the incremental PCA approach in the case when the

orange football appears alone was not affected by the inclusion of the grey

box during the exploration phase (compare “orange ball (alone)” in Ta-

ble 5.3 with “orange ball” in Table 5.1 on page 126). However, performance

of the GWR network deteriorated noticeably in this case. Surprisingly, in

the case where the ball was present in the same corner as the box per-

formance was better for the GWR network and worse for the incremental

PCA. A possible explanation for the deterioration of incremental PCA per-

formance is the fact that in this experiment the dimensionality of the PCA

space was reduced to 29 eigenvectors.

Figure 5.13 shows the reconstructed image patches for the GWR network

and the incremental PCA approach, which now also include fragments of

the grey box that was present during training, clearly showing that both

systems acquired knowledge about the grey box’s appearance.

(a)

(b)

Figure 5.13: Image patches acquired during Experiment 13: (a) reconstructed
from the GWR network; (b) reconstructed from incremental PCA.

As in Experiment 12, reconstruction also shows some deterioration of the

PCA space (compare the quality of reconstructed patches in Figures 5.13b

and 5.9b on page 126) because of the increase in environmental complexity

due to the inclusion of extra visual features from the grey box.
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5.4 Experiment 14: Novelty Detection in a

Real World Environment

After the successful results obtained in experiments conducted in laboratory

environments, it was time to test the proposed visual novelty detection

approach in a medium-scale real world environment.

The ideal scenario would be to send the robot down a sewer pipe to

inspect for cracks, tree roots and other types of faults. However, our re-

search robot is too large and also not fit to operate in such an environment.

Furthermore, rigorous analysis and assessment of the system’s behaviour in

this type of situation would be very difficult to perform due to the lack of

knowledge and control of environmental characteristics — construction of

the novelty ground truth, for instance, would be a hard task.

Experimental setup. Hence, we decided to conduct experiments in one

of the corridors at the Network Centre building at Essex. The robot nav-

igated along the corridor using the same navigation behaviour previously

used in the laboratory experiments, acquiring one image frame per second,

which resulted in the acquisition of 50 images per journey along the corri-

dor. Differently from previous laboratory experiments, the camera’s pan-tilt

unit was driven to its home position (facing straight towards the forward

direction of the robot) for the experiments in the corridor.

Exploration was performed in the “empty” corridor to acquire a model

of normality, as in previous laboratory experiments, but limited to three

journeys along the corridor. Finally, the learnt model of normality was

used to inspect the corridor for unusual visual features that were manually

inserted a posteriori.

We placed three different novel objects in the corridor at different times:

a black rubbish bag, a dark brown bin and a yellow wooden board. These

objects appeared in the robot’s field of view immediately after the traversal
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of a door, which was present in the corridor. Figure 5.14 shows examples

of images in which these objects appeared, along with their novelty ground

truth images.

(a)

(b)

(c)

Figure 5.14: Input images and their novelty ground truth: (a) black rubbish
bag; (b) dark brown bin; (c) yellow wooden board.

Results. After three exploration journeys along the empty corridor, the

GWR network acquired 48 nodes, while the incremental PCA acquired 80

vectors with 19 dimensions. Apart from the wooden board, the chosen novel

objects are dark and therefore to some extent similar to the dark areas of

the normal environment.

Contrast in the images acquired in the corridor was generally poor be-

cause no extra illumination was used, just the weak lighting already present.
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In spite of this fact, both GWR network and incremental PCA algorithm

were able to correctly highlight the novel objects in the corridor during

inspection, as shown in Figure 5.15.

(a) (b)

(c) (d)

Figure 5.15: Output images for Experiment 14: (a) black rubbish bag (GWR
and PCA); (b) dark brown bin (GWR and PCA); (c) yellow wooden board (GWR
only); (d) yellow wooden board (PCA only). The white circles correctly indicate
regions containing novel features.

However, both novelty filters also responded with false novelty indi-

cations for a pair of fire extinguishers that were present in the corridor.

These novelty indications were unexpected because the fire extinguishers

were present during the exploration phase and therefore should be part of

the acquired model of normality. An example of such false responses is given

in Figure 5.16.

Initially we attributed these false novelties to the relatively small num-

ber of exploration journeys, which may not have been sufficient for the

acquisition of a good model of normality. Indeed, closer examination of the

nodes acquired by the GWR network revealed that 21 out of 48 nodes were
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(a) (b)

Figure 5.16: False novelty responses for the fire extinguishers: (a) GWR net-
work; (b) incremental PCA. The white circles indicate regions erroneously la-
belled as novel.

not completely habituated. We therefore forced these nodes to be habitu-

ated completely by manually altering their synaptic efficacies and repeated

inspection of the corridor using the resulting GWR network.

However, forcing habituation had only a minor impact on the number

of false positives. We hypothesise that improvements in accuracy of the

salient locations and the use of an image encoding method robust to changes

in scale would contribute to reduce false novelty indications and enhance

general performance of the visual novelty filter. Experiments concerning the

improvement of accuracy in the location of interest points and automatic

scale selection are reported in Chapter 6.

Table 5.4 shows a performance comparison in terms of Cramer’s V ,

uncertainty coefficient U and κ index of agreement. All results showed sta-

tistically significant correlation between system response and actual novelty

status (χ2 analysis, p ≤ 0.01). Overall performance (combined results for

all three novel objects) indicates strong agreement between system response

and actual novelty status. The GWR network presented the most consistent

results.

Figure 5.17 shows the reconstructed image patches acquired by both ap-

proaches during the exploration phase of this experiment, where one can

notice that the fire extinguishers are widely represented in the models ac-

quired by both approaches.
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Table 5.4: Performance comparison using raw image patches — Experiment 14
(2250 samples). All results correspond to statistically significant correlation
between system response and actual novelty status (χ2 analysis, p ≤ 0.01).

GWR Network Incremental PCA
V = 0.63 V = 0.65

Bag U = 0.35 U = 0.37
κ = 0.63 κ = 0.65
V = 0.64 V = 0.50

Bin U = 0.38 U = 0.23
κ = 0.64 κ = 0.50
V = 0.67 V = 0.84

Wood U = 0.37 U = 0.69
κ = 0.67 κ = 0.84
V = 0.65 V = 0.70

Overall U = 0.36 U = 0.44
κ = 0.65 κ = 0.70

(a)

(b)

Figure 5.17: Image patches acquired during Experiment 14: (a) reconstructed
from the GWR network; (b) reconstructed from incremental PCA.
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Nevertheless, neither the GWR network nor the incremental PCA algo-

rithm were able to avoid false novelties due to the fire extinguishers, indi-

cating poor generalisation by both learning mechanisms. In fact, the large

amount of image patches corresponding to similar features of the fire extin-

guishers is already a consequence of poor generalisation by the clustering

mechanisms.

5.4.1 Application Illustration: Air Duct Inspection

We were also interested in testing the performance of our framework in

real applications, such as sewer pipe or air conditioning duct inspection. A

Danish duct cleaning company has kindly provided us with some images

acquired from real air conditioning ducts. Our interest in this case was

to test if our visual novelty detection framework would be able to highlight

dirty sections of the duct while inspecting it. The GWR network was trained

with images acquired from clean ducts using a remotely controlled robot,

driven by a human operator. After training, images acquired from dirty

ducts were presented to the novelty filter. Some examples of the results

obtained can be seen in Figure 5.18.

Although the experiment using air duct data can be considered success-

ful because the system was able to highlight dirty sections of the duct, it

is hard to be assessed. First, as it can be noticed from Figure 5.18, the

images from the clean duct (a) are rather different than the images from

dirty ducts (b, c and d). Furthermore, the lack of a controlled experimental

setup makes it difficult to establish ground truth data in order to evaluate

performance. Nevertheless, this is an experiment that illustrates a potential

real world application.
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(a) (b)

(c) (d)

Figure 5.18: Output images for the air duct experiment: (a) clean air duct; (b)
dirty air duct 1; (c) dirty air duct 2; (d) dirty air duct 3.

5.5 Experiment 15: Influence of the Naviga-

tion Trajectory

After the successful results obtained by the previous experiments, a question

arose concerning the robustness of our approach to variations in the robot’s

trajectory when exploring and inspecting the environment. As one of the

potential applications for the system is the inspection of ducts and sewers,

possibly using remote controlled robots — and therefore subject to larger

variations in trajectory than automated navigation behaviours — another

set of laboratory experiments was designed to address this question.

The experiments were conducted in the laboratory mainly because the

use of an overhead camera was necessary to track the robot’s trajectory

while exploring and inspecting the environment. Again, a square arena was

built with cardboard boxes and used as the robot’s operating environment.

A major difference to the environments used in previous experiments is that
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the floor of the arena in this case was metallic and hence very reflective,

which poses extra difficulties to robot vision algorithms.

