
Application Architecture for .NET:
Designing Applications and Services

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft, Active Directory, ActiveX, BizTalk, Visio, Visual Basic, Visual Studio, and
Windows are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

© 2002 Microsoft Corporation. All rights reserved.

Version 1.0

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

Chapter 1
Introduction 1

Contents Roadmap . 2
Chapter Contents . 2
Goals of Distributed Application Design . 2
Services and Service Integration . 3
Components and Tiers in Applications and Services . 5
A Sample Scenario . 8
What’s Next? . 10

Chapter 2
Designing the Components of an Application or Service 11

Chapter Contents . 11
Component Types . 12
General Design Recommendations for Applications and Services 15
Designing Presentation Layers . 16

Designing User Interface Components . 17
Designing User Process Components . 29

Designing Business Layers . 39
Business Components and Workflows . 40
Designing a Service Interface . 50
Representing Data and Passing It Through Tiers . 54
Recommendations for Business Entity Design . 56

Designing Data Layers . 57
Data Stores . 59
Data Access Logic Components . 60
Designing Data Access Helper Components . 66
Integrating with Services . 68

What’s Next? . 69

Contents v

Chapter 3
Security, Operational Management, and Communications Policies 71

Chapter Contents . 72
Designing the Security Policy . 73

General Security Principles . 73
Authentication . 74
Authorization. 80
Secure Communication . 88
Profile Management . 91
Auditing . 91

Designing the Operational Management Policy . 92
Exception Management . 93
Monitoring . 97
Configuration . 99
Metadata . 101
Service Location . 104

Designing the Communications Policy . 106
Choosing the Correct Communication Model . 106
Synchronicity . 112
Recommendations for Communications . 116
Communication Format, Schema, and Protocol . 117
A Look Ahead . 117

What’s Next? . 118

Chapter 4
Physical Deployment and Operational Requirements 119

Chapter Contents . 119
Deploying Application Components . 119

Physical Deployment Environments . 120
Planning the Physical Location of Application Components 125
Distribution Boundaries Between Components . 128
Partitioning Your Application or Service into Assemblies . 131
Packaging and Distributing Application Components . 134

Common Deployment Patterns . 134
Web-Based User Interface Scenarios . 135
Rich Client User Interface Scenarios . 137
Service Integration Scenarios . 139
Production, Test, and Staging Environments . 144

Contentsvi

Operational Requirements . 144
Scalability . 145
Availability . 146
Maintainability . 148
Security . 148
Manageability . 149
Performance . 149

Chapter 5
Appendices 151

Appendix 1: Product Map . 151
Appendix 2: Glossary . 154

Assembly . 154
Atomic Transaction . 154
Commutativity . 154
Component . 154
Contract . 154
Conversation . 155
CRUD . 155
Demilitarized Zone (DMZ) . 155
Dynamic Data Routing . 155
Emissary . 155
Fiefdom . 155
Firewall . 155
Idempotency . 156
Layer . 156
Long-Running Transaction . 156
Message . 156
Orchestration . 156
Policy . 156
Service . 156
Service Agent . 157
Service Interface . 157
Stateful . 157
Stateless . 157
Two-Phase Commit . 157
Workflow. 157
Zone. 157

Appendix 3: Layered Architectures . 158
Feedback and Support . 159

1
Introduction

Application Architecture for .NET: Designing Applications and Services provides
architecture- and design-level guidance for application architects and developers
who need to build distributed solutions with the Microsoft® .NET Framework.

This guide is for you if you:
� Design the high-level architecture for applications or services.
� Recommend appropriate technologies and products for specific aspects of your

application or service.
� Make design decisions to meet functional and nonfunctional (operational)

requirements.
� Choose appropriate communications mechanisms for your application or

service.

This guide identifies the key design decisions you need to make during the early
phases of development and provides design-level guidance to help you choose
between design options. It helps you develop an overall design by presenting a
consistent architecture built of different types of components that will help you
achieve a good design and take advantage of the Microsoft platform. Although this
guide is not intended to provide implementation-level guidance for each aspect of
the application, it does provide references to specific Microsoft Patterns & Practices
guides, MSDN articles, and community sites that discuss in detail the various
aspects of distributed application design. You can think of this guide as a roadmap
of the most important distributed application design issues you will encounter
when using the Microsoft platform.

This guide focuses on distributed applications and Web services that may need to
provide integration capabilities for multiple data sources and services, and that
may require a user interface for one or multiple devices.

The discussion assumes that you are familiar with .NET component development
and the basic principles of a layered distributed application design.

Application Architecture for .NET: Designing Applications and Services2

Contents Roadmap
This guide consists of five chapters:
� Chapter 1, “Introduction”: Explains how applications and services interrelate.
� Chapter 2, “Designing the Components of an Application or Service”: Walks

through the architecture, discussing the roles and design criteria of each compo-
nent layer.

� Chapter 3, “Security, Operational Management, and Communications Policies”:
Details design issues that pertain to the whole application, such as exception
management and authorization.

� Chapter 4, “Physical Deployment and Operational Requirements”: Explains how
the application design affects deployment and change management, and dis-
cusses common deployment patterns used in well-built solutions.

