
NOP on multi-core

architecture computers

Guilherme H. K. Martini, M. Sc.

Graduate Program in Electrical and
Computer Engineering (CPGEI) - Student

Federal University of Technology – Paraná

Curitiba, Brazil
ghk.martini@gmail.com

Jean Marcelo Simão, Dr.

Graduate Program in Electrical and

Computer Engineering (CPGEI) - Professor

Federal University of Technology – Paraná
Curitiba, Brazil

jeansimao@utfpr.edu.br

Robson Ribeiro Linhares, Dr.

Graduate Program in Electrical and

Computer Engineering (CPGEI) - Professor

Federal University of Technology – Paraná
Curitiba, Brazil

linhares@utfpr.edu.br

Abstract—This short paper presents a comparison between

different approaches to implement applications using the

notification oriented paradigm on multi-core computers.

Results indicate that many different paths can be used to achieve

distribution of work with Akka.net being the most effective,

productive and resourceful tool between the ones studied.

Keywords—computing, multi-threading, computing

efficiency, notification-oriented paradigm, multi-core, multi-agent

systems.

I. INTRODUCTION

Modern computing deployment drives the need for the
creation of new programming languages that would simplify
and accelerate development of software. Doing more with less
without losing control of what is being coded is one of the key
reasons for continuous improvement of programming
languages., This efficiency gain can mean either coding less
and faster to solve a specific problem or it can mean that the
same hardware architecture can become capable of doing
more tasks simply by using a better suited programming
paradigm [1].

The notification-oriented paradigm is a fairly new way of
coding software systems that aims for better computer
efficiency [2]. It has a naturally distributed system where
methods, attributes and comparisons are stand-alone entities
that notify each other, hence reducing the amount of wasted
processing time used to poll unchanged data [2]. These
characteristics make it a good and natural fit for architectures
such as FPGA chips and manycore GPUs, but standard multi-
core CPUs aren’t an optimal target for it. Since the actual
market consists of many x86 and x86-64 processors, as
depicted on figure 1; and most of the high-performance
modern computers in the world use this architecture, shown in
figure 2, an approach for a multi-threading capability is
proposed.

Fig. 1. Market share of x86-64 computers shift over time (light-blue), in

dollars. Source: IC insights [3]

Fig. 2. Processor architectures of today’s top 500 computers. Around

90% of them are x86-64. Source: Top500 [4]

II. BACKGROUND DEVELOPMENT AND OBJECTVES

 The NOP language already has many different tools to
enable its use such as: two compiler versions, an FPGA
targeted compiler, a dedicated hardware architecture and
many different applications that demonstrate its benefits and
trade-offs. Also, a framework to enable the use of more than a
single core of a multi-core computer is under development.
This framework is intended to use C++ as the main technology
to split the work of all NOP agents between all available cores
by using Pthreads and by developing interlocks/mutexes to
avoid racing conditions and deadlocks.

 Some previous work on comparing a NOP application of
an electronic gate system that made use of a simpler PThread
approach with Thread Pooling approach was also done, and it
proved that more refined parallel scheduling mechanisms can
be a productive way to increase throughput. With that in mind,
an initial study on how far actual technologies could be
integrated to a NOP framework was necessary. Also, a study
of how much new resources could be integrated to a NOP
framework without compromising its performance became
needed. So, the main goals for this work were sketched:

• To select a technology to aid on the multi-core
development of NOP.

• To benchmark this technology with the C++
framework and with the simpler Pthread and Thread
Pooling approaches.

• To clarify trade-offs and show the main advantages
and disadvantages of each technology.

III. MULTI-CORE TECHNOLOGIES STUDY

III.

The first step of the work was to search for different

technologies that could be used in order to fulfill some

requirements, such as:

• To be able to support the NOP programming

paradigm by being capable of supporting all features

already implemented in this language.

• To be able to fully use a multi-core processor with a

reasonable level of abstraction to the programmer,

keeping the determinism of the applications.

• To be easy and productive to write code to it.

• To be easily expandable to a bigger program with a

large number of entities.

• To be traceable and easy to debug.

• To be as expensive as the C++ framework in terms

of processing cost, or, if possible, less expensive

than it.

That lead to the research and reading of

documentations of the following technology list:

• PThreads for C++

• Thread Pooling for C

• Erlang

• Haskell

• Node.js

• CSP

• Open CL

• Open MP

• FADALib

• Multi Agent Systems theory (MAS)

• Akka.net

There are many advantages and disadvantages in all

technologies and in general all of them could have been

studied and compared to the actual NOP frameworks. This

work focused on comparing four different technologies. Two

of them were already developed in a previous study, which

are the PThreads for C++ and the Thread Pooling for C [5].