Instead of changing the robot’s behaviour, we decided to slightly change

the environment in order to alter the robot’s trajectory in the arena. This

was possible thanks to the force-field obstacle avoidance behaviour that was

used in all previous experiments. Changes in the robot’s path were done by

removing the central cardboard boxes in the arena which previously forced

the robot to follow a uniform path around the arena. It is important to

mention that the central obstacles were not sensed by the robot’s camera

(only by the laser range sensor which controlled navigation) and therefore

the act of adding or removing them to the environment did not affect the

robot’s visual world (in the sense of more objects being visually detected).

Figure 5.19 illustrates the effect of the presence or not of the central

boxes in the final trajectory followed by the robot. The paths shown were

plotted from data logged using the overhead camera at the robotics research

laboratory at Essex.

1

2 3

4 1

2 3

4

(a) (b)

Figure 5.19: Trajectories around the arena: (a) “square” trajectory that results
from the presence of obstacles in the centre of the arena; (b) “oval” trajectory
that results from the absence of obstacles in the centre of the arena. When
central obstacles were present, the robot was repositioned at the starting point
for every loop in a total of five loops in order to obtain consistent novelty graphs
for qualitative assessment. When central obstacles were absent, the five loops
were logged continuously without stopping or repositioning the robot.
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In Figure 5.19a it can be noticed that the robot approaches the four

corners in a similar fashion when the central boxes are present (“square”

trajectory), and in Figure 5.19b the robot gets closer to corners 2 and 4 while

keeping distance from corners 1 and 3 (“oval” trajectory). These trajectories

are noticeably different and hence result in different visual experience of the

environment. Not having the obstacles in the centre allows a wider range

of scale transformations due to the larger variation of the distance from the

walls, for instance.

We started the trajectory experiments by exploring the empty arena

using the “square” trajectory. After five loops of exploration, the GWR

network acquired 15 nodes, which were used to inspect the arena and high-

light any novel object. Two new objects were inserted in the arena for the

inspection phase: the orange football already used in previous experiments,

and a yellow cone. However, differently from previous experiments, the

central obstacles were removed from the arena during the inspection phase,

resulting in an “oval” inspection trajectory.

Figures 5.20 and 5.21 show that despite the differences in trajectory, the

GWR network was able to identify the orange football correctly as the new

object in the arena. The GWR network also produced some false novelty

indications, which were due to images acquired from points of view previ-

ously unexplored during training. The “oval” trajectory offers the robot

more variety of affine transformations (changes in perspective) because it is

not as regular as the “square” trajectory.

The output image depicted in Figure 5.21 is particularly interesting be-

cause it shows that the GWR network correctly highlighted the orange ball

as the novel object and also its reflection on the shiny metallic floor. Al-

though the reflection is not considered as novel in the ground truth image,

it certainly can be considered as a novel visual feature in the environment

and was correctly identified by the novelty filter. However, for the purposes
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Figure 5.20: Inspection of the arena with the orange football (novel stimu-
lus) using the GWR network as novelty filter. Exploration was done using the
“square” trajectory while inspection was done using the “oval” trajectory. The
novel stimulus is consistently identified with few false novelty indications.

(a) (b)

Figure 5.21: Output and ground truth images for the “oval” trajectory inspec-
tion when the orange ball was introduced in the arena. The ball (region 0) was
correctly identified as being the novel stimulus. Also, the ball’s reflection on
the shiny metallic floor (region 5) was highlighted as novel.
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of quantitative performance assessment of these experiments (computation

of V , U and κ), we did not consider any reflections of novel objects on the

shiny floor as being novel.

A second inspection round was conducted using a different new object,

the yellow cone. Figures 5.22 and 5.23 show that the GWR network was able

to identify the new object correctly, although some false novelties occurred.

One can notice in Figure 5.23 that the reflection of the yellow cone on

the floor (region 8) was considered novel by the novelty filter, similarly to

what happened in the case of the orange ball.
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Figure 5.22: Inspection of the arena with the yellow cone (novel stimulus) using
the GWR network as novelty filter. Exploration was done using the “square”
trajectory while inspection was done using the “oval” trajectory. The novel
stimulus is correctly and consistently identified.
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(a) (b)

Figure 5.23: Output and ground truth images for the “oval” trajectory inspec-
tion when the yellow cone was introduced in the arena. The cone (regions 0,
2 and 7) was correctly identified as being the novel stimulus. Also, the cone’s
reflection on the shiny metallic floor (region 8) was highlighted as novel.

It can be argued that the “oval” trajectory provides more varied samples

of the environment — at different perspectives and affine transformations —

than the “square” trajectory, because the former is not as regular as the

latter. Therefore, it seems natural to expect that exploring the arena using

the “oval” trajectory would result in a more general model of normality,

reducing the amount of false novelties when using a different, more regular,

inspection trajectory.

Therefore, a new exploration phase was conducted in the empty arena

using the “oval” trajectory in order to test this hypothesis. Surprisingly, the

GWR network acquired only 8 nodes, in contrast to the 15 nodes acquired

previously using the “square” trajectory. Hence, the acquired model using

the “oval” trajectory can be considered less varied than the one acquired

using the “square” trajectory, contradicting our expectations.

As before, the acquired model was used to filter out abnormal visual

features during the inspection phase of the experiment. Figure 5.24 shows

the qualitative results obtained during inspection of the arena with the

orange football using the “square” trajectory.

It can be noticed in Figure 5.24 that the ball was correctly highlighted as

being a new object, but also there were unexpected consistent indications of

a second new entity in the arena. A closer examination of the corresponding
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Figure 5.24: Inspection of the arena with the orange football (novel stimulus)
using the GWR network as novelty filter. Exploration was done using the “oval”
trajectory while inspection was done using the “square” trajectory. The ball is
consistently identified, but also a bright spot due to a reflection on the metallic
floor.

image frames revealed that this unexpected new entity was caused by a

bright reflection on the shiny floor (see Figure 5.25a).

The explanation is that this bright reflection was never seen — at least

not with this appearance — during the exploration phase. The output

image obtained during the exploration phase corresponding to the same

environment location is shown in Figure 5.25b, where one can notice the

displacement of the reflection — and therefore the displacement of the cor-

responding salient points — due to changes in perspective that resulted

from the different navigation trajectories.

A new inspection round was conducted in the arena containing the yel-
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(a) (b)

Figure 5.25: Output images for the bright reflection on the floor: (a) during
inspection; (b) during exploration. The resulting image patches in the vicinity
of regions 1 in (a) and 0 in (b) are noticeably different.

low cone and the corresponding qualitative results obtained are depicted in

Figure 5.26. Once more, the trained GWR network was able to differentiate

the novel object, but also consistently indicated the same bright reflection

described above as a novel entity.

The quantitative performance assessment according to the trajectories

used for exploration and inspection is presented in Table 5.5. Results ob-

tained for the cases in which both exploration and inspection were conducted

using the same trajectory are also presented for comparison. All cases re-

sulted in statistically significant association between system response and

actual novelty status (χ2 analysis, p ≤ 0.01). The χ2 analysis was com-

puted from 2250 samples (5 loops × 50 images × 9 salient regions) in the

case of inspection with the “square” trajectory and 1980 samples (5 loops

× 44 images × 9 salient regions) in the case of inspection with the “oval”

trajectory.

Table 5.5 shows that differences in the trajectory used for exploration

and inspection have a negative impact in the overall performance of the

proposed visual novelty detection framework — the best performances are

obtained when the same navigation trajectory is employed for both ex-

ploration and inspection phases. Nevertheless, the results obtained with

different navigation trajectories are still statistically significant and detect

novel objects correctly.
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Figure 5.26: Inspection of the arena with the yellow cone (novel stimulus) using
the GWR network as novelty filter. Exploration was done using the “oval”
trajectory while inspection was done using the “square” trajectory. The cone
is consistently identified, but also the bright spot due to a reflection on the
metallic floor.

As an extra baseline for comparisons, we also conducted the same tra-

jectory experiments using the incremental PCA algorithm, whose results

are given in Table 5.6.

The incremental PCA approach acquired 35 vectors with 28 dimensions

when the exploration trajectory was “square” and 36 vectors with 30 dimen-

sions when the trajectory was “oval”, which shows no big difference in the

generalisation ability of the models due to changes in exploration trajectory.
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Table 5.5: Performance comparison between different exploration and inspec-
tion trajectories using the GWR network. All results correspond to statistically
significant correlation between system response and actual novelty status (χ2

analysis, p ≤ 0.01).

Square Oval Square Oval
vs. Oval vs. Square vs. Square vs. Oval
V = 0.74 V = 0.69 V = 0.80 V = 0.83

Orange ball U = 0.66 U = 0.61 U = 0.66 U = 0.74
κ = 0.71 κ = 0.64 κ = 0.78 κ = 0.82
V = 0.83 V = 0.82 V = 0.91 V = 0.82

Yellow cone U = 0.70 U = 0.70 U = 0.81 U = 0.68
κ = 0.81 κ = 0.80 κ = 0.91 κ = 0.81
V = 0.80 V = 0.77 V = 0.87 V = 0.83

Overall U = 0.68 U = 0.66 U = 0.75 U = 0.71
κ = 0.78 κ = 0.74 κ = 0.87 κ = 0.81

Table 5.6: Performance comparison between different exploration and inspec-
tion trajectories using incremental PCA. All results correspond to statistically
significant correlation between system response and actual novelty status (χ2

analysis, p ≤ 0.01).