� Chapter 5, “Appendices”: Contains reference figures and a glossary of terms
used in the guide.

These chapters are most valuable when they are read in sequential order, but each
chapter provides information that can be useful independent of the other chapters.

Chapter Contents
This chapter contains the following sections:
� Goals of Distributed Application Design
� Services and Service Integration
� Components and Tiers in Applications and Services
� A Sample Scenario

Goals of Distributed Application Design
Designing a distributed application involves making decisions about its logical and
physical architecture and the technologies and infrastructure used to implement its
functionality. To make these decisions effectively, you must have a sound under-
standing of the business processes that the application will perform (its functional
requirements), and the levels of scalability, availability, security, and maintainability
required (its nonfunctional, or operational, requirements).

Your goal is to design an application that:
� Solves the business problem it is designed to address.
� Addresses security considerations from the start, taking into consideration the

appropriate authentication mechanisms, authorization logic, and secure commu-
nication.

Chapter 1: Introduction 3

� Provides high performance and is optimized for common operations across
deployment patterns.

� Is available and resilient, and can be deployed in redundant, high-availability
data centers.

� Scales to meet the expected demands, and supports a large number of activities
and users with minimal use of resources.

� Is manageable, allowing operators to deploy, monitor, and troubleshoot the
application as appropriate for the scenario.

� Is maintainable. Each piece of functionality should have a predictable location
and design taking into account diverse application sizes, teams with varying
skill sets, and changing business and technical requirements.

� Works in various application scenarios and deployment patterns.

The design guidance provided in subsequent chapters addresses each of these goals
and discusses the reasons for particular design decisions whenever it is important
to understand their background.

Services and Service Integration
As the Internet and its related technologies grow, and organizations seek to
integrate their systems across departmental and organizational boundaries, a
services-based approach to building solutions has evolved. From the consumer’s
perspective, services are conceptually similar to traditional components, except
that services encapsulate their own data and are not strictly speaking part of your
application; rather they are used by your application. Applications and services that
need to be integrated may be built on different platforms, by different teams, on
different schedules, and may be maintained and updated independently. Therefore,
it is critical that you implement communication between them with the least coupling
possible.

It is recommended that you implement communication between services by using
message-based techniques to provide high levels of robustness and scalability. You
can implement message communication explicitly (for example, by writing code to
send and receive Message Queuing messages), or you can use infrastructure compo-
nents that manage the communication for you implicitly (for example, by using a
Web service proxy generated by Microsoft Visual Studio® .NET).

Note: The term service is used in this guide to indicate any external software component that
provides business services. This includes, but is not limited to, XML Web services.

Services expose a service interface to which all inbound messages are sent. The
definition of the set of messages that must be exchanged with a service in order for
the service to perform a specific business task constitutes a contract. You can think

Application Architecture for .NET: Designing Applications and Services4

of a service interface as a façade that exposes the business logic implemented in the
service to potential consumers.

For example, consider a retail application through which customers order products.
The application uses an external credit card authorization service to validate the
customer’s credit card details and authorize the sale. After the credit card details
are verified, a courier service is used to arrange delivery of the goods. The follow-
ing sequence diagram (Figure 1.1) illustrates this scenario.

Figure 1.1
A business process that is implemented using services

In this scenario, the credit card authorization service and the courier service each
play a role in the overall business process of making a purchase. Unlike ordinary
components, services exist in their own trust boundary and manage their own data,
outside the application. Therefore you must be sure to establish a secure, authenti-
cated connection between the calling application and the service when using a
services-based approach to application development. Additionally, you could
implement communication by using a message-based approach, making the design
more suitable for describing business processes (sometimes referred to as business
transactions or long-running transactions) and for loose coupling of systems that are
common in large, distributed solutions — particularly if the business process in-
volves multiple organizations and diverse platforms.

For example, if message-based communications are used in the process shown in
Figure 1.1, the user may receive the order confirmation seconds or hours after the
sale information was provided, depending on how responsive the authorization
and delivery services are. Message-based communication can also make the design
of your business logic independent of the underlying transport protocol used
between services.

If your application uses an external service, the internal implementation of the
service is irrelevant to your design — as long as the service does what it is supposed
to do. You simply need to know the business functionality that the service provides

Chapter 1: Introduction 5

and the details of the contract you must adhere to in order to communicate with it
(such as communication format, data schema, authentication mechanism, and so
on). In the retail application example, the credit card authorization service provides
an interface through which sale and credit card details can be passed to the service,
and a response indicating whether or not the sale is approved. From the retail
application designer’s perspective, what happens inside the credit card authoriza-
tion service does not matter; the only concern is to determine what data needs to be
sent to the service, what responses will be received from the service, and how to
communicate with the service.

Internally, services contain many of the same kinds of components that traditional
applications do. (The rest of this guide focuses on the various components and their
role in the application design.) Services contain logic components that orchestrate
the business tasks they perform, business components that implement the actual
business logic of the service, and data access components that access the service’s
data store. In addition, services expose their functionality through service inter-
faces, which handle the semantics of exposing the underlying business logic. Your
application will also call other services through service agents, which communicate
with the service on behalf of the calling client application.

