
 1

NOPL Compilation to Generate C# Code for
Notification Oriented Paradigm Framework

Paulo Renaux

Abstract—The solidified imperative and declarative paradigms are well known for their advantages and their disadvantages,

thus the proposal of a Notification Oriented Paradigm. It is possible to implement a NOP application either in some existing

languages (e.g. C++, Java, C#, VHDL) or in the NOP specific language, which requires translation to be compiled. This

document will briefly describe the technologies used, such as NOP, LingPON (NOP Language), and NOP C# Framework

applications. This document will describe with more emphasis how a new layer was added to the NOP Compiler and generated

to allow a NOPL code execute as a NOP C# Framework application.

Index Terms— Notification-Oriented Paradigm; Compilation; Software Development; C#.

——————————  ——————————

1 INTRODUCTION

This document will present the implementation and

results for development of a compiler that allows a

LingPON (Linguagem PON – Language for Notification

Oriented Paradigm) code to be rewritten as a C# code,

such conversion allows a NOP application in C# to be

compiled as an executable code.

This document will firstly describe the topics required

for better its better comprehension, such as NOP and

NOPL. After describing these topics, this document

will describe how the previously created compiler now

can output a code which can be compiled into an exe-

cutable application.

1.1 NOP

NOP (Notification-Oriented Paradigm) is a program-

ming paradigm that aims to overcome the difficulties

that are present in Imperative Paradigms, such as

coupling and redundancy, and in Declarative Para-

digms, such as inference mechanism processing over-

load and also coupling. [1],[2]

NOP Elements

A NOP application consists on the following elements:

Rule, Premise, Condition, Action, Instigation, Fact Base

Element, Attribute, and Method.

A Rule is composed by a condition and an instigation.

The rule’s action will occur when it’s condition is met;

the condition is met when each of its premises are

satisfied. The rule’s action can trigger several instiga-

tions to occur sequentially.

A Fact Base Element (FBE) is an abstraction of a real

world object. The FBE has each of its characteristics

and states translated into an Attribute. Each of the

FBE’s possible actions are translated into Methods.

When an attribute value changes, a notification is

sent to all premises in which they are evaluated.

When a premise is valid, it notifies a condition.

The aforementioned elements communicate them-

selves via notifications for the following mechanism:

1. An attribute notifies a premise;

2. A premise notifies a condition;

3. A condition, as part of a rule, activates an ac-

tion, or, in a more complex system, a condition

notifies an action.

4. An action notifies an instigation;

5. A method, as part of an instigation, can be

called by one;

6. As implementation of a method, an attribute

status can be changed, closing the loop.

2

1.2 LingPON

LingPON (Linguagem PON or NOP Language) is a pro-

gramming language that defines each FBE (Fact Base

Element), Rules, and their related elements. After

FBEs and Rules are defined in LingPON, these are

translated as a NOP application in C++.

NOP applications were firstly implemented in C++ and

nowadays can be implemented in Java and C# to gen-

erate an executable application.

1.3 PON Compiler

As aforementioned, FBEs, Rules, and their related

elements are translated to an executable NOP applica-

tion. This process occurs by following a process in

which a LingPON code is translated into a stream of

tokens (corresponding to the lexical analysis), seman-

tically analyzed to produce a data structure, known as

symbol table. Such symbol table, when complete,

contains all information needed to produce the appli-

cation in targeted code. [3]

For the NOP Compiler, a set of C++ classes contain a

data structure to represent and storage of information

relevant for the compilation process. [3]

1.4 NOP C# FRAMEWORK

The NOP C# Framework can be defined as a set of C#

classes which abstract the NOP mechanism and ele-

ments in a manner that allows development of appli-

cations following this programming paradigm using

said language.

As aforementioned, a NOP application can be imple-

mented in C# via a framework. Implementing an ap-

plication using the C# framework requires the code to

follow a syntax, grammar and definition order. An

example of syntax change between LingPON and NOP

in C# would be the definition of an FBE is presented in

the following figures 1 and 2. Such conversion implies

that a compiler can be used to convert from LingPON

to NOP Framework in C#, as described in the next

section.