Square Oval Square Oval
vs. Oval vs. Square vs. Square vs. Oval
V = 0.79 V = 0.69 V = 0.83 V = 0.86

Orange ball U = 0.70 U = 0.61 U = 0.69 U = 0.77
κ = 0.76 κ = 0.65 κ = 0.82 κ = 0.85
V = 0.82 V = 0.86 V = 0.97 V = 0.84

Yellow cone U = 0.68 U = 0.75 U = 0.90 U = 0.71
κ = 0.80 κ = 0.86 κ = 0.97 κ = 0.82
V = 0.81 V = 0.80 V = 0.92 V = 0.85

Overall U = 0.69 U = 0.68 U = 0.80 U = 0.73
κ = 0.79 κ = 0.78 κ = 0.91 κ = 0.84

5.6 Summary and Discussion

All experiments reported in this chapter produced statistically significant

correlations between system response and actual ground truth. In other

words, all of them worked as desired — Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6

illustrate the strength of this correlation.

Although the strength of the association measured by Cramer’s V and

the uncertainty coefficient U are not all that close to the ideal value of one in

some situations, these results have to be understood as “very conservative”
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for two reasons. First, if the consistency of novelties detected between

successive image frames is taken into account, it is possible to rule out most

false positives (novelty detected but not present). And second, most false

negatives (novelty present but not detected) can be eliminated using the

fact that a single image patch within the new object labelled as novel is

enough to characterise the entire object as novel. Nevertheless, the values

of V and U serve well for the purpose of comparing performances of different

methods.

Comparison between GWR and PCA novelty filters. Results given

by the GWR network and the incremental PCA approach are similar in

performance, although the size of the models acquired by each are very dif-

ferent for the set of parameters used. The smaller amount of vectors learnt

by the GWR had always the original input dimensionality (1728 elements),

while the dimensionality of the vectors acquired by incremental PCA varied

from 19 to 33 elements. However, every dimension of the projected vectors

acquired by the incremental PCA approach corresponds to an eigenvector

with 1728 elements, resulting in the allocation of more memory. Also, on

average, the GWR-based novelty filter performed twice as fast as the incre-

mental PCA algorithm. Throughout all experiments, the incremental PCA

algorithm proved to be more expensive in terms of memory and computing

power.

Dimensionality issues become important when we consider that the Eu-

clidean metric was used to determine similarity between vectors. When

Euclidean distance is used, a small difference between two high-dimensional

vectors tend to be large in value, making it difficult to establish thresholds

of similarity for high-dimensional spaces, as it is the case with the vectors

acquired by the GWR network.

Despite its clear weaknesses concerning computational cost, the PCA

algorithm offers some advantages over the GWR mechanism. Initially, in
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the incremental PCA approach similarity between inputs is performed by

the residual error in reconstruction from the projected space. Moreover,

substitution of the Euclidean distance by the Mahalanobis distance can be

easily implemented in the incremental PCA approach once the covariance

matrix of the stored projected vectors is available as a sub-product of the

method. The Mahalanobis distance normalises the contribution of vector

elements according to the covariance matrix of the data:

dxy =
√

(x− y)TC−1(x− y), (5.1)

where dxy is the Mahalanobis distance between the column vectors x and y

and C is the covariance matrix of the data. Euclidean distance corresponds

to the special case where C is the identity matrix.

Another advantage of the incremental PCA approach is the ability to

reduce dimensionality automatically, allowing optimal reconstruction of the

original input image patch (principal component projection minimises the

squared reconstruction error). By using raw image patches the user can

evaluate exactly which parts of the environment were actually learnt by

the system through image patch reconstruction. It was possible to notice

that reconstruction of the GWR network nodes resulted in averaged image

patches because of the network learning procedure.

We made further experiments with the GWR network by increasing the

activation threshold aT in order to acquire a number of nodes as close as

possible to the number of vectors acquired by the incremental PCA. This re-

sulted in better reconstruction from the network nodes, but also decreased

the overall novelty detection performance of the GWR-based system no-

ticeably. As one would expect, the number of false negatives decreased in

this case, but on the other hand the number of false positives increased

immensely. We attribute this effect to the use of the Euclidean distance in

a high-dimensional space.
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The difficulty in evaluating similarity between inputs in high dimensions

using Euclidean distance normally forces the system designer to use an

additional preprocessing stage, such as the use of colour statistics (as in

the experiments reported in Chapter 4), for dimensionality reduction when

using the GWR network. On the other hand, the GWR approach offers the

functionality of constructing a topological relationship between inputs.

Future investigations should therefore aim at combining the embedded

dimensionality reduction feature of the incremental PCA with the topo-

logical construction algorithm of the GWR network using the Mahalanobis

distance as a measure of similarity between patterns. Extensions to the

incremental PCA algorithm that make it robust to partial occlusions in the

image patches (Skočaj and Leonardis, 2003) are also attractive for future

investigations.

Considering the general system functionality, the attention mechanism

plays an important role in the system’s ability to generalise by providing

image patches that are robust to translations and therefore reducing the

number of acquired nodes or vectors. Alternatives to the saliency map as

attention model, which offer invariance to scale (Mikolajczyk and Schmid,

2001) and affine transformations (Mikolajczyk and Schmid, 2002) may im-

prove the generalisation ability of the system, helping to reduce the number

of vectors or nodes in the models of normality. Experiments concerning

invariance to scale are reported in the next chapter.



Chapter 6

Visual Attention and

Automatic Scale Selection

The attention mechanism plays an important role in the general perfor-

mance of the proposed framework for visual novelty detection. Its use not

only allows the localisation of novel visual features within an input image

frame, but also contributes to the reduction in the dimensionality of the

feature vectors that are fed to the novelty filter stage. In cases where rel-

ative positioning of pixels is important to the image encoding scheme, the

accuracy of the interest points located by the attention mechanism is crucial

to avoid misalignment errors. Also, image encoding procedures which are

robust to changes in scale and affine transformations are desirable in or-

der to improve generalisation and reduce the number of acquired concepts

(model nodes or vectors) by the learning mechanism.

In Chapters 4 and 5 we reported experiments using the saliency map

(Itti et al., 1998) as the mechanism of visual attention. This biologically-

inspired model uses multi-scale image representations (image pyramids) to

detect variations in intensity, colour and edge orientation. Conspicuity maps

of each feature type are normalised and combined into a single saliency map

(see Subsection 2.2.1 for details), whose values are a measure of the degree

152
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of saliency of the corresponding image region. Normalisation is necessary

in order to combine intensity, colour and orientation conspicuity maps with

different dynamic ranges into a single saliency map and, as a result, gives

more weight to unusual features in the input image frame.

Figure 6.1 shows examples of typical images acquired from a robot arena

and their respective pseudo-coloured saliency maps (low saliency values ap-

pear in blue and high saliency values appear in red), each of them with

predominant features that determined the highest saliencies.
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Figure 6.1: Saliency map: (a) predominant orientation features, with the most
salient region corresponding to the edges at the top-right corner of the image;
(b) predominant colour features, with the most salient region corresponding to
the orange object in the image; (c) predominant intensity features, with the
most salient regions corresponding to bright spots in the image. Low saliency
values appear in blue and high saliency values appear in red.
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It is important to notice in Figure 6.1 that because the saliency map

is computed in scale 2 of the image pyramids in our implementation (see

Subsection 2.2.1), a 1:4 reduction occurs in each image dimension (input

images have 152× 120 pixels and therefore yield 38× 30 saliency maps).

The highest value within the saliency map needs to be searched in order

to determine the location of the first focus of attention, then the second

highest value needs to be found to establish the location of the second

focus of attention and so on. To perform the search for saliency values

in descending order, it is necessary to mark the salient locations which

were previously found in the map, so that the focus of attention can shift

towards the next highest saliency value. Once the model has attended a

salient location, this location needs to be eliminated from further searches.

This mechanism of avoiding locations that have already been attended to

is known as inhibition of return (Itti et al., 1998).

Our implementation of the inhibition of return is very simple. It consists

in setting saliency values to zero around the currently attended location in

the saliency map. Therefore, when searching the saliency map again for the

next highest value, the inhibition of return assures that previously visited

locations (and a small circular region around them) will not be selected

again. This effect is illustrated in Figure 6.2, where the three most salient

regions of an input image are highlighted and the effect of the inhibition

of return in the corresponding pseudo-coloured saliency map is shown. In

this example, the rank of saliency ranges from 0 (most salient) to 2 (less

salient), also indicating the order in which the regions were attended (from

0 to 2).

