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ABSTRACT
Accompanying the growth of the internet and the conse-
quent diversification of applications and data processing
needs, there has been a rapid proliferation of data and query
models. While graph models such as RDF have been suc-
cessfully used to integrate data from diverse origins, inter-
action with the integrated data is still limited by inflexible
query models that cannot express concepts from multiple
paradigms.
In this paper we analyze data and query models typical

of modern data-driven applications. We then propose an
integrated query model aimed at covering a broad range of
applications, allowing expressive queries that capture ele-
ments from diverse data models and querying paradigms.
We employ graphs models to integrate data from struc-

tured and unstructured sources. We also reinterpret as graph
analysis tasks several ranking metrics typical of information
retrieval (IR) systems. The metrics allow flexible correla-
tion of data elements based on topological properties of the
underlying graph. The new query model is materialized in
a query language named in* (in star). We present exper-
iments with real data that demonstrate the expressiveness
and practicability of our approach.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: General; H.2
[Database Management]: Languages

General Terms
Languages

Keywords
Query model integration, graph data models, graph query
languages
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Data integration has been a priority in the research agenda
for many decades, producing a range of successful technolo-
gies. Data integration enables the development of applica-
tions that can explore and correlate a wider range of infor-
mation. Most of the research was, however, developed in a
scenario of low technological diversity. Therefore, the inte-
gration strategies could afford to rely on a single data model,
such as the relational or multidimensional (for OLAP).

In modern technological environments, applications have
to deal with different, often incompatible data and query
models, which demand costly and time consuming ad-hoc
integration solutions. For example, search engines must per-
sonalize search results based on structured data in user’s
profiles, decision support systems must analyze text from
reviews to track user satisfaction over time, etc.

There has been initiatives to augment existing data and
query models to support elements from other models, for
example, keyword queries over relational data. These ini-
tiatives, however, typically have to compromise by choosing
one query model among the integrated models, which con-
strains the interaction with the underlying data.

Here we tackle data integration from a query model per-
spective. We analyze modern data-driven applications and
their requirements to develop an approach that covers a wide
range of data models and, more importantly, query models.
This not only allows applications to incorporate more rel-
evant information, but also allows more expressive queries
that combine elements from different querying paradigms.
For example, consider the following queries:

• retrieve documents related to the keyword query “US
elections” and the topic politics, written by democrat
journalists, ranked by relevance to the keyword query
and reputation of the author;

• retrieve employees relevant to a given project ranked
by their reputation among peers;

• retrieve profiles of people over 30 years old, ranked by
similarity of hobbies on their profiles to hobbies on
mine;

• retrieve products not yet purchased by the client Bob
that are relevant to him.

These queries cover a broad range of data models (e.g. un-
structured documents, relational, graph) and applications
(CMSs, social networks, recommendation systems). The



queries also combine concepts from diverse query models,
such as relational predicates, keywords, ranking, and met-
rics of relevance and reputation. These and similar queries
appear in many situations in typical modern applications.
Solutions for this type of information need in current in-
frastructures typically demand a substantial amount of re-
sources and engineering to design ad-hoc subsystems.
To materialize our novel integration model, we adopt graph

models as basis for data and query integration. For query
model integration, we reinterpret as graph analysis tasks
several querying concepts that are missing in current in-
tegration approaches. We implement this model in a new
query language called in* (in star), which is an extension
grammar for existing languages such as SPARQL1 and Cy-
pher2.
Our approach allows flexible correlation of data in a sim-

ple and intuitive declarative query model. A key element
of our model is the definition and integration of correlation
metrics that rank data elements according to topological
properties of the underlying graph. As we show along the
text, our model can be employed in such diverse applica-
tions as CMSs, recommendation systems, social networks,
diagnosis suggestion, lightweight decision support, etc.
This paper is organized as follows: Section 2 discusses as-

pects related to the use of graphs for data and query model
integration. Section 3 presents the main technical compo-
nents of our approach, describing our novel ranking metrics
and their integration in a declarative querying setting. Sec-
tion 4 describes experiments applied on real data that show
the expressiveness and practicability of our approach. Sec-
tion 5 describes and contextualizes related work. Finally,
Section 6 concludes the paper.

