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Abstract

This paper describes how the Complex Data
Management System (CDMS) enables query-
based inferences over structure and unstruc-
tured data represented in its graph model.
The CDMS offers querying and management
mechanisms for data typical of complex net-
works. It enables flexible querying based on
combinations of correlation metrics that cap-
ture properties of the topology of the under-
lying graph. This flexibility supports a range
of information retrieval applications.

Here we show preliminary work on how the
CDMS infrastructure can also be used in
learning tasks. We envision a framework in
which, for certain tasks, learning is indistin-
guishable from the conventional evolution of
the database. Feature extraction and man-
agement is based on CDMS’s mapper mech-
anism. Learned models are represented as
queries, with combination of metrics and pa-
rameters fitted to the training data. We show
preliminary experiments based on real data
for a health diagnosis task.

1. Introduction

The Databases (DB) and Machine Learning (ML)
fields have evolved to become essential parts of com-
putational infrastructures. Although by means of dif-
ferent mechanisms, both fields answer queries or make
inferences based on digital data representing real world
entities and concepts. Their tasks are, however, typi-
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cally undertaken as separated processes. Data from
databases indirectly feed learning models whose in-
ferred data is in turn stored in databases. Guiding the
processes are experts in one area or the other, devel-
oping ad hoc solutions to connect the ends, and rarely
overlapping technical skills.

On another level, both DB and ML fields have devel-
oped to handle increasingly complex data in terms of
how data elements are correlated. Several ML tasks
have to discover complex interactions among features.
These tasks usually adopt graph-based models such as
decision trees, neural networks, and, becoming popu-
lar more recently, hidden markov models (HMM), con-
ditional random fields (CRF), relational markov net-
works (RMN), etc. Databases, likewise, have adopted
higher complexity in their models, allowing for more
flexible representation of relationships. This trend
is evident in models that attempt to overcome limi-
tations of the relational models, such as the object-
oriented or semistructured models, and especially, the
graph models that experienced renewed interest in the
last decade.

In this paper, we focus on demonstrating the bene-
fits of a tighter integration among the DB and ML
fields. The two main points of our proposal are (i)
making feature extraction part of the data lifecycle,
i.e. materializing features as data elements, and (ii)
mapping the supervised learning of classification mod-
els into a query composition problem. To tackle these
points, we employ a new database system being de-
fined by the authors. The Complex Data Manage-
ment System (CDMS) aims at enabling querying and
management of data typical of complex networks. The
system adopts a graph data model to represent data
from structured or unstructured sources. The CDMS
also offers mechanisms to simplify the management of
relationship lifecycle and, most importantly, a flexi-
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ble query model that can represent complex interac-
tions among data elements. The query model allows
parametrized definition of ranking metrics that are as-
sessed based on properties of the topology of the un-
derlying graph. This enables a level of expressiveness
that can blur the line between querying and data anal-
ysis.

Our experiments demonstrate preliminary results
based on a nursing diagnosis task over real data. We
show how the classification task can be expressed as a
declarative query in our query model. We also show
how (manual) parameter tuning improves accuracy.

The main advantages of our approach are: (i) features
become part of the database, evolving together with
data, and (ii) the learned model is a declarative query,
which gives insight into the important relationships
among data and gives the opportunity for developers
to tweak query parameters and scope with no need of
retraining.

This paper is organized as follows: Section 2 describes
related work in ML and complex networks. Section
3 defines the Complex Data Management System and
introduces ML-related issues. Section 4 describes how
ML tasks can be represented in our framework and
presents experiments on real data. Section 5 concludes
the paper.

2. Related Work

Relationship analysis and topological properties are
central to both machine learning tasks and complex
network analysis. If the outcome of a ML task depends
on complex, non-independent interactions among fea-
tures, it is important to employ adequate models
that can capture the intricacies of the relationships.
Decision trees, neural networks, HMMs, and CRF's
(Lafferty et al., 2001) are models that aim at capturing
these non-trivial associations in graphs representing
features and outcomes. The more complex the graph
model, the better its ability to capture non-linearities,
and the bigger its computational costs.