In Figure 6.2 and also in all the experiments reported so far in this

thesis, the location of the salient points in the image frame was obtained

from the coordinates in the saliency map multiplied by four to compensate

for the 1:4 reduction in each dimension. The simplicity of this approach has
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Figure 6.2: Inhibition of return: (a) first salient location with no inhibition of
return; (b) second salient location with inhibition of the first location; (c) third
salient location with inhibition of the first and second locations.

a serious shortcoming: the resulting resolution for the location of salient

points in this case is four pixels (the coordinates of salient locations will be

always multiples of four). A solution to this problem is to interpolate the

location of local maxima in the saliency map to subpixel accuracy using a

Taylor expansion up to the second order term because the saliency function

is smooth. However, this approach cannot be followed with such a simplistic

implementation of the inhibition of return because it changes the original

values in the saliency map, which are needed for the interpolation.

Therefore, in this chapter we conduct experiments using a different way

to select and inhibit salient regions in the saliency map, which allows inter-
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polation of saliency maxima. We also compare results with the multi-scale

Harris detector (see Subsection 2.2.2), which is based on the search for ex-

trema in a Laplacian pyramid (Lowe, 2004; Mikolajczyk and Schmid, 2001).

Our aim is to investigate the influence of the attention mechanism in the

overall performance of the visual novelty detection system and also the pos-

sibility of implementing automatic scale selection, i.e. determining the size

of interest regions automatically based on the characteristic scale property

suggested by Lindeberg (1998).

6.1 Experiment 16: Accuracy and Stability

In order to study the influence of accuracy in the location of salient points —

a very important issue when raw image patches are used because misalign-

ment can lead to misclassification — we devised and implemented an al-

ternative way of locating points in the saliency map. In this approach, the

number of salient locations is determined automatically.

The saliency map is searched to determine its average saliency value

(S̄) and also its maximum saliency value (Ŝ), which corresponds to the

first location to be attended by the attention mechanism. These two values

determine a saliency threshold (ST ) for the selection of salient points:

ST = S̄ + k(Ŝ − S̄), 0 6 k 6 1 (6.1)

where k is a constant that determines the number of salient points. The

lower the value of k is, the larger is the resulting number of salient points —

here we have used k = 0.25.

Salient locations are then determined by a search for local maxima whose

values are above the saliency threshold ST . Attended locations are marked

in a separate inhibition map to avoid corrupting the values in the saliency

map as happened in the previous implementation. The determined coordi-

nates and their neighbours are then used to interpolate the location of the
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maxima with subpixel accuracy using a second order Taylor expansion:

x̂ = − Sx
Sxx

=
S(x− 1, y)− S(x+ 1, y)

2[(x+ 1, y)− 2S(x, y) + S(x− 1, y)]
, (6.2)

ŷ = − Sy
Syy

=
S(x, y − 1)− S(x, y + 1)

2[S(x, y + 1)− 2S(x, y) + S(x, y − 1)]
, (6.3)

where Sx and Sy are the first partial derivatives and Sxx and Syy are the

second partial derivatives of the saliency function S relative to coordinates

x and y, respectively.

Equations 6.2 and 6.3 fit a parabola to the local saliency function in order

to find the offset (x̂, ŷ) to be added to the coordinates of the salient point

previously found. A parabola is sufficient to interpolate a more accurate

location for local maxima since the saliency function is reasonably smooth.

Figure 6.3 illustrates a typical smooth landscape of the saliency function

for an input image containing a salient orange ball.

The multi-scale Harris detector (Mikolajczyk and Schmid, 2001) was im-

plemented as an alternative interest point selection strategy to the saliency

map. As previously explained in Subsection 2.2.2, this algorithm basically

consists in building an intensity Laplacian pyramid from the input image

and then searching it for extrema, which are stable in both space and scale

and therefore correspond to interest points (Lowe, 2004).

In order to compare performances of different strategies to select interest

points, we conducted experiments using normalised raw image patches in

the image encoding stage (the same approach used throughout Chapter 5).

Raw image patches were used in this case because the overall performance

of the visual novelty detection system is sensitive to patch misalignment,

which obviously depends on the accuracy of the attention mechanism being

used. Therefore, an attention mechanism that provides better interest point

accuracy and stability is expected to also provide better overall performance

when using raw image patches.
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Figure 6.3: Typical saliency function landscape: (a) input image containing a
very salient orange ball; (b) 3D plot of the corresponding saliency map; (c)
saliency landscape with superimposed input image, showing that the highest
peak corresponds to the orange ball.
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For the experiments in this chapter we used the same dataset used in

Chapter 5, i.e. images from the laboratory arena containing an orange foot-

ball and a grey box. Also as in previous experiments, a fixed scale size

of 24× 24 pixels was used for the image patches. As mechanisms of atten-

tion, we have used the saliency map with interpolated locations as described

above (referred to as “interpolated saliency”) and the multi-scale Harris de-

tector. Both of these approaches automatically decide the number of salient

points to be selected within the input image.

The baseline for comparison of results was the basic saliency map with

inhibition of return used in previous experiments (referred to as “coarse

saliency”), in which we searched for a fixed number of three salient points.

Additionally, we also ran experiments in which three interest points were

selected at random, using the same inhibition of return strategy in order

to avoid interest points being placed too close to each other. Because only

three image patches are selected per image frame in these cases, only 3 ×

24 × 24 = 1728 pixels were processed from a total of 152 × 120 = 18240

pixels in the image frame. In other words, only 9.5% of the input image is

actually analysed by the novelty filter and, therefore, a sensible selection of

regions of interest is very important to detect any novelties with success.

After these considerations, the performance of the random interest point

selection is expected to be worse than the performance of the other attention

mechanisms.

Assessment of the attention mechanisms. As novelty ground truth

images were available for the objects of interest (the orange ball and the

grey box), we have computed the percentage of selected interest regions

(PA) that contained at least 10% of pixels belonging to the objects in im-

age frames where they appeared. This measurement evaluates the ability of

each attention mechanism to select patches containing part of the objects of

interest. The higher the percentage of regions containing part of the objects
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of interest, the better are the chances of the corresponding attention mech-

anism to select those particular objects. We expect that a good attention

mechanism selects at least one region containing the object of interest per

frame, i.e. PA > 33.3% when using three interest points per image frame.

However, the simple percentage of regions contemplating the object of

interest is not always a faithful performance measurement for the attention

mechanism. For example, it may happen that in a given image frame all

selected patches contain the object of interest while in other frames the

object is completely missed, but still yielding an average above the desired

minimum of 33.3% when using three interest points. It is therefore also

necessary to measure the percentage of image frames in which at least one

selected region contains part of the object of interest (P1). Good attention

mechanisms are expected to result in P1 being close to 100% of the image

frames in which at least one region contains the object of interest.

Table 6.1 shows the percentages of regions containing part of the object

of interest (PA and P1) for each of the four experimented attention mech-

anisms (in total, 40 image frames were used to compute these percentages:

20 containing the orange football and 20 containing the grey box). Overall

percentages (combined results for the orange football and the grey box) are

also presented.

Table 6.1: Percentage of regions (fixed scale) containing part of the object of
interest (PA) and the percentage of image frames in which at least one selected
region had part of the object of interest (P1).

Random Coarse Interpolated Multiscale
Selection Saliency Saliency Harris Det.
PA = 11.7% PA = 65.0% PA = 60.0% PA = 44.1%

Orange ball
P1 = 30.0% P1 = 100.0% P1 = 90.0% P1 = 100.0%
PA = 6.7% PA = 45.0% PA = 64.2% PA = 38.2%

Grey box
P1 = 20.0% P1 = 100.0% P1 = 100.0% P1 = 95.0%
PA = 9.2% PA = 55.0% PA = 62.1% PA = 41.2%

Overall
P1 = 25.0% P1 = 100.0% P1 = 95.0% P1 = 97.5%
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As expected, Table 6.1 shows that the worst performance was yielded by

the random selection of interest regions, which of course did not follow any

specific criterion other than pure chance. Interestingly, the coarse saliency

approach performed better than the interpolated saliency for the orange

ball, but the situation inverted for the grey box. This effect is attributed

to the fact that the grey box presents a larger colour distribution (from

grey to white) than the more uniform orange ball, causing the interpolated

saliency map to detect more salient points on the grey box because there is

no inhibition of return in this case.

Regarding the multi-scale Harris detector, its performance was slightly

worse than the performance of the interpolated saliency map concerning

the percentage of regions embracing the object of interest (PA), but similar

concerning the percentage of frames in which at least one region contained

the object of interest (P1).

Using the GWR network as novelty filter. In order to assess the

impact of the attention mechanism on the overall visual novelty detection

performance, a GWR network with the same parameters as in previous

experiments was trained with the raw image patches selected from the empty

arena. Also as in previous experiments, the acquired model of normality of

the empty arena was used to filter out any abnormal perceptions during the

inspection of the environment. Inspection was conducted with the presence

of the aforementioned novel objects in the arena and the results obtained

with each attention mechanism are given in Table 6.2, including the sizes of

the acquired models. The “overall” performance shown corresponds to the

analysis of the results for the orange football and the grey box combined in

a single contingency table.

All experiments resulted in statistically significant correlation between

novelty ground truth and the classification made by the system (χ2 analysis,

p ≤ 0.01), except the ones using random selection of regions because the
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Table 6.2: Visual novelty detection performance comparison using different
interest point selection methods (fixed scale) and the GWR network.