Although message-based services can be designed to be called synchronously, it
can be advantageous to build asynchronous service interfaces, which allow a more
loosely coupled approach to distributed application development. The loose cou-
pling that asynchronous communication provides makes it possible to build highly
available, scalable, and long-lasting solutions composed of existing services. How-
ever, an asynchronous design doesn’t provide these benefits for free: Using asyn-
chronous communication means your design may need to take into account such
special considerations as message correlation, optimistic data concurrency manage-
ment, business process compensation, and external service unavailability.

Note: Chapter 3, “Security, Operational Management, and Communications Policies,”
discusses in detail the issues involved in implementing service communication.

For more information about services and related concepts, see “Application
Conceptual View” on MSDN (http://msdn.microsoft.com/library/en-us/dnea/html
/eaappconland.asp).

Components and Tiers in Applications and Services
It has become a fairly widely accepted tenet of distributed application design that
you should divide your application into components providing presentation,
business, and data services. Components that perform similar types of functions can
be grouped into layers, which in many cases are organized in a stacked fashion so
that components “above” a certain layer use the services provided by it, and a given
component will use the functionality provided by other components in its own
layer and other layers “below” to perform its work.

Application Architecture for .NET: Designing Applications and Services6

Note: This guide uses the term layer to refer to a component type and uses the term tier to
refer to physical distribution patterns.

This partitioned view of an application can also be applied to services. From a high-
level view, a service-based solution can be seen as being composed of multiple
services, each communicating with the others by passing messages. Conceptually,
the services can be seen as components of the overall solution. However, internally
each service is made up of software components, just like any other application, and
these components can be logically grouped into presentation, business, and data
services, as shown in Figure 1.2.

Figure 1.2
A service-based solution

The important points to note about this figure are as follows:
1. Services are usually designed to communicate with each other with the least

coupling possible. Using message-based communication helps to decouple the
availability and scalability of the services, and relying on industry standards such
as XML Web services allows integration with other platforms and technologies.

Chapter 1: Introduction 7

2. Each service consists of an application with its own data sources, business logic,
and user interfaces. A service may have the same internal design as a traditional
three-tier application, for example, services (2) and (4) in the previous figure.

3. You can choose to build and expose a service that has no user interface directly
associated with it (a service that is designed to be invoked by other applications
through a programmatic interface). This is shown in service (3). Notice that the
components that make up a service and the components that make up the
business layers of an application can be designed in a similar way.

4. Each service encapsulates its own data and manages atomic transactions with its
own data sources.

It is important to note that the layers are merely logical groupings of the software
components that make up the application or service. They help to differentiate
between the different kinds of tasks performed by the components, making it easier
to design reusability into the solution. Each logical layer contains a number of
discrete component types grouped into sublayers, with each sublayer performing a
specific kind of task. By identifying the generic kinds of components that exist in
most solutions, you can construct a meaningful map of an application or service,
and then use this map as a blueprint for your design.

Figure 1.3 shows a simplified view of one application and its layers.

Figure 1.3
Components separated into layers according to their roles

Application Architecture for .NET: Designing Applications and Services8

A distributed solution may need to span multiple organizations or physical tiers, in
which case it will have its own policies regarding application security, operational
management, and communications. These units of trust, or zones, can be a physical
tier, a data center, or a department, division, or company that has such policies
defined. Together, these policies define rules for the environment in which the
application is deployed and how services and application tiers communicate. The
policies span the entire application, and the way they are implemented affects
design decisions at each tier. They also have an impact on each other (for example,
the security policy may determine some of the rules in the communication policy,
and vice versa).

Note: For more information about security, operational management, and communications
policy design, see Chapter 3, “Security, Operational Management, and Communications
Policies.”

A Sample Scenario
To help identify common kinds of components, this guide describes a sample
application that uses external services. Although this guide focuses on a specific
example, the design recommendations given apply to most distributed applications,
regardless of the actual business scenario.

The sample scenario described in this guide is an extension of the retail application
described earlier in this chapter. In this scenario, a retail company offers its custom-
ers the choice of ordering products through an e-commerce Web site or by tele-
phone. Internet users can visit the company’s Web site and select products from
an online catalog. Alternatively, customers can order products from a mail order
catalog by telephoning a sales representative, who enters the order details through
a Microsoft Windows–based application. After an order is complete, the customer’s
credit card details are authorized using an external credit card authorization service,
and delivery is arranged using an external courier service.

The proposed solution for this scenario is a component-based design that consists of
a number of components, as shown in Figure 1.4.

Chapter 1: Introduction 9

Figure 1.4
The retail application as a set of components and related services

Figure 1.4 shows the retail application as composed of multiple software compo-
nents, which are grouped into logical tiers according to the kind of functionality
they provide. Note that from the standpoint of the retail application, the credit card
authorization and courier services can be thought of as external components.
However, internally the services are implemented much as ordinary applications
are, and contain the same kinds of components (although the services in this sce-
nario do not contain a presentation tier, but publish their functionality through a
programmatic service interface).

Application Architecture for .NET: Designing Applications and Services10

What’s Next?
This chapter has introduced you to service based solutions and has explained how
a service, like any other application, is composed of multiple software components
that can be grouped into logical tiers. The components that make up an application
or service can be described in generic terms. An understanding of the different
component types that are commonly used in distributed applications will help you
design better solutions.