More recent models have enabled collective reason-
ing, capturing associations among multiple instances
of data and among related learning tasks. Ex-
amples of such models are the Markov Logic Net-
works (Richardson & Domingos, 2006) and Relational
Markov Networks (Bunescu & Mooney, 2004). In this
proposal, we also aim at capturing the correlations
among elements and outcomes represented in a graph
(the database itself). The most important distinction
is that we want to represent the relevant correlations
(i.e. the learned model) as a declarative query lan-

guage.

The database framework used in our proposal is be-
ing developed to tackle issues associated with Com-
plex Networks. In a complex network (Costa et al.,
2007), the patterns defined by the interconnections are
non-trivial, deviating substantially from cases where
connections have the same probability (e.g. lattices
or random graphs). The techniques developed for
complex network analysis have become important re-
sources in diverse applications such areas as systems
biology, neuroscience, communications, transporta-
tion, power grids, and economics (Costa et al., 2011).

Our CDMS is aimed at enabling querying and man-
agement of what we define as compler data. Complex
data is characterized when relationships are central to
data analysis. In these cases, the graph formed by
data entities (nodes) and relationships (links) present
properties typical of complex networks. Our query lan-
guage employs metrics that express correlations among
data elements. These metrics are related to easily in-
terpretable concepts such as relevance and reputation.
Our hypothesis is that our language can, for some
tasks, capture the same type of underlying patterns
captured by graph-based learning models. Our data
management mechanisms (e.g. mappers) can also be
employed to simplify feature extraction and manage-
ment.

3. Complex Data Management

The CDMS is aimed at providing adequate support for
handling and querying complex data. It differs from
typical DBMSs in four main aspects: (i) data model,
(ii) query language, (iii) query evaluation, and (iv)
data management mechanisms. Each of these items
is described below, together with pertinent considera-
tions related to ML.

3.1. Data model and data integration

The data in target CDMS applications typically do not
comply to pre-defined schemas. The high number and
diversity of the relationships require a model where re-
lationships are first-class citizens. Graph models are
obvious choices in these settings. Their flexible model-
ing characteristics enable easy mapping of most types
of data. Nodes with immediate access to neighbors
is also an important feature for the type of computa-
tion involved. The CDMS framework adopts weighted
edge-labeled property multigraphs to encode complex
data.

This graph data model is a convenient means to rep-
resent data from structured and unstructured sources.
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Figure 1. Data elements represented as a unified graph

Mapping structured data to a graph is a straightfor-
ward process. Unstructured data, such as text docu-
ments, is a more challenging task. In our framework, it
is convenient to represent individual unstructured ele-
ments as single nodes. The graph is then extended by
extracting features from the added elements, which are
themselves represented as nodes. Nodes representing
the unstructured sources are linked to their extracted
features through relationships created by mappers.

Figure 1 shows a simplified example to illustrate
diverse elements represented as a unified graph.
News articles about products are mapped into enti-
ties according to mappers that implement an index-
ing/annotation technique (e.g. topic modeling, named
entity recognition, etc). A keyword query is likewise
mapped into these entities, using the same mapper in
query time. Relational data from tables (Project, Em-
ployee) are also mapped into nodes in the graph and
also connected to the entities. More details on the use
of mappers are presented in Section 3.4.

3.2. Query language

Our CDMS query language is intended to be flexi-
ble enough to allow correlation of data when little is
known about how they are linked and organized. We
developed a declarative query language that extends
existing graph languages by introducing ranking based
on a set of flexible correlation metrics. The ranking
metrics proposed are: relevance, connectivity, reputa-
tion, influence, similarity, and context.

Our extension language is aimed at graph languages
such as SPARQL' and Cypher?. We integrate the
ranking metrics into existing query languages by
adding a “RANK BY” clause. The clause enables
an arbitrary combination of metrics that expresses the
global ranking condition defined by the user.