2. EMPLOYING GRAPHS FOR DATA AND
QUERY INTEGRATION

The first step towards a more expressive query model, that
covers a wider range of applications, is to analyze the typical
data our applications are dealing with today. We focus on
data-driven applications for our analysis, which are the ones
that would have the most benefit from an integrated query
model. Other types of applications and data could also be
integrated in our model, but we will not address them here.
Figure 1 shows the structuring spectrum of typical data

in current data-driven applications. Highly structured data,
on the top right of the figure, was the first type of data tack-
led by database technology. As we increased computational
power and made technological advances, systems started to
incorporate more data from the spectrum.
Graph models, due to their simplicity and flexibility, can

represent data all along the structuring spectrum. Notably,
graphs have been used to model relationships in text [15, 3]
and there are several initiatives to model relational databases
as graphs [1, 2]. Furthermore, graphs are often the most nat-
ural and widely adopted model for several applications, such
as social, semantic or spatial networks.
Here we adopt the graph model for data integration. We

employ typical property graphs [16] to represent the data as
in Figure 1. The following section provides mode details on
the mapping between source models to graphs.

1http://www.w3.org/TR/sparql11-query/
2http://docs.neo4j.org/

Figure 1: Spectrum of structuring of data

2.1 Data model integration
There are several alternatives for mapping a given data

model into graphs. Although our query model works inde-
pendently of the strategy adopted, we provide guidelines on
basic transformations of typical models. Here we focus on
text documents and the relational model. The mapping for
other models, such as semi-structured or NoSQL variations,
can be derived by similar approaches.

There are several alternatives for mapping a relational
scheme to graphs [1, 2]. There is even a W3C working
group3 to define standards for relation to RDF mapping
languages. Here, to simplify the discussion, we assume that
(i) table descriptions become nodes, (ii) rows also become
nodes, with their primary keys as identifiers, and are linked
to their respective tables, (iii) columns become properties
of the instances, with values corresponding to literals and
foreign keys becoming explicit links to other instances.

Graph representation of documents for IR purposes is also
possible. An inverted index (in the bag of words model) can
be readily mapped into a graph that connects terms and
documents. More modern schemes to index documents such
as topic models [4] and explicit semantic analysis [14] also
fit nicely into this strategy, bringing the benefits of reduced
dimensionality (i.e. avoiding creating an unnecessarily large
graph containing entire postings list), less semantic ambigu-
ity, and more cognitive appeal.

Figure 2 shows a simplified example to illustrate all these
elements represented as a unified graph. News articles about
products are mapped into entities according to a given IR
indexing/annotation technique (e.g. topic modeling, named
entity recognition, etc). A keyword query is likewise mapped
into these entities. Relational data from tables (Project,
Employee) are also mapped into nodes in the graph and
also connected to the entities. In the remaining of the paper
we stop distinguishing between structured and unstructured
data, assuming the data models are integrated in the unify-
ing graph.

2.2 Need for language model integration
Data model integration is certainly an important step to-

wards supporting applications that reuse and combine in-
formation from multiple sources. The benefits are, however,

3http://www.w3.org/2001/sw/rdb2rdf/



Figure 2: Data elements represented as a unified graph

limited by the capabilities of the query model adopted. For
example, if the query language is more adequate for struc-
tured data, it would be hard to express information needs
related to unstructured information.
In our proposal, we make a top-down analysis of the data

models, language elements and applications we intend to
support in our query model. We depart from the observa-
tion that graph models are powerful means to integrate data
across the structuring spectrum. Our goal is to propose a
query model that increases expressiveness in the interactions
with the integrated data, supporting a wider range of appli-
cations.
Query integration enables more expressive querying be-

cause (i) it allows users to correlated data according to con-
cepts that are consistent with the specific model of the data
sources, (ii) it provides a new range of querying concepts
that can be used over data from previously incompatible
sources, and finally, (iii) it supports a mix of the previous
points, allowing combinations of data from different origi-
nal models to be queried based on combinations of diverse
query concepts that would otherwise be restricted to specific
models.
For example, considering the data on Figure 2, an in-

tegrated query model would allow relevance-based ranking
of document nodes (i). It would also allow these concepts,
which are usually associated with IR applications, to be used
to query the structured data about employees and projects
(ii). A query could also take advantage of a combination
of data from documents and relations, and query concepts
from IR and structured databases (iii).
In the next section we discuss the requirements for such

integrated query model.

2.3 Query model requirements
Here we highlight the requirements for a query model that

would cover a broad range of data and interaction models.
First, we start with general high-level (conceptual) require-
ments for the query model.
Expressiveness: this is the main goal for our query in-

tegration model. To offer meaningful ways to correlate the
integrated data, the model must offer means to express con-
cepts from such distinct fields as databases and information

retrieval. Our model offers means to express querying con-
cepts from structured and graph databases, as well as con-
cepts from IR systems.