Random Coarse Interpolated Multiscale
Selection Saliency Saliency Harris Det.

Model Size 2 nodes 3 nodes 5 nodes 4 nodes
V = 0.84∗ V = 0.91 V = 0.93 V = 0.89

Orange ball U = 0.64 U = 0.73 U = 0.81 U = 0.73
κ = 0.84 κ = 0.91 κ = 0.92 κ = 0.89
V = 0.47∗ V = 0.77 V = 0.76 V = 0.59

Grey box U = 0.23 U = 0.57 U = 0.53 U = 0.30
κ = 0.47 κ = 0.75 κ = 0.73 κ = 0.51
V = 0.70∗ V = 0.84 V = 0.81 V = 0.75

Overall U = 0.45 U = 0.62 U = 0.56 U = 0.50
κ = 0.70 κ = 0.83 κ = 0.80 κ = 0.72

∗Ill-conditioned contingency tables for the χ2 test

resulting contingency tables were ill-conditioned for the χ2 test (the cor-

responding tables of expected values had entries with values below 5, see

Section 3.3). Nevertheless, the statistics V , U and κ were still computed

in order to assess the classification ability of the GWR network when using

the random image patch selection strategy.

In fact, the strength of the association between the GWR network re-

sponse using random selection of regions and ground truth data was still

very reasonable. However, this result must be interpreted with care. It is

also important to remember how often the novel features are selected by the

attention mechanism. When random selection is used, there is no guarantee

that novel features are ever going to be candidates (see Table 6.1). This

is illustrated in Figure 6.4, where one can notice that both the coarse and

interpolated saliency approaches and the multi-scale Harris detector have

successfully selected image patches that contain part of the objects of in-

terest, while the random selection has failed completely in the cases shown.

Nevertheless, the GWR network was able to classify the three randomly

selected regions shown in Figure 6.4a correctly as being non-novel.

It can also be noticed in Figure 6.4 that the saliency map prefers blobs

and straight edges, while the multi-scale Harris detector prefers edges with
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high curvature. The location of interest points selected by the multi-scale

Harris detector are assigned with crosses instead of numbers because there

is no saliency rank in this case. In fact, the same applies to random selection

(a)

(b)

(c)

(d)

Figure 6.4: Output images (fixed scale, GWR network): (a) random selection
with inhibition of return; (b) coarse saliency map with inhibition of return; (c)
interpolated saliency map; (d) multi-scale Harris detector. Random selection is
the only strategy that does not guarantee that interest points will lie within the
objects of interest (the orange football on the left and images and the grey box
on the right images).
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of interest points, but the numbers serve the purpose of showing the lack of

correlation between interest points in a sequence of frames. Image patches

corresponding to interest points close to the borders of the input frame were

discarded if their size was smaller than the fixed size of 24× 24 pixels.

Using incremental PCA as novelty filter. For the sake of complete-

ness, the same experiments were repeated using the incremental PCA al-

gorithm as novelty filter. The results obtained are shown in Table 6.3 and

include the sizes of the acquired models. Once more, the “overall” per-

formance corresponds to the analysis of the results for both novel objects

combined in a single contingency table.

Table 6.3: Visual novelty detection performance comparison using different
interest point selection methods (fixed scale) and incremental PCA.

Random Coarse Interpolated Multiscale
Selection Saliency Saliency Harris Det.
21 vectors 24 vectors 30 vectors 28 vectors

Model Size
(20 dim.) (22 dim.) (28 dim.) (27 dim.)
V = 0.55∗ V = 0.87 V = 0.84 V = 0.94

Orange ball U = 0.45 U = 0.70 U = 0.61 U = 0.83
κ = 0.47 κ = 0.87 κ = 0.84 κ = 0.94
V = 0.29∗ V = 0.94 V = 0.75 V = 0.63

Grey box U = 0.10 U = 0.84 U = 0.50 U = 0.31
κ = 0.28 κ = 0.94 κ = 0.73 κ = 0.62
V = 0.46∗ V = 0.91 V = 0.79 V = 0.80

Overall U = 0.26 U = 0.76 U = 0.54 U = 0.53
κ = 0.41 κ = 0.90 κ = 0.77 κ = 0.79

∗Ill-conditioned contingency tables for the χ2 test

Once again, all results showed statistically significant association be-

tween system response and actual novelty status (χ2 analysis, p ≤ 0.01)

when incremental PCA was used as novelty filter, except the ones using ran-

dom selection of regions (resulting contingency tables were ill-conditioned

for the χ2 test). It can be noticed that the number of acquired vectors

and their dimension is slightly larger for the cases in which the interpolated

saliency approach or the multi-scale Harris detector were used, indicating
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that a higher number of relevant eigenvectors are obtained when using these

attention mechanisms. Results were much worse when random selection of

image patches was used, showing the higher sensitivity of the incremental

PCA algorithm to the accuracy and stability of the interest point detector

in use when compared to the GWR network.

The coarse saliency map provided the best overall results and therefore,

taking into account the important information about the percentage of se-

lected regions containing part of the objects of interest (see Table 6.1), it is

the best choice among the investigated attention mechanisms.

The reconstructed images from the acquired incremental PCA models

using the interpolated saliency map and the multi-scale Harris detector as

attention mechanisms are shown in Figure 6.5, where one can notice that

the acquired models using either interest point detector are quite similar.

Only reconstructed images from incremental PCA models acquired using

the interpolated saliency map or the multi-scale Harris detector are shown

because these are the only attention mechanisms that will be used in the

experiments on automatic scale selection to be presented in the next section.

(a)

(b)

Figure 6.5: Image patches (fixed scale) acquired using incremental PCA: (a)
interpolated saliency map; and (b) multi-scale Harris detector. Both models are
similar in contents and in size.
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6.2 Experiment 17: Automatic Scaling

As a result of robot motion around the environment, visual features are

subject to several geometric transformations. The use of attention mecha-

nisms provides robustness to translations by selecting salient characteristic

locations within the image frame. Both attention mechanisms being inves-

tigated in this chapter rely on multi-scale pyramidal (also known as scale-

space) representations, which provide stable salient locations regardless of

changes in scale or translations in space.

Changes in scale are also relevant when the robot approaches objects.

In our experiments so far, generalisation according to scale was achieved by

acquiring multiple versions of salient visual features at different scales by the

learning mechanism in use. If the image encoding stage is made invariant

to changes in scale, this would improve the overall system generalisation

ability and reduce the amount of acquired nodes or vectors in the model of

normality of the environment.

Characteristic scale. Lindeberg has shown that the characteristic scale

of a pixel within an image can be determined by locating the extremum

of the Laplacian jet of that particular pixel (Lindeberg, 1998). The Lapla-

cian jet of a given pixel is the function across the levels of the intensity

Difference-of-Gaussian pyramid of an image at the coordinates of the pixel.

The response of the Laplacian will be the highest at the scale in which the

contrast between close neighbouring pixels is maximal, which by definition

corresponds to the characteristic scale of that location.

Because both attention mechanisms used in this chapter already make

use of Laplacian pyramids, we can use them to compute the characteristic

scale of the selected interest points and use it to determine the approximate

size of their corresponding region of interest, i.e. the size of the image patch

to be cropped from the input frame. This strategy was used by Lowe (2004)
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and by Crowley, Riff, and Piater (2002) to determine the region of interest

surrounding visual features to be encoded.

Once the location of an interest point is defined, the Laplacian jet at

that location needs to be searched for an extremum. The scale can then be

determined precisely by interpolation using a second order Taylor expansion:

ŝ = − Ls
Lss

=
L(s− 1)− L(s+ 1)

2[L(s+ 1)− 2L(s) + L(s− 1)]
, (6.4)

where s is the level of the pyramid in which the extremum was found, Ls

and Lss are the first and second partial derivatives of the Laplacian function

L relative to the level s, respectively.

The offset ŝ is added to the extremum level in order to determine scale

with better accuracy. According to Crowley, Riff, and Piater (2002), the

radius of the region of interest can be computed from the interpolated half-

octave pyramid level by using the following equation:

rroi = 1.18× b(s+ŝ), (6.5)

where the constant 1.18 is an empirical correction factor for the scale, which

is given by a geometric progression with base b =
√

2. Two levels of the

pyramid are necessary to change scale by a factor of two, hence the name

“half-octave pyramid”.

The procedure above can be performed directly in the case of the multi-

scale Harris detector because in our implementation we use a scale-space

with five octaves, i.e. a half-octave Laplacian pyramid with ten levels (Crow-

ley et al., 2002), which provides sufficient scale resolution. However, in the

case of the saliency map, the intensity Laplacian pyramid used has only five

levels. Therefore, an additional half-octave Laplacian pyramid is built using

the intensity channel with the sole purpose of computing the characteristic

scale of salient points.