"http:/ /www.w3.org/TR/sparqll1-query
*http://docs.neodj.org

SELECT ?doc @
WHERE { ?doc :type :News }

RANK BY
2 RELEVANCE OF ?doc TO TokenMapper("XPhone features")
1 RELEVANCE OF ?doc TO :ProjectAlpha

START diag=node(*)
WHERE has(diag.Type) and diag.Type = "Diagnose"
RETURN diag

RANK BY
%r RELEVANCE OF diag TO node( %p ) WEIGHTED,
%c CONNECTIVITY OF diag TO node( %p ) WEIGHTED

Figure 2. CDMS query examples (SPARQL and Cypher)

Figure 2a shows a typical query (in extended
SPARQL) for data such as in Figure 1. The query re-
trieves documents relevant to the keyword query based
on a simple tokenizer mapper (TokenMapper). Al-
ternatively, the mapper could use more sophisticated
strategies, such as topic modeling or entity recognition.
The query also favors documents that are relevant to
the project represented by URI :ProjectAlpha (pre-
fixes are omitted). Figure 2b shows the query template
(in Cypher) used in the classification task described in
Section 4.

The raking metrics can specify several modifiers that
restrict the subgraph used to assess the correlations.
Among these modifiers are DEPTH, which limits the
radius of the subgraph, and FOLLOW, which deter-
mines valid relationship labels to traverse. The tuning
of these modifiers is directly related to the accuracy
and computational efficiency of the queries.

The combination of the correlation metrics in a declar-
ative querying setting enables a high level of flexibility
and expressiveness for the applications to explore. We
have employed our query language in information re-
trieval and recommendation tasks. Our goal here is to
show how this query expressiveness can also be har-
nessed in order to represent some ML tasks. More
details about the language, its design principles, and
other applications can be found in (Gomes-Jr et al.,
2013).

3.3. Processing model

Our abstractions for query evaluation fully support
the query language while allowing for under-the-hood
optimizations. We adopt a variation of the spread-
ing activation (SA) model as our main abstraction for
query evaluation. The model allows the specification
of the ranking metrics that are the basis of our query
language. The SA mechanism is based on traversing
the network from a initial set of nodes, activating new
nodes until certain stop conditions are reached. By
controlling several aspects related to this activation
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flow, it is possible to infer and quantify the relation-
ships of the initial nodes to the reached ones.

Our SA model is represented as SA(N), defined by the
parameters G, N, I, O, a, t, d, ¢, and . A SA process
starts with the N nodes initially activated with poten-
tial a. Output potentials for each node are calculated
by the function O(n) = I(n) = d (in the default case).
The output potential is spread through all edges whose
labels are in [. The potential for the reached nodes is
calculated by function I(n) = Z O(i). For the
i€in(n)

next iteration, the potential is spread, restarting the
process, as long as the current potential for reached
nodes is higher than ¢ and the radius of the activated
network is lower than c. v(n) represents the final value
for the potential of n at the end of the process. A de-
tailed description of the SA process can be found in
(Gomes-Jr et al., 2013). We show below how some of
the metrics are represented as SA processes.

Def. 1. relevance(n,m) = v(SA{n})m),

with O(n) = %

Def. 2. connectivity(n,m) = v(SA{n})m)
Def. 3. influence(n) = |SA({n})]

_ [SA{n}) N SA{m})|
1SA({n}) USA({m})|

These metrics capture topological properties of the un-
derlying relationships that are associated with cogni-
tive processes, making them easily understandable by
users. Relevance between two nodes is a measure
that encompasses correlation and specificity. Corre-
lation is proportional to the number of paths linking
the two nodes and inversely proportional to the length
of the paths. Specificity favors paths with less rami-
fications. It is easy to observe that traditional tf*idf
weighting over data as in Figure 1 is an instance of this
definition (for trivial paths of length two). Connec-
tivity between two nodes is a measure that assesses
how interconnected two nodes are. The score is pro-
portional to the number of paths linking the nodes
in the network activated by the SA algorithm. In-
fluence is a specialization of reputation where the
only concern is the number of nodes reached from the
origin. The topology of the graph — in/outdegree or
cycles — do not influence the metric. Context and
similarity measure the ratio of common elements sur-
rounding two nodes. Context is a specialization of
similarity where edge labels do not matter. The def-
initions and usage of other metrics can be found in
(Gomes-Jr et al., 2013).