Chapter 2, “Designing the Components of an Application or Service,” describes
common component types and provides recommendations on how best to design
them.

2
Designing the Components
of an Application or Service

Chapter 1 described how an application or service is composed of multiple compo-
nents, each performing a different kind of task. Every software solution contains
similar kinds of components, regardless of the specific business need it addresses.
For example, most applications contain components that access data, encapsulate
business rules, handle user interaction, and so on. Identifying the kinds of compo-
nents commonly found in distributed software solutions will help you build a
blueprint for an application or service design.

Chapter Contents
This chapter contains the following sections:
� Component Types
� General Design Recommendations for Applications and Services
� Designing Presentation Layers
� Designing Business Layers
� Designing Data Layers

Application Architecture for .NET: Designing Applications and Services12

Component Types
An examination of most business solutions based on a layered component model
reveals several common component types. Figure 2.1 shows these component types
in one comprehensive illustration.

Note: The term component is used in the sense of a piece or part of the overall solution. This
includes compiled software components, such as Microsoft .NET assemblies, and other
software artifacts such as Web pages and Microsoft® BizTalk® Server Orchestration schedules.

Although the list of component types shown in Figure 2.1 is not exhaustive, it
represents the common kinds of software components found in most distributed
solutions. These component types are described in depth throughout the remainder
of this chapter.

Figure 2.1
Component types in the retail sample scenario

Chapter 2: Designing the Components of an Application or Service 13

The component types identified in the sample scenario design are:
1. User interface (UI) components. Most solutions need to provide a way for users

to interact with the application. In the retail application example, a Web site lets
customers view products and submit orders, and an application based on the
Microsoft Windows® operating system lets sales representatives enter order data
for customers who have telephoned the company. User interfaces are imple-
mented using Windows Forms, Microsoft ASP.NET pages, controls, or any other
technology you use to render and format data for users and to acquire and
validate data coming in from them.

2. User process components. In many cases, a user interaction with the system
follows a predictable process. For example, in the retail application you could
implement a procedure for viewing product data that has the user select a
category from a list of available product categories and then select an individual
product in the chosen category to view its details. Similarly, when the user
makes a purchase, the interaction follows a predictable process of gathering data
from the user, in which the user first supplies details of the products to be pur-
chased, then provides payment details, and then enters delivery details. To help
synchronize and orchestrate these user interactions, it can be useful to drive the
process using separate user process components. This way the process flow and
state management logic is not hard-coded in the user interface elements them-
selves, and the same basic user interaction “engine” can be reused by multiple
user interfaces.

3. Business workflows. After the required data is collected by a user process, the
data can be used to perform a business process. For example, after the product,
payment, and delivery details are submitted to the retail application, the process
of taking payment and arranging delivery can begin. Many business processes
involve multiple steps that must be performed in the correct order and orches-
trated. For example, the retail system would need to calculate the total value of
the order, validate the credit card details, process the credit card payment, and
arrange delivery of the goods. This process could take an indeterminate amount
of time to complete, so the required tasks and the data required to perform them
would have to be managed. Business workflows define and coordinate long-
running, multi-step business processes, and they can be implemented using
business process management tools such as BizTalk Server Orchestration.

4. Business components. Regardless of whether a business process consists of a
single step or an orchestrated workflow, your application will probably require
components that implement business rules and perform business tasks. For
example, in the retail application, you would need to implement the functional-
ity that calculates the total price of the goods ordered and adds the appropriate
delivery charge. Business components implement the business logic of the
application.

Application Architecture for .NET: Designing Applications and Services14

5. Service agents. When a business component needs to use functionality provided
in an external service, you may need to provide some code to manage the seman-
tics of communicating with that particular service. For example, the business
components of the retail application described earlier could use a service agent
to manage communication with the credit card authorization service, and use a
second service agent to handle conversations with the courier service. Service
agents isolate the idiosyncrasies of calling diverse services from your applica-
tion, and can provide additional services, such as basic mapping between the
format of the data exposed by the service and the format your application
requires.

6. Service interfaces. To expose business logic as a service, you must create service
interfaces that support the communication contracts (message-based communi-
cation, formats, protocols, security, exceptions, and so on) its different consumers
require. For example, the credit card authorization service must expose a service
interface that describes the functionality offered by the service and the required
communication semantics for calling it. Service interfaces are sometimes referred
to as business facades.

7. Data access logic components. Most applications and services will need to
access a data store at some point during a business process. For example, the
retail application needs to retrieve product data from a database to display
product details to the user, and it needs to insert order details into the database
when a user places an order. It makes sense to abstract the logic necessary to
access data in a separate layer of data access logic components. Doing so central-
izes data access functionality and makes it easier to configure and maintain.

8. Business entity components: Most applications require data to be passed be-
tween components. For example, in the retail application a list of products must
be passed from the data access logic components to the user interface compo-
nents so that the product list can be displayed to the users. The data is used to
represent real-world business entities, such as products or orders. The business
entities that are used internally in the application are usually data structures,
such as DataSets, DataReaders, or Extensible Markup Language (XML) streams,
but they can also be implemented using custom object-oriented classes that
represent the real-world entities your application has to work with, such as a
product or an order.