Simplicity: an integrated query model should not resem-
ble ad-hoc solutions. The integrated concepts from a given
query model (e.g. relational) should be applied to data inte-
grated from other models (e.g. unstructured documents) in
a natural and coherent manner. It is also important to focus
on the most relevant query models and most important con-
cepts in them. Here we emphasize concepts from relational
and graph databases and information retrieval systems. We
do not integrate concepts from other important models such
as inference, because we think they are still not as prevalent
in current applications.

Non-modal interaction: the integrated model should
blend concepts from each area to a point where there is
no modal user interaction – there is no need to differenti-
ate tasks, data formats or query strategies according to the
original model of the data.

Gentle learning curve: to simplify learning and adap-
tation, our approach extends existing query languages, as
opposed to creating an entirely new one. This has the ad-
vantage of leveraging grammars and processing technologies
that are already mature and also simplifies employment in
current applications.

We now analyze specific requirements for the elements of
the language.

Declarative Querying: declarative queries empower
users to express their information needs precisely, and the
results are returned in a predictable format. The processing
in-between is just as important: declarative queries enable
the system to transparently optimize data access and com-
putation strategies. Therefore, declarative querying should
be a key element in an integration model.

Selections/projections/aggregations: these are basic
components of structured query languages. Any proposal
for query model integration has to provide this type of in-
teraction. Our strategy inherits these constructors from the
original language to which our extension is applied.

Graph patterns: since we integrate our underlying data
in a unified graph, it is important to provide means to ex-
press topological constraints on queries. Graph patterns are



adopted by most graph query languages. Like previously,
our strategy is to leverage graph querying features from ex-
isting languages, like SPARQL or Cypher.
Keyword querying: keywords are the prevalent mean

to query unstructured data in typical applications. In our
framework, a keyword query is also represented as a (tempo-
rary) node in the graph. The same indexing strategy used
for the stored documents is applied to generate the rela-
tionships of the query node (Figure 2). This graph repre-
sentation of keyword queries allows them to be expressed
alongside structured predicates in the queries (Section 3.3).
This is equivalent to typical IR systems with the added ben-
efit of query-time specification of ranking metrics (defined
next), and direct access to other constructs of our model.
Ranking: to enable the flexibility required by many mod-

ern applications, such as document retrieval and recommen-
dation systems, an integrated query model should support
inexact results, providing a ranking mechanism that orders
returned items according to conformity to the user’s infor-
mation needs. In our approach, the ranking scores are cal-
culated based on combinations of our ranking metrics.
Flexible correlation of data elements: The IR field

has been very successful in offering simple but efficient means
for users to input their information needs and to get sensi-
ble results back. The key to the success of such systems and
what makes a search engine or a recommendation system a
market leader is the profound ways in which the systems cor-
relate the underlying data. Abstract ranking metrics such as
relevance and reputation are powerful, flexible and recurrent
in several tasks, but at the same time are made intuitive to
use and easy to understand. In our proposal, we introduce
a novel interpretation of several ranking metrics inspired by
current applications. These metrics are mapped into graph
analysis tasks to adapt to our data integration framework
(Section 3.1). These metrics are then integrated in our ex-
tensional query language (Section 3.3).
Here we propose a new query model that takes all the dis-

cussed characteristics into account: providing a declarative
query language that can express concepts form traditional
IR and Database systems, and compose results (optionally)
as ranked lists. The challenge is to enable all these features
over the unified graph model presented.
Many of the listed requirements are met by query lan-

guages such as SQL and, especially, modern graph query
languages such as SPARQL and Cypher. The remaining
issues are related to enabling IR-like ranking metrics that
now have to be reinterpreted in a graph setting. In the next
section we define our interpretation of the ranking metrics
which represent a central piece towards bridging the gap be-
tween declarative, structured queries and flexible correlation
of data.

3. RANKING METRICS AND LANGUAGE
INTEGRATION

Correlating data is an important and defining characteris-
tic of many applications. To enable a high level of flexibility
for correlations, we specify a set of ranking metrics which
are influenced by IR applications. The selection of the spe-
cific metrics aims at covering a wide range of applications
while also being simple to use and understand. In the pro-
cess of defining these metrics, we started with some popular
metrics used in IR and then expanded the set according to

Figure 3: Taxonomy for the adopted ranking metrics

the applications we wanted to cover. The set of metrics we
ended up with can be organized in the taxonomy presented
in Figure 3.