Def. 4. context(m,n)

3.4. Relationship Management

Relationship creation is an important and defining op-
eration for the described application scenarios. For
example, several text indexing tasks, such as topic
modeling, derive relationships between the text and
more general concepts. In machine learning applica-
tions, elements are associated with features or clas-
sification categories, for example. In our framework,
the creation of relationships is encapsulated in map-
pers. Mappers are very similar to stored procedures.
What sets them apart are (i) their integrated use in
our ranking queries, and (ii) how they are hooked in
the databases’s API so that any new data that matches
the mapping criterion is passed through appropriate
mappers.

Considering data as in Figure 1, a mapper is invoked
whenever a document is added to the database. The
mapper extracts features from the document — in this
case, tokens or named entities. The features are ma-
terialized in the graph, with the new relationships
marked as derived from their mapper. In query time
(Figure 2a), the same mapper (TokenMapper) is in-
voked to extract features from the keyword query. The
features and the keyword query are included as tem-
porary nodes and relationships in the graph. Since all
elements are represented in the same model, the query
language can reference them as target for the correla-
tion inferences.

4. CDMS for ML tasks

Our hypothesis is that the expressiveness of our query
language coupled with the mapper mechanism can be
an interesting way to represent some ML tasks. In our
vision, learning could become indistinguishable from
the natural process of database refinement and evo-
lution. More data means better accuracy, i.e. more
opportunities for exploring non-trivial patterns and
for collective reasoning. Furthermore, refinements to
the data, e.g. a classification mistake corrected by a
database user, are immediately reflected in the data
to be used by inference queries. Once all elements
are represented in the same database model, inferences
can be specified as queries in our query language. Op-
timizations in this scenario become a combination of
sampling methods from ML and query optimization
plans from DBs.

In our setting, mappers are used to extract features,
which by default become part of the database. In
classification tasks, the mappers also accumulate in-
formation about the correlation between features and
outcomes (e.g. posterior probabilities for a bayesian
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mapper).

4.1. Experiments

We tested our approach over real diagnose data com-
piled for a previously unrelated project with the fac-
ulty of nursing at our university (Jensen et al., 2012).
The data consists of matrices SD (for Symptoms x
Diagnoses), PS (for Patients x Symptoms) and PD
(for Patients x Diagnoses). SD correlates 62 symp-
toms to 28 diagnoses, all defined in a domain-specific
protocol. The strength of the correlations sd;; €
{0,0.25,0.5,0.75,1} were determined based on con-
sensus in committees of experts. Similarly, PS cor-
relates 6 patients (clinical cases) and their symp-
toms.  The strength of the correlations ps;; €
{0,0.25,0.5,0.75, 1} were also determined by experts.
Experts also provided most likely diagnoses for each
patient, with strength pd; ; € {0,0.25,0.5,0.75,1}
(these were used as gold standards). The ma-
trices were consolidated in a graph with the
strength of the correlations becoming weights for the
edges. It is important to notice that the weights de-
fined by experts could be easily produced automati-
cally by mappers if we had enough training data.