9. Components for security, operational management, and communication: Your
application will probably also use components to perform exception manage-
ment, to authorize users to perform certain tasks, and to communicate with other
services and applications. These components are discussed in detail in Chapter 3,
“Security, Operational Management, and Communications Policies.”

Chapter 2: Designing the Components of an Application or Service 15

General Design Recommendations for Applications and Services
When designing an application or service, you should consider the following
recommendations:
� Identify the kinds of components you will need in your application. Some

applications do not require certain components. For example, smaller applica-
tions that don’t need to integrate with other services may not need business
workflows or service agents. Similarly, applications that have only one user
interface with a small number of elements may not require user process
components.

� Design all components of a particular type to be as consistent as possible, using
one design model or a small set of design models. This helps to preserve the
predictability and maintainability of the design and implementation for all
teams. In some cases, it may be hard to maintain a logical design due to technical
environments (for example, if you are developing both ASP.NET- and Windows-
based user interfaces); however, you should strive for consistency within each
environment. In some cases, you can use a base class for all components that
follow a similar pattern, such as data access logic components.

� Understand how components communicate with each other before choosing
physical distribution boundaries. Keep coupling low and cohesion high by
choosing coarse-grained, rather than chatty, interfaces for remote communication.

� Keep the format used for data exchange consistent within the application or
service. If you must mix data representation formats, keep the number of formats
low. For example, you may return data in a DataReader from data access logic
components to do fast rendering of data in Microsoft ASP.NET, but use DataSets
for consumption in business processes. However, be aware that mixing XML
strings, DataSets, serialized objects, DataReaders, and other formats in the same
application will make the application more difficult to develop, extend, and
maintain.

� Keep code that enforces policies (such as security, operational management, and
communication restrictions) abstracted as much as possible from the application
business logic. Try to rely on attributes, platform application programming
interfaces (APIs), or utility components that provide “single line of code” access
to functionality related to the policies, such as publishing exceptions, authorizing
users, and so on.

� Determine at the outset what kind of layering you want to enforce. In a strict
layering system, components in layer A cannot call components in layer C; they
always call components in layer B. In a more relaxed layering system, compo-
nents in a layer can call components in other layers that are not immediately
below it. In all cases, try to avoid upstream calls and dependencies, in which
layer C invokes layer B. You may choose to implement a relaxed layering to

Application Architecture for .NET: Designing Applications and Services16

prevent cascading effects throughout all layers whenever a layer close to the
bottom changes, or to prevent having components that do nothing but forward
calls to layers underneath.

Designing Presentation Layers
The presentation layer contains the components that are required to enable user
interaction with the application. The most simple presentation layers contain user
interface components, such as Windows Forms or ASP.NET Web Forms. For more
complex user interactions, you can design user process components to orchestrate
the user interface elements and control the user interaction. User process compo-
nents are especially useful when the user interaction follows a predictable flow of
steps, such as when a wizard is used to accomplish a task. Figure 2.2 shows the
component types in the presentation layer.

Figure 2.2
Presentation layer

Chapter 2: Designing the Components of an Application or Service 17

In the case of the retail application, two user interfaces are required: one for the
e-commerce Web site that the customers use, and another for the Windows Forms–
based applications that the sales representatives use. Both types of users will per-
form similar tasks through these user interfaces. For example, both user interfaces
must provide the ability to view the available products, add products to a shopping
basket, and specify payment details as part of a checkout process. This process can
be abstracted in a separate user process component to make the application easier
to maintain.

Designing User Interface Components
You can implement user interfaces in many ways. For example, the retail applica-
tion requires a Web-based user interface and a Windows-based user interface. Other
kinds of user interfaces include voice rendering, document-based programs, mobile
client applications, and so on. User interface components manage interaction with
the user. They display data to the user, acquire data from the user, and interpret
events that the user raises to act on business data, change the state of the user
interface, or help the user progress in his task.

User interfaces usually consist of a number of elements on a page or form that
display data and accept user input. For example, a Windows-based application
could contain a DataGrid control displaying a list of product categories, and a
command button control used to indicate that the user wants to view the products
in the selected category. When a user interacts with a user interface element, an
event is raised that calls code in a controller function. The controller function, in
turn, calls business components, data access logic components, or user process
components to implement the desired action and retrieve any necessary data to be
displayed. The controller function then updates the user interface elements appro-
priately. Figure 2.3 shows the design of a user interface.

Figure 2.3
User interface design

Application Architecture for .NET: Designing Applications and Services18

User Interface Component Functionality
User interface components must display data to users, acquire and validate data
from user input, and interpret user gestures that indicate the user wants to perform
an operation on the data. Additionally, the user interface should filter the available
actions to let users perform only the operations that are appropriate at a certain
point in time.

User interface components:
� Do not initiate, participate in, or vote on transactions.
� Have a reference to a current user process component if they need to display its

data or act on its state.
� Can encapsulate both view functionality and a controller.

When accepting user input, user interface components:
� Acquire data from users and assist in its entry by providing visual cues (such as

tool tips), validation, and the appropriate controls for the task.
� Capture events from the user and call controller functions to tell the user inter-

face components to change the way they display data, either by initiating an
action on the current user process, or by changing the data of the current user
process.