The third one is the already developed C++ NOP framework

that needed some adjustments and also the coding of the same

case of study, the electronic gate application. The fourth and

last one would be a new technology and for this Akka.net was

chosen. The list of reasons for choosing Akka.net follows:

• Developed over C#, Java or Scala

• Productive environment, Visual Studio

• Easy to debug and troubleshoot

• Well supported with wealth of online information

• Capable of abstracting threads and muxing

• Known to be of good performance

• Wealth of APIs for higher integration and expansion

of study fields

• Scalable

• Distributable

• Fault-tolerant

• Based on the multi-agent theory

Between the ones that weren’t chosen, Erlang has many

similarities to Akka.net. The decision point between the two

was the smaller productivity and support of Erlang when

compared to Akka.net. Node.js and OpenMP are also

noticeable in between the ones studied, but were left for a

future study opportunity.

IV. DEVELOPMENT IN AKKA.NET

The first requirement to be able to work with

Akka.net is to understand its actor model. Moreover, there is

a need know the difference between an Actor Model and the

NOP Paradigm. A simplified way to understand the

difference is that the NOP paradigm does not encapsulate its

entities as a service, so Premises, Conditions and FBEs exist

logically, but not necessarily operate in a single sequential

execution flow, meaning that function calls of FBE’s

methods can be stacked in different computer cores. In the

Actor model, an Actor exist as an entity that enqueues its

work, operate in a single context and then distribute message

to other actors that can be running in other cores/contexts.

So, as a consequence, on a single computer, the NOP

paradigm would be more distributable between cores than an

agent system, but only when the sum of all work is less than

all that is available. Whenever usage reaches 100%, that

higher granularity won’t make any difference. Also, a

noticeable trade-off between the two is that the Agent system

will be more suitable for distributed work due to its fault

tolerance. Most likely the NOP paradigm will end up splitting

work as actors would on a distributed environment so

traceability of work is made on an easier way.

Akka.net coordinates its created actors under a K-

ary three which separates the actors that are automatically

created to coordinate the actor system to the ones that are

created by the user, as seen in figure 1:

Fig.1. The Akka.net actor system structure

 All actors created by the application would fall

under the “/root/user” path and the ones needed to keep the

actor system running are automatically created under the

“/root/system” path. All actors are accessible via its http-like

address, even under distributed systems. So, for the electronic

gate application the actor system K-ary three would like what

is depicted on figure 2.

Fig.2. The Akka.net actor system structure

for the electronic gate application

So, the main three structure puts all NOP entities in the

same three level and lets the main user guardian take care of

all actors in case of faults.

It is worth mentioning that all actors communicate with

each other by a message system: Every actor has a reference

to the actors that need to receive their messages and all of

them have mailboxes to enqueue incoming messages and take

actions based on the message type and on the sender on the

messages.

A deeper on-detail diagram of the actor system

implemented for the electronic gate in Akka.net is depicted

in figure 3, where which light blue container is an actor under

“/root/user” path, and messages between actors were

correlated to notifications from the NOP paradigm.

Fig 3. The electronic gate in the Akka.net actor model

As the first actor system model took shape, initial tests

showed the same problem seen in the older thread pooling

and PThread versions of the electronic gate: Event, methods,

conditions and premises were being distributed between

cores but without a minimum sequence that is necessary in

order to keep determinism and coherence in the “sequence of

facts” for a NOP program. As this implementation was made

with the idea of keeping actors as standard as it can be,

meaning that with little effort the system could run on a

cluster or on a distributed network, a notification mechanism

to keep all actions in sync and logically coherent was

proposed, as seen in figure 4.

Fig 4. Akka.net logical interlock using notifications

This granted determinism and coherence on the

application, having results similar to a single core-sequential

application, but with the advantage of having each actor

running on a different computer core. For future

implementations, this would most likely become a NOP

language feature where the developer will be in charge of

knowing what has to be put in a logical sequence.

In order to make this feature work, two notifications and

a queue of incoming external requests were implemented,

being considered a relatively simple to develop approach.

A simple actor code is depicted in figure 5.

Fig 5. Akka.net actor code

It can be seen that every actor is inherited from a base

class called “Untyped Actor”. Also, the OnReceive method

must be overridden in order for the code to compile. In that

method all message handling from the actor Inbox has to

happen. For the NOP implementation, OnReceive is used to

receive references and link actors, send notifications, trigger

methods and turn conditions true/false. All references to send

notifications are saved in private objects names IActorRef.

Creation of actors is pretty simple and look like a table as

shown in figure 6, the last parameter passed inside the

constructor is the actor name in the K-ary three.

Fig 6. Creating actors in Akka.net

Linking actors is also simple. After all are created, a

sequence of messages (or notifications) send all references to

all actors in the system, so the NOP notification chain is

closed as seen in figures 3 and 4. Figure 7 shows how this is

coded.

 Fig 6. Linking actors in Akka.net

This finishes the development phase for the Akka.net,

being considered a truly productive environment, well

supported and straightforward for the NOP paradigm.

Actor Premisse Is Open

Actor Premisse Is Closed Actor Condition Close Gate

Actor Condition Open Gate

Actor Premisse State Changed

Actor Premisse Change State

Actor FBE Event

Actor FBE Gate

= IsClosed

= IsOpen

= ChangeState

Attribute
Gate_State

Attribute
EventState

Gate

RemoteControl

OpenGate?

CloseGate?

StateChanged?