The basis of our taxonomy is the concept of comparison.
Our metrics are meant to compare elements in the graph
and generate a score that represents the strength of the as-
sociation. The peculiar aspect about our metrics is that the
scores are generated based on analysis of the topology of
the graph, in contrast to most ranking approaches that are
based on attributes of the elements.

There are two main groups of comparisons. Set compar-
isons corresponds to comparisons among elements from a
finite set. Reputation and Influence are the metrics in this
category. They assess, using different strategies, how well
a node performs as a hub for information. The definitions
of the metrics, as well as details on their interpretation, are
presented in the next section.

Pair comparisons are applied to individual pairs of nodes.
They assess properties of the topology surrounding or con-
necting the two nodes. The similarity and context metrics,
classified under contextual comparison, assess the common-
alities in respect to elements (nodes or relationships) sur-
rounding the comparing nodes. Relevance and connectivity,
classified under reachability comparison, assess properties of
the paths interconnecting the comparing nodes.

As far as we know, this is the first time that these metrics
are considered and defined under the same conceptual frame-
work. Although these metrics are often associated with IR,
they express cognitive processes or patterns that we use to
assess correlation of entities in the real world, and which are
the basis of many data-driven applications, as we intend to
portray along the text. We now describe our metrics and
define them from a graph analysis perspective.

3.1 Graph interpretation of the metrics
The translation of the ranking metrics to the unified graph

strategy is a challenging task. Here we adopt a Spreading
Activation (SA) [6] model for our novel interpretation of the
metrics.

The Spreading Activation model
Spreading Activation methods were developed to infer rela-
tionships among nodes in associative networks. The mech-
anism is based on traversing the network from a initial set
of nodes, activating new nodes until certain stop conditions
are reached. By controlling several aspects related to this
activation flow, it is possible to infer and quantify the rela-



notation description
SA(N) a set of activated nodes after the execution of

the spread activation process defined by pa-
rameters G, N , I, O, t, d, c, l; parameters
other than N are omitted for brevity

SA(N)n n ∈ SA(N)
G unified data graph
N or M set of initially activated nodes. n or m repre-

sent nodes from the respective sets
I(n) function that calculates the input potential of

a node. I(n) =
∑

i∈in(n)

O(i) in the general case

O(n) function that calculates the output potential
of a node. O(n) = I(n) ∗ d in the general case

in(n) set of nodes with outbound edges linked to n
out(n) set of nodes linked by outbound edges from n
a, t, d, c respectively, initial activation potential, firing

threshold, decay factor, maximum number of
iterations (depth)

l set of labels that determine valid nodes for
traversal

v(n) final potential value for node n
p(N) set of activation paths (for each node in N)

Table 1: Notation used in the definitions

tionships of the initial nodes to the reached ones.
The SA model used here is defined by the parameters G,

N , I, O, a, t, d, c, and l described, alongside other defini-
tions, in Table 1. A SA process starts with the N nodes
initially activated with potential a. Output potentials for
each node are calculated by the function O. The output po-
tential is spread through all edges whose labels are in l. The
potential for the reached nodes is calculated by function I.
For the next iteration, the potential is spread, restarting the
process, as long as the current potential for reached nodes
is higher than t and the number of iterations is lower than
c.

IR metrics according to the SA model
In the SA model, to assess the rank of the relationship of
nodes according to a metric, an activation potential is placed
at the target elements defined in the query. The potential
is spread across the topology of the graph, losing or gain-
ing strength based on the IR metric, length of the path,
or properties of the traversed elements. The metric-specific
definitions of the SA processes are presented below.
Def. 1. relevance(n,m) = v(SA({n})m),

with O(n) =
I(n) ∗ d
|out(n)|

Relevance between two nodes is a measure that encom-
passes correlation and specificity. Correlation is propor-
tional to the number of paths linking the two nodes and
inversely proportional to the length of the paths. Specificity
favors paths with less ramifications. It is easy to observe
that traditional tf*idf weighting over data as in Figure 2 is
an instance of this definition (for trivial paths of length one).
Def. 2. connectivity(n,m) = v(SA({n})m)
Connectivity between two nodes is a measure that assesses

how interconnected two nodes are. The score is proportional
to the number of paths linking the nodes in the network

activated by the SA algorithm.
Def. 3. reputation(n,N) = v(SA(N)n)
Reputation of a node measures how effective it is as a

hub for information flow. Here the nodes of interest are
activated at the beginning and the ranking scheme favors
nodes that are revisited in the sequence of the SA process.
This is a simple but convenient interpretations in scenarios
where the reputation cannot be pre-calculated due to high
update rates, variability in the types of relationships used
for the queries, or need to bias the scores based on a set of
initial nodes (as in [21]).

