
NOPL & Compiler to NOP C++ namespace multi-

threading oriented solution: studies of capabilities

for the x86-64 architecture

Guilherme H. K. Martini, M. Sc.

Graduate Program in Electrical and

Computer Engineering (CPGEI) -

Student

Federal University of Technology –

Paraná

Curitiba, Brazil

ghk.martini@gmail.com

Adriano Ronszcka, M. Sc.

Graduate Program in Electrical and

Computer Engineering (CPGEI) -

Student

Federal University of Technology –

Paraná

Curitiba, Brazil

ronszcka@gmail.com

Jean Marcelo Simão, Dr.

Graduate Program in Electrical and

Computer Engineering (CPGEI) -

Professor

Federal University of Technology –

Paraná

Curitiba, Brazil

jeansimao@utfpr.edu.br

João Alberto Fabro, Dr.

Graduate School of Applied Computing

(PPGCA) - Professor

Federal University of Technology –

Paraná

Curitiba, Brazil

fabro@utfpr.edu.br

Abstract—This short paper presents the first study approach

about the capabilities of the NOP language to support multi-

threading on x86-64 computers. The initial research shows that

multi-threading can provide better performance results on such

architecture but a deeper development process must be done in

order to reach commercial and industrial quality standards.

Keywords—computing, multi-threading, computing

efficiency, notification-oriented paradigm.

I. INTRODUCTION

Modern computing deployment drives the need for the
creation of new programming languages that would simplify
and accelerate development of software. Doing more with less
without losing control of what is being coded is one of the key
reasons for continuous improvement of programming
languages., This efficiency gain can mean either coding less
and faster to solve a specific problem or it can mean that the
same hardware architecture can become capable of doing
more tasks simply by using a better suited programming
paradigm [1].

The notification-oriented paradigm is a fairly new way of
coding software systems that aims for better computer
efficiency [2]. It has a naturally distributed system where
methods, attributes and comparisons are stand-alone entities
that notify each other, hence reducing the amount of wasted
processing time used to poll unchanged data [2]. These
characteristics make it a good and natural fit for architectures
such as FPGA chips and manycore GPUs, but standard multi-
core CPUs aren’t an optimal target for it. Since the actual
market consists of many x86 and x86-64 processors, as
depicted on figure 1; and most of the high-performance
modern computers in the world use this architecture, shown in
figure 2, an approach for a multi-threading capability is
proposed.

Fig. 1. Market share of x86-64 computers shift over time (light-blue), in
dollars. Source: IC insights [3]

Fig. 2. Processor architectures of today’s top 500 computers. Around

90% of them are x86-64. Source: Top500 [4]

II. BACKGROUND DEVELOPMENT AND OBJECTVES

By the beginning of this study, the NOP language already
had a compiler that could interpret the code and transform it
into a C++ code which resembles a finite state machine that
uses namespaces to encapsulate its entities. Then this C++
code could be compiled and targeted to any processor
architecture. This compiler version was the foundation for this
work, changing it to automatically generate multi-threaded
code from any NOP code became one of the goals.

 A new approach for a compiler was under development at
the same time this study was being made, which was the
development of a mid-interpretation layer called Graf-PON.
Its main intent is to generate a more flexible, intuitive and easy
to use structure to target different applications, like NOP-to-
C# and NOP-to-Java outputs. Any new application could
benefit from characteristics of these already established
programming languages in order to increase applicability of
the NOP paradigm.

 As this new approach was still being worked on, it was
decided to narrow the scope only to the first compiler version
that generates NOP-to-C++-namespaces code. This could then
be extended in the future to the new compiler as soon as it gets
finished. So, the main goals of the work were decided:

• To generate multi-threaded code from the NOP
compiler C++-namespaces version.

• To compare the efficiency with the single-thread
code which is already available in the first version of
the compiler

• To extend multi-threading to a more complex
approach of thread management, like thread pooling.

III. CHANGING THE COMPILER

III.

The compiler project already had a defined structure. It

consisted of a lexical layer that was coded using Flex, and

then a syntax layer that used Bison as its main tool. The

entry point for changes is a virtual class that is characterized

according to each type of output that is wanted from the

compiler. This class had two extra characterizations for its

polymorphic state: one for a PThreads approach and another

for a Thread Pooling approach [5], as it is shown in figure 3.

Fig. 3. Changes on the entry-point of the NOP compiler.

Inside that class, everything was copied from the C++-

namespaces version and then modified accordingly. The

NOP entities that received multi-threading capabilities were

the methods. The reason for choosing the methods entities is

simple: A big sized PON application would retain most of its

processing time in the methods, not in attributes nor in

conditions.

Figure 4 and 5 show where the multi-threading point was

added on both approaches. It can be noted that the PThreads

version always creates a thread for the work with the

statement “pthread_create” along with a semaphore

statement “while” right before a thread creation while the

Thread Pooling version just pushes the work for a worker

thread with the statement “thpool_add_work”. For both

pictures the code differential is done vertically, code above

the white separator is the old one, followed by the replaced

code.

The semaphore for the Pthreads version is needed so that

a new thread is only created after the work from the

previously opened thread finishes for that particular method,

that is, for the same method call, the system would wait for

the first iteration to finish before starting the next one. This

was done to ensure data consistency and is explained in the

upcoming sections.