In our implementation of automatic scale selection, we selected regions
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of interest with twice the radius computed with equation 6.5, in order to

guarantee that edges would be present in the image patches. Also, the patch

radius was limited to a minimum of 6 pixels and a maximum of 24 pixels:

r = min{max{6, 2× rroi}, 24}, (6.6)

resulting in the selection of square image patches centred around the interest

points ranging from 12× 12 to 48× 48 pixels in size.

Figure 6.6 shows examples of interest points selected by the interpo-

lated saliency map and the multi-scale Harris detector, and their respective

regions of interest, whose sizes were calculated according to equation 6.6.

The circles in Figure 6.6 designate the size of the regions of interest ac-

cording to the automatic scale selection of the corresponding interest point.

There was no novelty detection involved in the generation of these output

images, just the use of the attention mechanisms with automatic scale se-

lection to determine the size of the regions. It is important to notice that

when it happens to both attention mechanisms to decide for interest points

in similar locations, the size of the corresponding regions of interest are also

similar. In these examples, like in Figure 6.4 on page 163, it is also possible

to notice that the multi-scale Harris detector selects interest points on edges

with high curvature, while the saliency map selects interest points on blobs

and straight edges.

Assessment of the automatic scale selection. Using the available

ground truth images for the objects of interest (the orange ball and the

grey box), once more we computed the percentages of interest regions that

contained at least 10% of pixels belonging to the objects (PA and P1), this

time using automatic scale selection. The results obtained for both attention

mechanisms investigated are given in Table 6.4.

A comparison with the results using fixed scale (Table 6.1) shows that

the percentage of selected regions that contain part of the objects of interest
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(a) (b)

Figure 6.6: Output images with automatic scale selection: (a) interpolated
saliency map; (b) multi-scale Harris detector. Interest points are indicated by
numbers in (a) or crosses in (b) and the size of their respective regions of
interest are indicated by white circles (there was no novelty detection involved
in the generation of these images).

(PA) has increased, especially in the case of the multi-scale Harris detector.

This means that there was an improvement in performance of both attention

mechanisms in question. We therefore proceeded with experiments using
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Table 6.4: Percentage of regions (auto scale) containing part of the object of
interest (PA) and the percentage of image frames in which at least one selected
region had part of the object of interest (P1).

Interpolated Multiscale
Saliency Harris Det.

PA = 58.5% PA = 38.1%
Orange ball

P1 = 100.0% P1 = 95.0%
PA = 62.0% PA = 48.7%

Grey box
P1 = 100.0% P1 = 95.0%
PA = 60.2% PA = 43.4%

Overall
P1 = 100.0% P1 = 95.0%

the whole visual novelty detection framework to assess the impact caused

in overall performance by using automatic scale selection.

To obtain the feature vectors with a fixed number of dimensions needed

by the learning mechanisms, the image patches selected by the attention

mechanisms were scaled to a fixed size of 24 × 24 pixels through bilinear

interpolation. This allows changes in scale from 1:2 to 2:1 because the

original patch sizes range from 12× 12 to 48× 48 pixels (see equation 6.6).

Using the GWR network as novelty filter. First, we trained a GWR

network using image frames collected when the robot was exploring the

empty arena, as happened in previous experiments (GWR network param-

eters were also the same). The acquired model of normality was then used

to filter out abnormal visual features in image frames collected during in-

spection of the arena containing two different objects, the orange football

and the grey box. Table 6.5 shows the quantitative results obtained.

The results in Table 6.5 show that only the use of the multi-scale Harris

detector as attention mechanism resulted in statistically significant asso-

ciation between the GWR network response and ground truth data (χ2

test, p ≤ 0.01) for both novel objects. Overall performance using both ap-

proaches was poor when compared to the results obtained with fixed scale

(see Table 6.2). Also, it is important to bear in mind that the overall results
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Table 6.5: Performance comparison between different interest point selection
methods (automatic scale) using the GWR network. Only the multi-scale Harris
detector contributed to statistically significant association between novelty filter
response and actual novelty status for both novel objects.

Interpolated Multiscale
Saliency Harris Det.

Model Size 4 nodes 2 nodes
V = 0.83 V = 0.47

Orange ball U = 0.69 U = 0.17
κ = 0.88 κ = 0.47
V = 0.02∗ V = 0.25

Grey Box U = 0.00 U = 0.05
κ = -0.02 κ = 0.15
V = 0.52 V = 0.31

Overall U = 0.20 U = 0.07
κ = 0.50 κ = 0.28

∗Ill-conditioned contingency table for the χ2 test

for the saliency map show statistical significance between ground truth data

and system response exclusively due to the correct detection of the orange

ball, as the grey box was completely missed. Although this does not corre-

spond to the problem with adding contingency tables described at the end

of Section 3.3, this result must be considered with care.

The resulting poor performance is attributed to the use of bilinear inter-

polation scaling, which causes image patch smoothing (a low-pass filtering

effect). Smoothing makes discrimination of image patches using the Eu-

clidean metric, used by the GWR network algorithm, more difficult and

this is reflected in the small number of acquired nodes.

Using incremental PCA as novelty filter. The experiments were re-

peated using incremental PCA, which we expected to be less sensitive to

bilinear interpolation smoothing than the GWR network.

The expected outcome of using automatic scale selection was that smaller

PCA models of normality would be acquired as a consequence of the abil-

ity to generalise scale, rather than acquiring multiple scaled versions of the

same features by the learning mechanism.
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A quantitative comparison of the results obtained is given in Table 6.6,

which also includes the size of the acquired models.

Table 6.6: Performance comparison between different interest point selection
methods (automatic scale) using incremental PCA. All experiments resulted in
statistically significant association between novelty filter response and actual
novelty status (χ2 test, p ≤ 0.01 except otherwise noted).

Interpolated Multiscale
Saliency Harris Det.

20 vectors 11 vectors
Model Size

(19 dim.) (10 dim.)
V = 0.94 V = 0.51

Orange ball U = 0.80 U = 0.20
κ = 0.94 κ = 0.50
V = 0.56 V = 0.17∗

Grey Box U = 0.28 U = 0.02
κ = 0.50 κ = 0.10
V = 0.76 V = 0.29

Overall U = 0.49 U = 0.06
κ = 0.75 κ = 0.27

∗p ≤ 0.05

Despite revealing statistically significant association between system re-

sponse and ground truth data (χ2 test, p ≤ 0.01), the results in Table 6.6

are poorer than the results obtained using fixed scale (see Table 6.3). Nev-

ertheless, both systems were able to correctly highlight the novel objects, as

shown in Figure 6.7. The acquired models of normality are smaller than the

ones acquired using image patches with fixed size, as expected. Detection of

the grey box was more difficult when using the multi-scale Harris detector

as attention mechanism and incremental PCA as novelty filter. This is in-

dicated by a lower level of statistical significance between system response

and actual novelty status for the grey box (χ2 test, p ≤ 0.05) and small

values for V , U and κ (comparable to random guessing, see Section 3.3).

The interpolated saliency map shows better performance (strong agree-

ment between novelty filter response and actual novelty status) than the

multi-scale Harris detector (weak agreement) in this context. The recon-

structed images from the acquired incremental PCA models using automatic
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(a)

(b)

Figure 6.7: Output images (auto scale, incremental PCA): (a) interpolated
saliency map; (b) multi-scale Harris detector. Most of the image regions con-
taining part of novel objects are correctly identified with white circles.

scale selection are shown in Figure 6.8, where the similarity between the ac-

quired models using either interest point detector can be seen. The fact

that the acquired models using automatic scale selection are smaller can

also be confirmed by comparisons with Figure 6.5 on page 165.

(a)

(b)

Figure 6.8: Image patches (auto scale) acquired using incremental PCA: (a)
interpolated saliency map; and (b) multi-scale Harris detector. Both models
are smaller than the ones acquired using fixed scale (multiple scaled versions of
equivalent features have disappeared).
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6.3 Summary and Discussion

In this chapter we have made an assessment of the influence of the attention

mechanism within our visual novelty detection framework, particularly with

respect to the accuracy in the localisation of interest points and the use of

automatic scale selection.

We investigated two distinct interest point detection techniques: the

saliency map (Itti et al., 1998), which selects interest points on blob-like fea-

tures and straight edges, and the multi-scale Harris detector (Mikolajczyk

and Schmid, 2001), which selects interest points on edges with high cur-

vature. Both approaches had their localisation accuracy improved through

function interpolation using a second order Taylor expansion as suggested

by Lowe (2004).

Performance of the attention mechanisms was evaluated by computing

the percentage of selected regions that contained part of the objects of

interest for which novelty ground truth was available (an orange football

and a grey box). We also computed the percentage of image frames in which

at least one selected region contains the novel object. These measurements

are related to the probability of the attention mechanism to select regions

containing part of the objects of interest as candidate regions to be classified

by the novelty filter. As expected, our results show that the use of attention

criteria to select interest points yields superior performance than random

selection of regions (Table 6.1).

Because there are advantages in using raw image data in order to allow

image reconstruction, accuracy in interest point selection also became an

important issue. Accurate localisation reduces errors due to misalignment

of image patches during comparisons, having an impact in the overall per-

formance of the visual novelty filter and also reducing the size of the model

of normality that is learnt from the environment.