Def. 4. influence(n) = |(SA({n}))|
Influence is a specialization of reputation where the only

concern is the number of nodes reached from the origin.
The topology of the graph – in/outdegree or cycles – do not
influence the metric.

Def. 5. similarity(m,n) =
|p(SA({n})) ∩ p(SA({m}))|
|p(SA({n})) ∪ p(SA({m}))|

Similarity measures the ratio of common relationships (sa-
me edge label linking common nodes) between two nodes.

Def. 6. context(m,n) =
|SA({n}) ∩ SA({m})|
|SA({n}) ∪ SA({m})|

Context is a specialization of similarity where edge labels
do not matter.

3.2 Semantics of ranking metrics in queries
Having the ranking metrics interpreted as graph analysis

tasks, there is now the need of integrating these metrics in a
declarative language. As opposed to creating an entirely new
query language, we decided to leverage existing languages
by defining an extension language that can be integrated
into other languages. To that extent, we first define the
semantics of the intended integration.

In our model, the proposed ranking metrics are intended
to be used with graph query languages that offer: (i) means
to reference individual nodes in the graph, (ii) selection of
match variables, and (iii) query results as a set of tuples
(or a graph representation of). These are basic components
of graph languages like SPARQL and Cypher. A ranking
metric can refer to:

• a single match variable (set of vertices), e.g.“rank pa-
pers from EDBT 2012 according to first author rep-
utation”, where first author is the match variable in
question (e.g. “SELECT ?firstAuthor ...” in SPARQL);

• a given vertex4 and a match variable, e.g. “rank pa-
pers according to relevance of their first author (match
variable) to the topic data integration (vertex)”;

• two match variables, e.g.“rank papers according to rel-
evance of the first author to the topic in the first
keyword of the paper”.

Conceptually, the ranking metrics are applied to query
results, generating a ranking value for each returned tuple.
In practice, to speed up query processing, results would be
approximate and the rank would be generated for some of
the nodes based on access pattern heuristics.

3.3 Extending Declarative Queries
A convenient way to integrate the ranking metrics into

existing query languages is to add a“RANK BY”clause. The

4as defined previously, a keyword query would also be a node
in the graph



Figure 4: Simplified BNF grammar for the proposed
extension (terminators omitted)

clause should enable an arbitrary combination of metrics
that expresses the global ranking condition defined by the
user. We encode the clause in the extension query language
that we denominated in* (or in star). in* can then be used
to extend other languages, for example, extended SPARQL
becomes inSPARQL. This strategy is a good fit for graph
languages with SQL-inspired syntaxes, such as SPARQL and
Cypher. A similar strategy could be developed to other
types of languages.
Note that the extension causes query semantics and result

interpretation to change, therefore, any extended language
would be more adequately described as new language based
on the syntax of the original language. This suggests an inci-
dental meaning for an acronym like inSPARQL: recursively,
“inSPARQL is Not SPARQL”.

Figure 4 shows a simplified BNF grammar of the proposed
extension. A ranking can be specified as mix of weighted
ranking metrics (lines 2 and 3). Weights capture the relative
importance of each metric. The scores generated by the
metrics are normalized before the calculation of the final
weighted score.
Ranking metrics are unary or binary. Unary ranking met-

rics are applied to a single match variable (lines 4 and 5).
Binary ranking metrics can be applied to a match variable
and a named vertex or between two match variables.
The language allows for modifiers (lines 10 to 14) to be ap-

plied to the ranking definitions. These modifiers define the
parameters for the execution of the SA algorithm. FOLLOW
specifies valid edges for the algorithm to traverse. DEPTH
defines the maximum length for the traversal paths. DI-
RECTION sets the direction of traversal as outbound, in-
bound or both (default) edges. WEIGHTED makes edge
weights influence the degradation of the activation potential
(the potential is multiplied by the weight).

3.4 Use case: extended SPARQL
This section presents examples of queries in the extended

SPARQL language. These queries are meant to demonstrate
the expressiveness of the approach in a wide range of appli-
cations.
Figure 5a shows a product recommendation query that

finds products that the client Bob (with uri :bob) has not
purchased. The query traverses Bob’s friendship network to
find products purchased by his friends that might be rele-
vant to him. The spreading activation interpretation of this
query evaluation also implies that products purchased by

Figure 6: Baseline query for the experiments

Bob, even though they do not appear in the results, will be
traversed on the way to customers that have co-purchased
these products, which in turn will activate other products
from these customers.