As for the Thread Pooling version, the worker threads

already queue the work, so this semaphore isn’t necessary,

although, the main thread needs to have the information of

when all worker threads are finished with the work that was

queued. Not checking for this might make the program finish

before the processing of all methods take place.

Fig. 4. Compiler changes made to allow PThreads creation on the PON

compiler over the C++-Namespaces version. Above the white
separator is the old portion of code, below is the changed code.

Fig. 5. Compiler changes made to allow Thread Pooling creation on the

PON compiler over the C++-Namespaces version. Above the
white separator is the old portion of code, below is the changed

code.

Besides the work on changing adding thread

creation/pooling, some other changes were necessary, such

as:

• Addition of PThread and Thread Pooling

libraries.

• Changes on method call arguments in order to

comply with Pthreads and Thread Pooling

libraries’ parameters, shown on figure 6.

Fig. 6. Argument changes of method calls.

• Declaration and instantiation of PThread and

Thread pools

• Destruction of these objects at the end of their

use

• Implementation of semaphores for the PThread

case, which is shown on figure 7.

Fig. 7. Semaphore implementation for the PThread mode.

It is worth mentioning that this was an iterative process

in which a lot of testing was done along the way in order to

get to the optimal output code, which is further analyzed in

the next section.

IV. OUTPUT CODE ANALYSIS

After the changes on the compiler were made, an analysis

on the output C++ code was necessary. As one of the goals is

automatic generation, a NOP code that is compiled has to

generate working code as before, but with multi-threading

capabilities.

The NOP code used as input is the Electronic Gate project,

which already is available as an example project inside the

compiler source code. It was used to validate the compiler

changes during its development.

Figure 8 shows how a PThread call was implemented and

how the wait for the semaphore gets coded in the target C++

code. This can be further improved in the future as the while

loop is making the main execution thread wait sequentially

for all work to be finished. Instead, a pool of information

could be queried and more worked could be pushed

sequentially until completion of the execution. As the

example NOP code is relatively simple, it was concluded that

for a first performance comparison, the generated code is

good “as is”.

Fig. 8. PThread code result after compiling a NOP code of the
Electronic Gate project.

Figure 9 is the equivalent result for the Thread Pooling

version, which instead of opening and closing a thread for

every function call, the calls are just queued in a worker

thread.

Fig. 9. Thread Pooling code result after compiling a NOP code of the

Electronic Gate project.

Also, as explained in the compiler code, more changes

can be seen in the generated code such as library inclusions,

object creation/destruction and a waiting verification for

work completion on the Thread Pooling version.

One last noticeable change is the semaphore on every

method for the Pthreads version, depicted on figure 10.

Fig. 10. PThread code result after compiling a NOP code of the

Electronic Gate project.

After compilation of the C++ code using GCC and

verification that the final application was running as it should,

a performance analysis was made.

V. PERFORMANCE COMPARISSON

The performance check between the original time spent to

run the application versus the PThread version and the Thread

Pooling version was made by a simple clock counter.

Whenever the code execution started, the clock counter starts.

When the application is finished, the clock count is summed

up and translated to an estimated time that was taken by the

computer to run the application. All runs were made under

the same computer, with the same operational system and

with the same task priority on its scheduler.

As the Electronic gate project is a simple program, a

CRC32 calculation was added to every method that is called

in order to increase processing burden. To further increase

that burden and to evaluate how more costly programs would

run, a “for” loop was added to the CRC32 calculation, so a

tendency can be verified as burden is changed.

Many runs for the same amount of CRC32 loops were

made in order to confirm that timing was consistent between

them. For a same simulation, times varied less than 1% in all

attempts.

Figure 11 shows a graph with the results. As processing

burden increases, Thread Pooling tends to provide better

results than PThread version, which is better than the original

one.

Fig. 11. Time taken to run the Electronic Gate project after it was

compiled with the original version (blue), PThread version
(orange) and Thread Pooling version (gray).

VI. CONCLUSION

With the gathered data it is concluded that all goals for this

work were achieved, the compiler now generates codes with

multi-threading resources, more than one approach was

tested and their results were compared. It was noted that

whenever the program gets more complex, a better way to

handle attribute changes from concurrent methods is needed

in order to grant data consistency. Also, in case methods from

past events are left for future processing after some sooner

event triggers a method right away a time discrepancy will

happen; to solve this, a broker can be implemented, being this

a suggestion for future work.

REFERENCES

[1] Rojas, Raúl; et al. Plankalkül: The First High-Level Programming
Language and its Implementation. Institut frame Informatik, Freie
Universität Berlin, Technical Report B-3/2000, February, 2000.
Avaliable: ftp://ftp.mi.fu-berlin.de/pub/reports/TR-B-00-03.pdf

[2] Banaszewski, Roni; et al. Paradigma Orientado a Notificações:
Avanços e Comparações. UTPFR, 2009.

[3] The McClean report [Online]. IC Insights, 2018.

Avaliable:http://www.icinsights.com/services/mcclean-report/report-
contents/

[4] Statistics | TOP500 Supercomputer Sites [Online]. Top500, 2014.

Avaliable: https://www.top500.org/statistics/

[5] Seferidis, Johan Hanseen. C-Thread-Pool [Online], April, 2017.

Available: https://github.com/Pithikos/C-Thread-Pool