2 IMPLEMENTATION

To implement this LingPON compiler for a NOP C#

application, the following steps were followed:

1. have knowledge of the compiler’s data struc-

ture;

2. have a base code to adapt (the base codes to

adapt were the source codes for a compiler

outputting Java code and for a compiler out-

putting C++ code);

3. have knowledge of how each data structure

translates to a C# NOP application;

4. implement each adaptation;

5. verify that data structure was fully output to a

NOP C# application code;

6. verify that the NOP application code can be

compiled;

7. verify that the NOP application has the ex-

pected output.

2.1 Steps 1 to 4

Knowledge of the compiler data structure was ob-

tained by analyzing its source (.cpp) and header (.h)

code. The base codes to adapt were acquired in the

NOP compiler project repository.

Figure 1: declaring an FBE in LingPON

Figure 2: declaring an FBE in Framework C#

PAULO RENAUX: NOPL COMPILATION TO GENERATE C# CODE FOR NOTIFICATION ORIENTED PARADIGM FRAMEWORK

 3

Knowledge of how each data structure translates to a

C# NOP application was obtained by analyzing the

example and source code acquired from the NOP

Frameworks repository under C# NOP Framework.

The adaptations on the base codes were done by ana-

lyzing how information was extracted from a data

structure (e.g. name of an attribute type) and after-

wards changing the information value if required be-

fore printing it to the target source code.

2.2 Steps 5 and 6

Using C# comments to view non-formatted acquired

information of if such information was wrongfully

acquired, it is possible to fix the compiler code to cor-

rectly acquire and format such information.

Using Visual Studio 2017 to compile the output code it

is possible to verify grammatical and semantical errors

such as attribute visibility among classes and inher-

itance among classes. When such error occurs, it is

fixed by changing the compiler code responsible for it,

such as a missing left bracket or a misnomer.

2.3 Step 7

Using the expected output obtained by executing the

base example, it is possible to compare it with the

output generated given example as a C# NOP applica-

tion.

If an error caused by the output occurs due to the

generated code, the corresponding code segment in

the LingPON C# compiler is fixed.

In this step, an error occurred outside the generated

code, being fixed manually in the framework.

3 RESULTS

Summarizing the aforementioned process to obtain

results, to verify that the C# code was generated cor-

rectly, it should be able to be compiled and its execu-

tion output matches the expected output, as seen in

Figure 3.

Figure 3: Generated Program Output

As verified that both output matches, it is possible to

confirm that the NOP compiler for C# is able to gener-

ate correctly a code in C# for NOP applications.

3 CONCLUSION

In conclusion to this process of research and iterations

of development, testing and output analysis,

implementing such compiler required knowledge of

how any compiler and how the source language

(LingPON) translates into a data structure to be

converted into another language.

 Analyzing the results, it is possible to ensure

that the analysis components of the compiler and the

code generating components are working for output-

ting a source code into a functional C# NOP Applica-

tion.

ACKNOWLEDGEMENTS

The author would like to thank the course colleagues

Leonardo T. Silio and Adriano F. Ronszcka, which con-

tributed with their prior knowledge of the LingPON

compiler; and also the course professors, who made

the project for this report possible.

REFERENCES

[1] Mendonça, Igor T.M, “Metodologia de Projeto de

Software Orientado a Notificações”. UTFPR. 2016.

4

[2] Ronszcka, Adriano F. “Contribuição para a

Concepção de Aplicações no Paradigma Orientado

a Notificações (PON) sob o viés de Padrões”.

UTFPR. 2012

[3] Ferreira, Cleverson A. “Linguagem e Compilador

para o Paradigma Orientado a Notificações (PON):

Avanços e Comparações”. pp. 89-90. UTFPR. 2015.