� Restrict the types of input a user can enter. For example, a Quantity field may
limit user entries to numerical values.

� Perform data entry validation, for example by restricting the range of values
that can be entered in a particular field, or by ensuring that mandatory data is
entered.

� Perform simple mapping and transformations of the information provided by
the user controls to values needed by the underlying components to do their
work (for example, a user interface component may display a product name but
pass the product ID to underlying components).

� Interpret user gestures (such as a drag-and-drop operation or button clicks) and
call a controller function.

� May use a utility component for caching. In ASP.NET, you can specify caching
on the output of a user interface component to avoid re-rendering it every time.
If your application contains visual elements representing reference data that
changes infrequently and is not used in transactional contexts, and these ele-
ments are shared across large numbers of users, you should cache them. You
should cache visual elements that are shared across large numbers of users,
representing reference data that changes infrequently and that is not used in
transactional contexts.

Chapter 2: Designing the Components of an Application or Service 19

� May use a utility component for paging. It is common, particularly in Web
applications, to show long lists of data as paged sets. It is common to have a
“helper” component that will keep track of the current page the user is on and
thus invoke the data access logic component “paged query” functions with the
appropriate values for page size and current page. Paging can occur without
interaction of the user process component.

When rendering data, user interface components:
� Acquire and render data from business components or data access logic compo-

nents in the application.
� Perform formatting of values (such as formatting dates appropriately).
� Perform any localization work on the rendered data (for example, using resource

strings to display column headers in a grid in the appropriate language for the
user’s locale).

� Typically render data that pertains to a business entity. These entities are usually
obtained from the user process component, but may also be obtained from the
data components. UI components may render data by data-binding their display
to the correct attributes and collections of the entity components, if the entity is
already available. If you are managing entity data as DataSets, this is very simple
to do. If you have implemented custom entity objects, you may need to imple-
ment some extra code to facilitate the data binding.

� Provide the user with status information, for example by indicating when an
application is working in “disconnected” or “connected” mode.

� May customize the appearance of the application based on user preferences or
the kind of client device used.

� May use a utility component to provide undo functionality. Many applications
need to let a user undo certain operations. This is usually performed by keeping
a fixed-length stack of “old value-new value” data for specific data items or
whole entities. When the operation has involved a business process, you should
not expose the compensation as a simple undo function, but as an explicit
operation.

� May use a utility component to provide clipboard functionality. In many Win-
dows-based applications, it is useful to provide clipboard capabilities for more
than just scalar values — for example, you may want to let your users copy and
paste a full customer object. Such functionality is usually implemented by
placing XML strings in the Clipboard in Windows, or by having a global object
that keeps the data in memory if the clipboard is application-specific.

Application Architecture for .NET: Designing Applications and Services20

Windows Desktop User Interfaces
Windows user interfaces are used when you have to provide disconnected or offline
capabilities or rich user interaction, or even integration with the user interfaces of
other applications. Windows user interfaces can take advantage of a wide range of
state management and persistence options and can access local processing power.
There are three main families of standalone user interfaces: “full-blown” Windows-
based applications, Windows-based applications that include embedded HTML,
and application plug-ins that can be used within a host application’s user interface:
� “Full-blown” desktop/tablet PC user interfaces built with Windows Forms

Building a Windows-based application involves building an application with
Windows Forms and controls where your application provides all or most of the
data rendering functionality. This gives you a great deal of control over the user
experience and total control over the look and feel of the application. However, it
ties you to a client platform, and the application needs to be deployed to the
users (even if the application is deployed by downloading it over an HTTP
connection).

� Embedded HTML
You can choose to implement the entire user interface using Windows Forms, or
you can use additional embedded HTML in your Windows-based applications.
Embedded HTML allows for greater run-time flexibility (because the HTML may
be loaded from external resources or even a database in connected scenarios) and
user customization. However, you must carefully consider how to prevent
malicious script from being introduced in the HTML, and additional coding is
required to load the HTML, display it, and hook up the events from the control
with your application functions.

� Application plug-ins
Your use cases may suggest that the user interface of your application could be
better implemented as a plug-in for other applications, such as Microsoft Office,
AutoCAD, Customer Relationship Management (CRM) solutions, engineering
tools, and so on. In this case, you can leverage all of the data acquisition and
display logic of the host application and provide only the code to gather the
data and work with your business logic.
Most modern applications support plug-ins as either Component Object Model
(COM) or .NET objects supporting a specified interface, or as embedded devel-
opment environments (such as the Microsoft Visual Basic® development system,
which is widely supported in most common Windows-based applications) that
can, in turn, invoke custom objects. Some embedded environments (including
Visual Basic) even provide a forms engine that enables you add to the user
interface experience beyond that provided by the host application. For more
information about using Visual Basic in host applications, see “Microsoft Visual

Chapter 2: Designing the Components of an Application or Service 21

Basic for Applications and Windows DNA 2000” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dndna/html/vba4dna.asp).
For information about working with .NET from Microsoft Office, see “Microsoft
Office and .NET Interoperability” on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnofftalk/html/office11012001.asp).