Figure 5b shows a query that could be used on an online
dating application. It ranks the top 5 persons over a given
age based on the similarity of hobbies and movie preferences
of user Alice.

Figure 5c ranks species that play an important role in the
food web and are related to the biome of coral reefs. This
type of query would identify species that should be main
targets for monitoring and preservation efforts.

Figure 5d shows a possible implementation for a document
retrieval query using topic modeling. The keyword query is
expressed by the function KWQUERY and the relevance is
assessed as if the query was a node in the graph. The query
also takes into account the relevance of documents to the
topic :Politics and the reputation of the authors.

4. EXPERIMENTS
Here we present experiments that demonstrate (i) the ad-

equacy of the results in a query that correlates non-trivial
elements of a movies database and (ii) the interplay of rank-
ing metrics in a real scenario based on a nursing diagnose
query. The first set of experiments were implemented over
a Virtuoso Triplestore5 server and used extended SPARQL
queries. The second set of experiments employed a Neo4j6

graph database and extended Cypher queries.

4.1 Relevance metric
Here we present analysis of execution for a basic query

containing our relevance metric. The database used in the
experiments is the Linked Movie Data Base (LinkedMDB)
[8]. The database integrates data from several sources (Free-
Base, OMDB, DBpedia, Geonames, etc). The database con-
tains 3,579,616 triples.

The query used for our analysis is shown in Figure 6. The
query returns actors that acted in films directed by Woody
Allen in the 90’s. The results are ranked by relevance of
the actors to Woody Allen (director). This query should be
interpreted as ranking actors according to how linked to the
director their careers are – a common pattern throughout
Allen’s idiosyncratic production.

The top-10 and bottom-10 ranked performers are shown
in Table 2. The analysis of the results reaffirms that the
graph interpretation of relevance proposed here is indeed
strongly correlated to the typical interpretation of relevance
in IR applications. The top ranked actor is Woody Allen
himself7. Allen is well known for interpreting roles in his

5http://virtuoso.openlinksw.com/
6http://www.neo4j.org/
7LinkedMDB uses distinct descriptors for the actor and the



Figure 5: Examples of extended SPARQL queries (namespaces have been omitted)

films, and he rarely performs in films from other directors.
Mia Farrow, the second highest rank, has her career strongly
linked to the director8, acting in 13 of Allen’s films, out of
her total of 39 films registered in the database.
Less known actors also appear in the top-10 list. Hazelle

Goodman, for example, has only one performance recorded
in the database, which would make her career highly linked
to Woody Allen (she is credited in IMBD as the first per-
son of Black origin to have a major role in a Woody Allen
film). The database does not have complete castings for the
movies, especially for small roles, which should not affect
ranking for most practical applications.
Low ranking actors are usually actors that participated in

many films but few of them were directed by Woody Allen.
This is the case for Robin Williams and Sean Penn, for
example, which perform in only one of Allen’s films. The
interpretation is that low ranked performers would by no
standards have their careers linked to Woody Allen, despite
having been cast in their movies.

top 10 name bottom 10 name
1.89 Woody Allen 0.03 Stanley Tucci
0.79 Mia Farrow 0.03 William Hurt
0.59 Tony Darrow 0.03 Dom DeLuise
0.53 Julie Kavner 0.03 Kathy Bates
0.50 Brian Markinson 0.03 John Malkovich
0.40 Hazelle Goodman 0.03 Anthony LaPaglia
0.39 Diane Keaton 0.03 Sean Penn
0.29 Mayim Bialik 0.02 Uma Thurman
0.29 Ted Bessell 0.02 Donald Pleasence
0.28 Tracey Ullman 0.02 Robin Williams

Table 2: Top-10 and bottom-10 ranked results for
the baseline query (total of 98 returned actors)

The experiments indicate that our approach is practical
in terms of performance, a major concern with the type of
graph analysis involved. The parameters in our SA model
(t, d, c, and a) ultimately determine how far the activation
process would go in its exploration of the graph. This has
consequences in terms of performance and completeness of
query execution. Relaxed values for the parameters, which
would allow bigger portions of the graph to be included
in the query, have expensive computational requirements,
but render more contextualized ranking that might include

director, implying that they are separate entities
8note that non-professional interactions are absent from the
database

Figure 7: Query template for the diagnosis experi-
ments (in Cypher)

non-obvious aspects of the correlation of the elements in the
query.