Figure 3 shows a sample of the graph with the weights
of the associations represented as the thickness of the
edges. As an example, the patient represented by the
node ‘Case 1’ presents the symptom ‘Fatigue’ that was
classified as having a 1.0 pertinence to the diagnosis
‘Caregiver Role Strain’ and 0.5 for ‘Risk for Falls’. The
final graph has 96 nodes and 324 relationships. Our
goal was to suggest diagnoses based on the assessment
of our metrics in the graph. The template for the
queries issued for each patient is shown in Figure 2b.
%r and %c are weights for the relevance and connec-
tivity metrics, %p is the id of the node of the patient.
To represent an instance of the query template we use
the notation Rr:cC, meaning that the query was spec-
ified with weight r for the relevance metric and weight
¢ for connectivity.

We analyzed the result rankings based on the diag-
noses suggested by the committees of experts. We
used the diagnoses with total correlation (1) to each
patient. We run the queries to assess, for the sets of
diagnoses for each patient, how many ranking places
were needed to cover all diagnoses. The patients had
1 to 3 diagnoses matching our criteria. The connectiv-
ity metric required on average 1.5 extra ranking posi-
tions to cover the diagnosis, outperforming relevance
which required 2. We then ran the query with differ-
ent combinations of weights for the metrics, as shown
in Figure 4. Combining the metrics improved the per-

Fati
atigue Risk forinfection

Weight 20% over Q O

Verbal report-of pain Chronic Pain

Case 1 Anorexia

Facial tension Acute Pain

Ineff. choices for

. health goals O
Sleep disturbance Anxiety

Case 2 O

Apprehensive
Insomnia Risk for Falls

Decr. lower extr. strength

Difficulty with gait Caregiver Role Strain

Figure 3. Sample subgraph of the dataset for the nursing
diagnosis experiments

25

1.5

== average
extra
1 items

0.5

R1:0C R0:1C R1:1C R1:2C

Figure 4. Average number of extra ranking items to cover
the diagnosis from the expert

formance, eventually reducing the required extra posi-
tions to 1.17 on average.

The analysis of these experiments suggest that charac-
teristics from both metrics are important to produce
good performing rankings, a trait we conjecture as be-
ing pervasive across tasks. The accuracy of our diagno-
sis suggestions is very practical, especially considering
that we only analyzed a fraction of the information
available for the experts that defined the gold stan-
dard — they also had access to patient’s clinical report
and a list of patient-specific risk factors.

Most importantly, we were able to produce the diag-
nosis recommendations from a very simple declarative
query, in a development effort of a few minutes. The
simple, manual query specification process described
here is equivalent to fitting a classification function
with the metrics and weights as parameters. In prac-
tice, our goal is to automatize the query specification
process. The query, with ranking metrics tuned to
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maximize the likelihood of observing the training data,
becomes the classification model.

5. Conclusion

There are many challenges and open questions re-
lated to this proposal. The search space for query
composition is very large, including combinations for
metric types, their weights, spreading activation pa-
rameters, and relationships to be traversed. Fur-
thermore, query evaluation for large subgraphs and
high frequency relationships is inefficient. We have,
however, preliminary evidence that the performance
challenges may be tractable. In our experiments
(Gomes-Jr & Santanche, 2013), we observed that good
accuracy for the metrics can be achieve with low sub-
graph radii, and that relevant candidate values for
SA parameters are in small ranges. Moreover, the
declarative query setting offers opportunities for DB-
like optimizations: we are proposing and testing a
number of query optimization and approximation tech-
niques. Using advanced sampling techniques will also
contribute towards scalability.

Queries as materializations of learned models have sev-
eral advantages compared to the abstract mathemati-
cal models learned in most ML tasks. The queries are
easy for a user to interpret, tune and reuse. Moreover,
the distribution of metrics, weights, and relationships
provide insights on what are the most important pat-
terns underlying the decision process. We also expect
this approach to reduce, in many instances, the need
for retraining as the database evolves.

We are just beginning to explore applications of our
framework in learning tasks. We still need to assess the
applicability of the language and the domain of tasks
for which its expressiveness is adequate. Our model
can only represent discrete features, but we believe it
can be extended to include continuous features without
a significant increase in complexity. This is an effort
originated in the DB field that would greatly benefit
from feedback and collaboration with ML researchers.
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