Another issue of concern is the robustness to changes in scale of vi-
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sual features as a result of robot navigation around the environment. In

the experiments in previous chapters, generalisation with respect to scale

happened through the acquisition of many scaled versions of the same vi-

sual features by the learning mechanism. We tested the hypothesis that

some degree of scale invariance incorporated in the image encoding stage

would reduce the size of the learnt models and improve overall robustness

to changes in scale, through experiments using the automatic scale selection

method originally proposed by Lindeberg (1998) and efficiently implemented

by Crowley, Riff, and Piater (2002). The results in Table 6.6 and Figure 6.8

corroborate the hypothesis that the use of automatic scale selection reduces

the size of the PCA model of normality. However, overall performances of

the novelty filters were worse than when using fixed scale image patches

(compare Tables 6.3 and 6.6).

Among the experimented models of attention, the interpolated saliency

map is the one that offers the most consistent results, particularly when

using incremental PCA as novelty filter. Concerning automatic scale se-

lection, the implementation reported here is not the most efficient because

it uses an additional Laplacian pyramid to this effect. An implementation

of the saliency map built from half-octave pyramids as in (Crowley et al.,

2002) instead of the pyramidal structure suggested in (Greenspan et al.,

1994; Itti et al., 1998) constitutes a better scenario for future investigations

in automatic scale selection.

The saliency map also offers additional advantages, such as the possi-

bility of top-down biasing when a priori knowledge about important visual

features are known. For instance, if bright spots constitute important visual

features for some application, the combination of features (see Chapter 2)

can be biased towards the intensity channel of the saliency map, rendering

intensity more salient than colour or orientation. Furthermore, the saliency

map is open for the inclusion of more visual features in addition to the ones
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included in its original implementation (Itti et al., 1998). Examples of ad-

ditional visual features of interest are flicker and motion (Dhavale and Itti,

2003).



Chapter 7

Conclusion

An approach to perform visual novelty detection with applications in envi-

ronment inspection using mobile robots is presented in this thesis. The gen-

eral framework uses a mechanism of visual attention that selects candidate

image patches in the input frame, which are then encoded and classified as

novel or non-novel by a novelty-detecting clustering mechanism. This abil-

ity to differentiate between common and uncommon stimuli is essential to

robots operating in dynamic environments and is at the core of applications

involving automated exploration, inspection and surveillance.

For real world applications like sewer inspection, vision is the sensor

modality of choice because of the rich range of information about the envi-

ronment in high resolution that it can provide. Moreover, vision does not

only provide information restricted to the visual domain, such as colour

and texture, but can also be used to estimate shape, size and distance to

objects. All of this information is useful for robots operating in complex en-

vironments, but comes at the cost of processing large amounts of data with

limited computational resources and therefore poses challenges to real-time

operation.

We demonstrated that the use of attention mechanisms such as the

saliency map (Itti et al., 1998) or the multi-scale Harris detector (Mikola-

jczyk and Schmid, 2001) minimise the amount of data to be processed and

177
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at the same time localise where the novel features are in the image frame.

Robustness to geometric transformations (e.g. translations and changes in

scale) due to robot motion is also improved by the use of stable interest

point detectors, avoiding explicit segmentation of the input image.

Because novelty is of contextual nature and therefore can not be easily

modelled, the approach that we follow is to first acquire a model of normality

through robot learning and then use it as a means to highlight any abnormal

features that are introduced in the environment. For this purpose, we have

used unsupervised clustering mechanisms such as the GWR neural network

(Marsland et al., 2002b) and the incremental PCA algorithm (Artač et al.,

2002), which are able to learn aspects of the environment incrementally.

We proposed an experimental setup to evaluate performance and func-

tionality of visual novelty filters in Chapter 3. The experimental procedure

was divided into two stages: an exploration phase, in which the learning

mechanism was enabled to allow the robot to build a model of normal-

ity while experiencing the environment; and an inspection phase, in which

the acquired model of normality is used as a novelty filter. Novel objects

were inserted in the robot’s environment during the inspection phase of ex-

periments with the expected outcome that the visual novelty filter would

produce indications of novelty and localise these new objects in the input

image frame.

Performance assessment. As the precise location and nature of the nov-

elty introduced during the inspection phase is known by the experimenter,

it is possible to generate ground truth data to be compared with the re-

sponses given by the novelty filter. In order to assess the performance of a

novelty filter objectively, we used 2 × 2 contingency tables relating actual

novelty status (ground truth) to system response, followed by the compu-

tation of statistical tests to quantify the association or agreement between

them. Here we used the χ2 test in order to check the statistical significance
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of the association between ground truth and novelty filter response, followed

by the computation of Cramer’s V , the uncertainty coefficient U and the κ

index of agreement (Sachs, 2004).

Extensive experimental data was logged to evaluate and compare the

efficiency of the different components of the visual novelty filter, namely

the visual attention mechanism, the image encoding and the unsupervised

clustering algorithm. The χ2 analysis of the generated contingency tables

revealed statistical significance in the associations between system response

and actual novelty status in most of the reported experiments. The best

configurations of the visual novelty filter presented strong agreement with

the ground truth data. Typical quantitative analyses resulted in the follow-

ing values: V = [0.65, 0.85], U = [0.35, 0.65] and κ = [0.65, 0.85].

Qualitative assessment of the learning procedure during exploration, as

well as consistent identification of novel features during inspection was made

through the use of novelty bar graphs. In these graphs, a measure of the

degree of novelty in each image frame is plotted against time/position. Nov-

elty graphs are particularly useful to identify novelty indications in unex-

pected locations of the environment and investigate their reasons, leading

to improvements in overall system robustness and ability to generalise.

We compared several instances of our framework for visual novelty de-

tection, using both qualitative and quantitative tools. In Chapter 4, colour

statistics were used as image encoding method in order to provide feature

vectors to a GWR network. We experimented with colour histograms and

colour angles (Finlayson et al., 1996) to encode colour distributions, both

in global and local fashion. Local encoding through the use of the saliency

map as attention mechanism provided better results than global encoding in

most cases. Furthermore, local encoding also enabled localisation of novel

features in the input frame.
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Colour statistics. However, colour histograms and colour angles cannot

represent colour distributions containing shades of grey. In order to solve

this problem, we added information about the intensity distribution to the

colour angular encoding. This enhanced colour angular encoding provided

the best overall results (strong agreement with ground truth data) when

used in a local fashion. Also, the compact representation provided by the

enhanced colour angular indexing resulted in a visual processing speed of

up to eight frames per second when using the robot’s on-board computer.

Raw image data. Despite being very discriminative, colour statistics ob-

viously do not encode other important visual features such as texture and

structural information. Therefore, in Chapter 5 we conducted more experi-

ments using normalised raw image patches as input vectors to the clustering

mechanism. The use of raw visual data was only possible with the use of

local encoding through the selection of candidate regions using the saliency

map as attention mechanism in order to deal with image transformations.

GWR network versus incremental PCA. Two novelty-detecting clus-

tering mechanisms, both capable of on-line unsupervised learning, were used

in these experiments with raw image patches, the GWR neural network and

the incremental PCA algorithm. Both mechanisms provided very good re-

sults (almost perfect agreement with ground truth data). The use of raw

image patches also added a useful functionality to the framework: the vi-

sual reconstruction of the acquired models. In general, the models acquired

by the GWR-based novelty filter were smaller than the ones acquired using

incremental PCA. On the other hand, incremental PCA provided better

image patch reconstruction.

Reliance on repeatable trajectories. Some of the experiments using

raw image patches also investigated the sensitivity to changes in the robot’s
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trajectory, because the navigation behaviour was always based on a very

simple force-field strategy for obstacle avoidance, which was completely in-

dependent of the visual input. Results of these experiments revealed that

the performance of our approach degrades when the robot’s trajectory dur-

ing inspection is not the same as the trajectory during exploration of the

environment. Nevertheless, quantitative analysis showed that performance

in all instances was still very good (strong agreement with ground truth

data) even with variations in the robot’s trajectory in the environment.

Saliency map versus multi-scale Harris detector. Concerning the

attention mechanism, experiments in Chapter 6 were conducted to com-

pare the performances of the saliency map and the multi-scale Harris detec-

tor. We also conducted experiments using a random interest point selection

strategy to serve as a baseline for comparisons. Both saliency map and

multi-scale Harris detector produced better results than random selection

of interest regions, with the saliency map performing noticeably better than

the multi-scale Harris detector for the purposes of novelty detection. We

attribute this to the fact that the saliency map uses a normalisation oper-

ator, which enhances features that are less common and suppresses more

common features within the input frame.

Automatic scaling. Using the fact that both attention mechanisms —

saliency map and multi-scale Harris detector — use image pyramids to form

a scale-space representation, we also conducted experiments using Linde-

berg’s automatic scale selection method (Lindeberg, 1998). The aim of these

experiments was to determine the patch size surrounding interest points au-

tomatically and to make raw image patches more robust to changes in scale.