When creating a Windows Forms-based application, consider the following recom-
mendations:
� Rely on data binding to keep data synchronized across multiple forms that are

open simultaneously. This alleviates the need to write complex data synchroniza-
tion code.

� Try to avoid hard-coding relationships between forms, and rely on the user
process component to open them and synchronize data and events. You should
be especially careful to avoid hard-coding relationships from child forms to
parent forms. For example, a product details window can be reused from other
places in the application, not just from an order entry form, so you should avoid
implementing functionality in the product details form that links directly to the
order entry form. This makes your user interface elements more reusable.

� Implement error handlers in your forms. Doing so prevents the user from seeing
an unfriendly .NET exception window and having the application fail if you
have not handled exceptions elsewhere. All event handlers and controller func-
tions should include exception catches. Additionally, you may want to create a
custom exception class for your user interface that includes metadata to indicate
whether the failed operation can be retried or canceled.

� Validate user input in the user interface. Validation should occur at the stages in
the user’s task or process that allow point-in-time validations (allowing the user
to enter some of the required data, continue with a separate task, and return to
the current task). In some cases, you should proactively enable and disable
controls and visually cue the user when invalid data is entered. Validating user
input in the user interface prevents unnecessary round trips to server-side
components when invalid data has been entered.

� If you are creating custom user controls, expose only the public properties and
methods that you actually need. This makes the components more maintainable.

� Implement your controller functions as separate functions in your Windows
Forms or in .NET classes that will be deployed with your client. Do not imple-
ment controller functionality directly in control event handlers. Writing control-
ler logic in event handlers reduces the maintainability of the application, because
you may need to invoke the same function from other events in the future.

Application Architecture for .NET: Designing Applications and Services22

For example, the event handler for a command button named addItem’s click
event should call a more general procedure to accomplish its task, as shown in
the following code.

private void addItem_Click(object sender, System.EventArgs e)
{
 AddItemToBasket(selectedProduct, selectedQuantity)
}

public void AddItemToBasket(int ProductID, int Quantity)
{
 // code to add the item to the basket
}

Internet Browser User Interfaces
The retail application described in this guide requires a Web-based user interface to
allow customers to place orders through the Internet. Web-based user interfaces
allow for standards-based user interfaces across many devices and platforms. You
develop Web-based user interfaces for .NET-based applications with ASP.NET.
ASP.NET provides a rich environment where you can create complex Web-based
interfaces with support for important features such as:
� A consistent development environment that is also used for creating the other

components of the application.
� User interface data binding.
� Component-based user interfaces with controls.
� Access to the integrated .NET security model.
� Rich caching and state management options.
� Availability, performance, and scalability of Web processing.

When you need to implement an application for a browser, ASP.NET provides the
functionality needed to publish a Web page-based user interface. Consider the
following design recommendations for ASP.NET user interfaces:
� Implement a custom error page, and a global exception handler in Global.asax.

This provides you with a catch-all exception function that prevents the user from
seeing unfriendly pages in case of a problem.

� ASP.NET has a rich validation framework that optimizes the task of making sure
that data entered by the user conforms to certain criteria. However, the client
validation performed at the browser relies on JavaScript being enabled on the
client, so you should validate data on your controller functions as well, just in
case a user has a browser with no JavaScript support (or with JavaScript dis-
abled). If your user process has a Validate control function, call it before
transitioning to other pages to perform point-in-time validation.

Chapter 2: Designing the Components of an Application or Service 23

� If you are creating Web user controls, expose only the public properties and
methods that you actually need. This improves maintainability.

� Use the ASP.NET view state to store page specific state, and keep session and
application state for data with a wider scope. This approach makes it easier to
maintain and improves scalability.

� Your controller functions should invoke the actions on a user process component
to guide the user through the current task rather than redirecting the user to the
page directly. The user process component may call the Redirect function to have
the server display a different page. To do so, you must reference the System.Web
namespace from your user process components. (Note that this means your user
process component will not be reusable from Windows-based applications, so
you may decide to implement Redirect calls in a different class.)

� Implement your controller functions as separate functions in your ASP.NET
pages or in .NET classes that will be deployed with your Web pages. Writing
business logic in ASP.NET-provided event handlers reduces the maintainability
of the site, because you may need to invoke the same function from other events
in the future. Doing so also requires greater skill on the part of developers
writing UI-only code.
For example, suppose the retail site Web site contains a page on which a com-
mand button can be clicked to add a product to the user’s shopping basket. The
ASP.NET markup for the control might look like the following line of code.

<asp:Button id="addItem" OnClick="addItem_Click"/>

As you can see from this code, the button’s OnClick event is handled by a func-
tion named addItem_Click. However, the event handler should not contain the
code to perform the required action (in this case, add an item to the basket), but
rather it should call another general function, as shown in the following code.

private void addItem_Click(object sender, System.EventArgs e)
{
 AddItemToBasket(selectedProduct, selectedQuantity)
}

public void AddItemToBasket(int ProductID, int Quantity)
{
 // code to add the item to the basket
}

This additional layer of abstraction ensures that the code required to perform
controller tasks can be reused by multiple user interface elements.