Method
ClearEvent()

Method
OpenGate()

Method
CloseGate()

Actor Premisse Is Open

Actor Premisse Is Closed Actor Condition Close Gate

Actor Condition Open Gate

Actor Premisse State Changed

Actor Premisse Change State

Actor FBE Event

Actor FBE Gate

= IsClosed

= IsOpen

= ChangeState

Attribute
Gate_State

Attribute
EventState

External Event Queue

Gate

RemoteControl

OpenGate?

CloseGate?

StateChanged?

Method
ClearEvent()

Method
OpenGate()

Method
CloseGate()

V. DEVELOPMENT WITH THE C++ FRAMEWORK

The development work with the framework consisted

firstly in removing the bulk of the framework in order to

make it run a simple application as the electronic gate. Some

performance measurements, text dumping and some unused

data structures were removed. Later, the electronic gate was

developed and the NOP entities were tied up, as seen in figure

7.

Fig 7. Linking actors in the C++ framework

Then, a deeper study on how actions/events were sent to

different cores in the computer were made, and that showed

some limitations in the framework where all events/actions

related to and Entity (that can be an FBE, condition, premise,

etc) are directed to the same computer core since it is the

Entity what holds the information of where it must be run and

this isn’t mutable along the execution.

Figure 8 shows an Entity, which contains a list to notify

all other actors, but it lacks support on abstracting objects and

sending them as parameters of the notifications, which is a

native resource on Akka.net.

Fig 8. Basic actor in the C++ framework

VI. PERFORMANCE COMPARISSON

The performance check between all four versions was

made by a simple clock counter. Whenever the code

execution started, the clock counter starts. When the

application is finished, the clock count is summed up and

translated to an estimated time that was taken by the computer

to run the application. All runs were made under the same

computer, with the same operational system and with the

same task priority on its scheduler.

As the Electronic gate project is a simple program, a

CRC32 calculation was added to every method that is called

in order to increase processing burden. To further increase

that burden and to evaluate how more costly programs would

run, a “for” loop was added to the CRC32 calculation, so a

tendency can be verified as burden is changed.

Many runs for the same amount of CRC32 loops were

made in order to confirm that timing was consistent between

them. For a same simulation, times varied less than 1% in all

attempts. Since PThread and Thread Pooling were tested in

dividing work between two cores, two tests were done for the

C++ Framework and for the Akka.net versions: One splitting

the work only in two cores also, and another dividing the

same workload between all eight cores of the same computer

(called “even” versions).

Figure 9 shows a graph with the results. As processing

burden increases, the cost of setting up an actor system

becomes negligible, and a lot of gains comes with it: data

integrity, abstraction from threads, no deadlocks,

notifications passing abstract objects, scalability, etc. Most of

these capabilities are not natively present in the

ThreadPooling version or in the PThread version.

Fig 9. Tests results

 A second test was made to deeply compare the C++

Framework and the Akka.net version. In this comparison,

3000 CRC32 loops were calculated in each Entity/Actor

whenever a notification was received. Every 3 actors were

tied to each other on a ring of notifications. At the beginning

of the application a message would trigger one of the actors

of the ring that will consequently trigger the other two. The

difference in this test is that the burden is kept constant while

the number of actors were increased linearly. Results are

plotted on figure 10.

 Some issues were found on the C++ framework

were many of the data structures are dynamically allocated,

making use of the heap memory. Even when creating the

Entities statically, its internal functions led to a sequence of

heap allocations that didn’t allow testing past 7200 actors on

a single simulation.

Fig 10. C++ framework and Akka.net comparison

With increasing number of actors

As the graph shows, initially the Akka.net doesn’t perform

as well as the C++ framework but this difference is then

compensated when the number of actors increase.

VII. CONCLUSION

With the gathered data it is concluded that all goals for this

work were achieved, and that any differences between the

C++ framework and the Akka.net are nearly negligible if not

favorable to the Akka.net. Previous implementations showed

good numbers but lack in tooling and resources for futures

applications, and their implementation might lead to the same

performance that Akka.net already has. Akka.net is a path

that can take the NOP paradigm to a better productivity level,

speeding up scientific research on distributed, multi-core and

fault tolerant systems.

REFERENCES

[1] Rojas, Raúl; et al. Plankalkül: The First High-Level Programming
Language and its Implementation. Institut frame Informatik, Freie
Universität Berlin, Technical Report B-3/2000, February, 2000.
Avaliable: ftp://ftp.mi.fu-berlin.de/pub/reports/TR-B-00-03.pdf

[2] Banaszewski, Roni; et al. Paradigma Orientado a Notificações:
Avanços e Comparações. UTPFR, 2009.

[3] The McClean report [Online]. IC Insights, 2018.

Avaliable:http://www.icinsights.com/services/mcclean-report/report-
contents/

[4] Statistics | TOP500 Supercomputer Sites [Online]. Top500, 2014.

Avaliable: https://www.top500.org/statistics/

[5] Seferidis, Johan Hanseen. C-Thread-Pool [Online], April, 2017.

Available: https://github.com/Pithikos/C-Thread-Pool

https://github.com/Pithikos/C-Thread-Pool