The acquired models of normality had their sizes reduced when using auto-

matic scale selection, especially when the incremental PCA algorithm was

used, confirming an improvement in the ability to generalise scale. However,
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overall performance in visual novelty detection was worse than when using

raw image patches with fixed scale, particularly when using the multi-scale

Harris detector. This effect is attributed to the use of bilinear interpola-

tion to rescale image patches, which removes the high frequency contents of

edges and therefore makes image matching more difficult. In general, the

saliency map performed better than the multi-scale Harris detector within

our framework of visual novelty detection.

We consider the results obtained to be very good and likely to succeed

in real world applications that involve exploration and inspection of envi-

ronments using vision. An example of such an application is the automated

inspection of sewer pipes or air-conditioning ducts, as demonstrated in the

real-world experiments reported in Subsection 5.4.1. However, more elab-

orate processing to obtain robustness to general affine transformations is

necessary for applications in which the environment is not as structured as

the arenas, corridors and ducts that were used as operating environments

in this work (see Section 7.1).

Contributions. One of our main contributions was to implement and ex-

periment with visual novelty detection mechanisms for applications in au-

tomated inspection using autonomous mobile robots. Previous work done

in novelty detection used only low resolution sonar readings (Crook et al.,

2002; Marsland et al., 2002a) or very restricted monochrome visual input

(Crook and Hayes, 2001; Marsland et al., 2001). In contrast to this, here

we used colour visual stimuli with unrestricted field of view. The selec-

tion of algorithms had emphasis on bottom-up and unsupervised learning

approaches to allow exploitation of relevant characteristics of the acquired

data from the ground-up.

Quantitative performance assessment tools based on contingency table

analysis and statistical tests were developed in order to support objective

comparisons between different visual novelty filters. For comparison pur-
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poses, novelty ground truth maps were generated in the form of binary

images, in which novel visual features are highlighted manually. Because

vision is a sensor modality shared between robots and humans, generation

of novelty ground truth maps occurs in a natural and relatively easy way

(although it demands time because of the volume of images involved).

Our experiments demonstrated that visual models of normality can be

readily acquired by on-line unsupervised clustering mechanisms and used

later to detect novelties introduced in the operating environment correctly.

Other approaches to visual novelty detection mentioned in the literature

require off-line supervised training (Diehl and Hampshire II, 2002; Singh

and Markou, 2004). The novelty filters studied in this work are able to learn

on-line and our general framework presents real-time processing capabilities,

which are important characteristics for the autonomous operation of mobile

robots with limited computational resources.

Another main contribution was the demonstration that attention mech-

anisms extend the functionality of visual novelty filters, enabling them to

localise where the novel regions are in the input frame, improving image en-

coding robustness to geometric transformations due to robot motion. Also,

the use of an interest point detector as attention mechanism avoids explicit

segmentation of the input image, unlike in (Singh and Markou, 2004).

We also showed that normalised raw image data can be fed directly to

the clustering mechanism, adding the extra functionality of image patch

reconstruction from the acquired model of normality. This enables the user

to perform a visual assessment of which aspects of the environment were

actually learnt after training. The need to reduce dimensionality of raw

image patches led us to a learning mechanism based on incremental PCA,

which was adapted to function as a novelty filter using the magnitude of

the residual reconstruction error as a means to highlight novel stimuli.

There were also other contributions to improve performance to the al-
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gorithms used throughout this thesis. For example, we implemented a new

strategy for the adaptation and habituation of the GWR network’s nodes

during learning. We also used local maxima interpolation to improve inter-

est point localisation accuracy in the saliency map, as well as a method for

feature map normalisation that is more efficient than the original. In the

case of the multi-scale Harris detector, we used a very efficient algorithm —

the half-octave pyramid (Crowley et al., 2002) — to construct the scale-

space structure, combined with bilinear interpolation to search for extrema.

Finally, we enhanced colour angular encoding by appending information

about intensity spread, making it possible to discriminate shades of grey.

7.1 Future Research

The results and conclusions drawn from the experiments in visual novelty

detection reported in this thesis open a series of avenues for future investi-

gations and improvements.

It would be interesting to conduct more experiments using alternative

interest point detectors, especially those which can determine affine trans-

formation parameters for the selected regions of interest. Possible options

are the Harris-affine detector (Mikolajczyk and Schmid, 2002, 2004) and the

interest point detector developed by Shi and Tomasi (1994). The use of such

algorithms are expected to result in image encoding with extra robustness

to affine transformations, improving the ability to generalise and reducing

the number of stored vectors or nodes by the novelty filter. Experiments

are needed to compare performances with the attention mechanisms already

studied here to confirm or reject this hypothesis.

There are also some alternative methods of interest for the image en-

coding stage, which are likely to improve robustness to changes in scale and

orientation of visual features. One possibility is the use of space-variant

(log-polar) foveation (Balasuriya and Siebert, 2004; Bernardino et al., 2002;
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Bolduc and Levine, 1998) and the Fourier-Mellin transform (Bonmassar and

Schwartz, 1997; Casasent and Psaltis, 1976; Cavanagh, 1978, 1985; Derrode,

2001; Reddy and Chatterji, 1996) in order to encode visual features.

In case the application of sewer or pipe inspection is to be developed

for real, it might be worthwhile building a specific robot for the task. Of

particular interest would be the use of an omnidirectional camera similar to

the one described in (Sandini et al., 2002), mounted longitudinally to the

robot’s motion axis in such a way that panoramic images from the entire

cross-section of the pipe could be taken. This camera configuration would

minimise the need of affine-invariant image representations because the re-

sulting images from the pipe walls would be practically planar. However,

the use of an interest point detector and automatic scale selection for the

regions of interest would still be of utmost importance to localise relevant

visual features within the image frame.

For applications that demand a systematic exploration of complex large-

scale environments, such as a whole floor in a building, the integration

of the proposed visual novelty detection framework with the environment

exploration scheme developed in (Prestes e Silva Jr. et al., 2002, 2004)

is of particular interest. This approach uses potential fields to generate a

dynamic exploration path that systematically covers the entire free area

of the robot’s environment, while generating a grid map of the obstacles

that are present. Later on, the generated grid map can be used to produce

arbitrary inspection paths or even paths towards specific goals.

If a novelty detection algorithm is used to learn and associate the local

visual appearance of the environment to the grids of the environmental map,

it is possible to determine novelty not only in terms of uncommon features

that may appear in the environment, but also to establish if known features

appear in unusual locations. A potential application of such an ability is the

automated organisation of a room, in which an autonomous mobile robot
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would be able to identify which objects are not in the places they should be

and take actions to correct the situation, “tidying up” the environment.

Concerning the unsupervised clustering mechanisms that can be used

for novelty detection, it would be interesting to combine the ability of the

GWR neural network to build topological maps of the input space with the

learning mechanism of the incremental PCA algorithm. This would result

in embedded dimensionality reduction within the GWR network with the

use of hyper-ellipsoids (Mahalanobis distance) rather than hyper-spheres

(Euclidean distance) as clusters in input space, possibly improving the net-

work’s learning and reconstruction capabilities. Furthermore, the use of

several local PCA clusters in input space is likely to give better overall

results than a single global PCA model.

Also of research interest is the use of robust incremental PCA in order

to provide the visual learning system with tolerance to partial occlusions,

as suggested by Skočaj and Leonardis (2003). Merging and splitting PCA

clusters (Hall et al., 2000) in order to improve the performance of the novelty

filter is also an interesting research avenue. Finally, unsupervised learning

using Independent Component Analysis (ICA) (Bell and Sejnowski, 1996;

Karhunen, 1996; van Hateren and Ruderman, 1998; Vicente et al., 2004)

and a recently developed mechanism called on-line subtractive clustering

(Angelov, 2004; Angelov and Filev, 2004) are very attractive for further

investigations in novelty detection and incremental learning using vision.
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D. Skočaj and A. Leonardis. Weighted and robust incremental method for
subspace learning. In Proceedings of the 9th International Conference on
Computer Vision (ICCV’03), pages 1494–1501, 2003.

M. J. Swain and D. H. Ballard. Color indexing. International Journal of
Computer Vision, 7(11):11–32, 1991.

L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady. Novelty detection for
the identification of masses in mammograms. In Proceedings of the 4th
IEE International Conference on Artificial Neural Networks (ICANN’95),
pages 442–447, 1995.

O. Taylor and J. McIntyre. Adaptive local fusion systems for novelty detec-
tion and diagnostics in condition monitoring. In Proceedings of the SPIE
International Symposium on Aerospace/Defense Sensing, 1998.

A. M. Treisman and G. Gelade. A feature-integration theory of attention.
Cognitive Psychology, 12:97–136, 1980.

J. H. van Hateren and D. L. Ruderman. Independent component analysis
of natural image sequences yields spatio-temporal filters similar to simple
cells in primary visual cortex. Proceedings of the Royal Society of London
A, 265:2315–2320, 1998.

M. A. Vicente, F. C., O. Reinoso, and C. Pérez. Robust object detection
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