Execution times for the metric in the baseline query took
under 3 seconds. We think this would already be an inter-
esting achievement for the non-trivial query, database, and
computations we are dealing with, but there is room for rad-
ical improvements. A deeper analysis of these experiments
as well as ongoing efforts for performance improvements are
presented in [7].

4.2 Combining metrics
We tested our approach over real diagnose data compiled

for a previously unrelated project with the faculty of nursing
at our university [10]. The data consists of matrices SD (for
Symptoms × Diagnoses), PS (for Patients × Symptoms)
and PD (for Patients × Diagnoses). SD correlates 62 symp-
toms to 28 diagnoses, all defined in a domain-specific proto-
col. The strength of the correlations sdi,j ∈
{0, 0.25, 0.5, 0.75, 1} were determined based on consensus in
committees of experts. Similarly, PS correlates 6 patients
(clinical cases) and their symptoms. The strength of the cor-
relations psi,j ∈ {0, 0.25, 0.5, 0.75, 1} were also determined
by experts. Experts also provided most likely diagnoses
for each patient, with strength pdi,j ∈ {0, 0.25, 0.5, 0.75, 1}
(these were not included in our test dataset).

The matrices were consolidated in a graph with the
strength of the correlations becoming weights for the edges.
Figure 8 shows a sample of the graph with the weights of
the associations represented as the thickness of the edges.
As an example, the patient represented by the node ‘Case 1’
presents the symptom ‘Fatigue’ that was classified as having
a 1.0 pertinence to the diagnosis ‘Caregiver Role Strain’ and
0.5 for ‘Risk for Falls’. The final graph has 96 nodes and 324
relationships. Our goal was to suggest diagnoses based on
the assessment of our metrics in the graph. The template
for the queries issued for each patient is shown in Figure 7.
%r and %c are weights for the relevance and connectivity
metrics, %p is the id of the node of the patient. To repre-



Figure 8: Sample subgraph of the dataset for the
diagnosis experiments

sent an instance of the query template we use the notation
Rr:cC, meaning that the query was specified with weight r
for the relevance metric and weight c for connectivity.
For an assessment of the general rankings produced, we

asked an expert to evaluate the entire ranks for each patient
and assign a pertinence value in {0, 0.25, 0.5, 0.75, 1}. To
produce the rankings, we used the metrics for relevance and
connectivity in isolation, i.e. runs R1:0C and R0:1C. On
average, the rankings from relevance received a 0.79 quality
score while the connectivity metric received 0.67.
We also analyzed the rankings based on the diagnoses sug-

gested by the committees of experts. For that, we used the
diagnoses with total correlation (1) to each patient. We run
the queries to assess, for the sets of diagnoses for each pa-
tient, how many ranking places were needed to cover all diag-
noses. The patients had 1 to 3 diagnoses matching our crite-
ria. In this more specific analysis, we observed unexpected
performance results. The connectivity metric required on
average 1.5 extra ranking positions to cover the diagnosis,
outperforming relevance which required 2. We then ran the
query with different combinations of weights for the metrics,
as shown in Figure 9. Combining the metrics improved the
performance, eventually reducing the required extra posi-
tions to 1.17.
The analysis of these experiments suggest that charac-

teristics from both metrics are important to produce good
performing rankings, a trait we conjecture as being perva-
sive across applications. In fact, this aspect motivated the
support for arbitrary combination of metrics in the query
language in the first place.
The accuracy of our diagnosis suggestions is also very

practical, especially considering that we only analyzed a
fraction of the information available for the experts – they
also had access to patient’s clinical report and a list of
patient-specific risk factors. Moreover, we were able to pro-
duce the suggestions from a very simple declarative query,
in a development effort of a few minutes (including the light
parameter tuning that could have been skipped).

5. RELATED WORK

Figure 9: Average number of extra ranking items to
cover the diagnosis from the expert

Research on integration of the IR and DB areas been
an important effort towards query models that cover wider
ranges of applications. Following the initial identification
of challenges and applications, several successful approaches
were proposed and implemented [20]. Most prominent re-
search focuses on keyword queries over structured data and
documents, top-k ranking strategies and extraction of struc-
tured information from documents.

Keyword query research draws from the simple yet effec-
tive keyword query model to allow integrated querying over
documents and structured data. Most of the frameworks
match keywords to documents, schema and data integrated
in a graph structure. The connected matches form trees that
are ranked based on variations of IR metrics such as tf*idf
and PageRank. Some of the research focus on optimizing
the top-k query processing [12] while others implement more
effective variations of the ranking metrics [13].

Keyword queries over structured data are intended for
tasks where the schema is unknown to the user. The tech-
niques are effective for data exploration, but there is no sup-
port for more principled interactions. There are conceptual
and structural mismatches among queries, data and results
that make returned matches hard to predict and interpret.

The research on Top-k queries focus on enabling efficient
processing of ranked queries on structured and semi-struct-
ured data. Ranking is based on scores derived from multiple
predicates specified in the query. The main challenge is to
compute results avoiding full computation of the expensive
joins. The proposals vary on adopted query model, data
access methods, implementation strategy, and assumptions
on data and scoring functions (see [9] for a contextualized
survey).

Scoring functions enable ranking based on properties of
data elements. There is, however, no simple means to rank
results based on the context of elements or how they are
correlated, typical requirements for IR-like applications.

Information Extraction (IE) refers to the automatic ex-
traction from unstructured sources of structured informa-
tion such as entities, relationships between entities, and at-
tributes describing entities [18]. Loading the extracted facts
on a DBMS allows declarative querying over the data. This
is a one-way, data-centric type of integration of DB and IR.
The integration proposed here focuses on unified querying
and data models.



We argue that the mentioned IR+DB approaches tend to
focus on infrastructure issues related to extremes of enabling
the type interaction present in one area over the data model
of the other. In this paper we take a top-down approach to
modeling query integration, questioning what are the main
and defining properties of each area, and how to offer a uni-
fied, non-modal interaction over data and query models.
Less specific proposals, that also aim at increasing query

expressiveness, have been developed, especially in the con-
text of knowledge bases. Kasneci et al. [11] propose a new
querying model for knowledge bases generated from IE. The
model allows patterns matching and relatedness queries that
allow flexible correlation of elements in the base. Rodriguez
et al. [17] propose a query model that allows the context of
user’s knowledge base to influence query results. White and
Smyth [21] present several algorithms to assess importance
of nodes in a network. The calculation of the scores can
be biased based on a set of initial nodes, which makes the
approach more flexible than alternatives such as PageRank
[5]. The work described in Varadarajan et al. [19] enable
flexible graph queries that can express path patterns and
ranking based on pre-defined metrics of importance. The
framework requires the specification of a schema for the data
and assumes that users know the schema and topology of the
dataset to write path queries.
All these proposals aim at addressing the problem of in-

flexible query models that are inadequate to current appli-
cation needs. However, the basic concepts of relatedness,
context or importance are defined by the model and there
are no means for users to express application-specific inter-
pretations of the concepts. In our proposal, we offer declara-
tive means for users to express combinations of metrics that
can be adapted to specific information needs. We believe
that our (i) declarative strategy, (ii) expressive metrics, and
(iii) focus on data and query model integration offers a new
level of flexibility and applicability in modern information
processing scenarios.

6. CONCLUSION
We presented a query model that integrates querying con-

cepts from prominent data management fields, aiming at
covering a broader range of application scenarios. An impor-
tant aspect to achieve more expressiveness at the query level
is the combination of IR concepts in a declarative model.
Keyword queries, ranking, and especially, effective metrics
are important aspects in the integration. Our query model
redefines IR metrics that rank entities based on the topol-
ogy of their correlations. To the best of our knowledge,
this is the first time the metrics presented are considered
and formalized under the same model. Similarly, we are
not aware of other ranking strategies that enable the level
of expressiveness offered by the combination of our metrics
and a declarative language. This combination allows data
correlation queries that cover a wide range of applications.
As suggested by the query examples presented (Figure

5), it is possible to represent information needs that would
require a level of data analysis that is beyond current imple-
mentations of typical systems. In fact, answering the type
of queries introduced here in a typical technological environ-
ment nowadays would require substantial engineering for the
implementation of ad-hoc solutions.
Our experiments show that our approach is practical in

terms of performance and that our language can express

complex concepts in real data and application scenarios. A
deeper analysis of our integration scenarios can be found in
[7].

We expect query-level integration to become increasingly
important as our technological landscape continues to di-
versify. We showed how our model can cover a broad range
of models and applications. Our experiments indicate the
practicability of our approach. We are now working on archi-
tectural and query optimization strategies to enable stream-
lined and efficient deployment of our framework.
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