For general information about ASP.NET, see the ASP.NET section of MSDN (http://
msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000440) and
the official ASP.NET site (http://asp.net).

Application Architecture for .NET: Designing Applications and Services24

In many applications, it is important to provide an extensible framework where
multiple panes with different purposes are displayed. In Web-based applications,
you also need to provide a home page or root user interface where tasks and infor-
mation relevant to the user are displayed in a context- and device-sensitive way.
Microsoft provides the following resources to help you implement Web-based
portals:
� Microsoft Content Management Server (http://msdn.microsoft.com/library

/default.asp?url=/nhp/Default.asp?contentid=28001368)
� Microsoft SharePoint Portal™ Server 2001 (http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/spssdk/html/_welcome_to_tahoe.asp)
� IBuySpy Portal (http://msdn.microsoft.com/library/en-us/dnbda/html

/bdasampibsport.asp)

Mobile Device User Interfaces
Mobile devices such as handheld PCs, Wireless Application Protocol (WAP) phones,
and iMode devices are becoming increasingly popular, and building user interfaces
for a mobile form factor presents its own unique challenges.

In general, a user interface for a mobile device needs to be able to display informa-
tion on a much smaller screen than other common applications, and it must offer
acceptable usability for the devices being targeted. Because user interaction can be
awkward on many mobile devices, particularly mobile phones, you should design
your mobile user interfaces with minimal data input requirements. A common
strategy is to combine the use of mobile devices with a full-sized Web- or Windows-
based application and allow users to preregister data through the desktop-based
client, and then select it when using the mobile client. For example, an e-commerce
application may allow users to register credit card details through the Web site, so
that a preregistered credit card can be selected from a list when orders are placed
from a mobile device (thus avoiding the requirement to enter full credit card details
using a mobile telephone keypad or personal digital assistant [PDA] stylus).

Web User Interfaces

A wide range of mobile devices support Internet browsing. Some use micro brows-
ers that support a subset of HTML 3.2, some require data to be sent in Wireless
Markup Language (WML), and some support other standards such as Compact
HTML (cHTML). You can use the Microsoft Mobile Internet Toolkit to create
ASP.NET-based Web applications that send the appropriate markup standard to
each client based on the device type as identified in the request header. Doing so
allows you to create a single Web application that targets a multitude of different
mobile clients including Pocket PC, WAP phones, iMode phones, and others.

As with other kinds of user interface, you should try to minimize the possibility of
users entering invalid data in a mobile Web page. The Mobile Internet Toolkit

Chapter 2: Designing the Components of an Application or Service 25

includes client-side validation controls such as the CompareValidator,
CustomValidator, RegularExpressionValidator, and RequiredFieldValidator con-
trols, which can be used with multiple client device types. You can also use the
properties of input fields such as Textbox controls to limit the kind of input ac-
cepted (for example by accepting only numeric input). However, you should always
allow for client devices that may not support client-side validation, and perform
additional checks after the data has been posted to the server.

For more information about the Mobile Internet Toolkit, see the Microsoft Mobile
Internet Toolkit page on MSDN (http://msdn.microsoft.com/vstudio/device
/mitdefault.asp).

Smart Device User Interfaces

The Pocket PC is a feature-rich device based on the Windows CE operating system
on which you can develop both disconnected and connected (usually through
wireless) user interfaces. The Pocket PC platform includes handheld PDA devices
and smart phones, which combine PDA and phone features.

Microsoft provides the .NET Compact Framework for Pocket PC and other Win-
dows CE platforms. The compact framework contains a subset of the full .NET
Framework and allows the development of rich .NET–based applications for mobile
devices. Developers can use the Smart Device Extensions for Visual Studio .NET to
create applications that target the .NET Compact Framework.

As with regular Windows-based user interfaces, you should provide exception
handling in your mobile device to inform the user when an operation fails, and
allow the user to retry or cancel it as appropriate.

No input validation controls are provided in the Smart Device Extensions for
Microsoft Visual Studio® .NET, so you must implement your own client-side
validation logic to ensure that all data entry is valid.

For more resources for Pocket PC platform development and the .NET Compact
Framework, see the Smart Device Extensions page on MSDN (http://
msdn.microsoft.com/vstudio/device/smartdev.asp).

Another mobile form factor for rich clients that you may want to consider is the
Tablet PC. Tablet PCs are Windows XP–based portable devices that support user
interaction through a “pen and ink” metaphor in which the user “draws” and
“writes” on the screen. Since the Tablet PC is based on Windows XP, the full .NET
Framework can be leveraged. An additional API for handling “pen and ink” inter-
actions is also available. For more information about designing applications for the
Tablet PC, see Design Recommendations for Exploiting the Pocket PC on MSDN
(http://msdn.microsoft.com/library/en-us/tpcsdk10/html/whitepapers/designguide
/tbconuxdgformfactorpenandink.asp).

Application Architecture for .NET: Designing Applications and Services26

Document-based User Interfaces
Rather than build a custom Windows-based desktop application to facilitate user
interaction, you might find that it makes more sense in some circumstances to allow
users to interact with the system through documents created in common productiv-
ity tools such as Microsoft Word or Microsoft Excel. Documents are a common
metaphor for working with data. In some applications, you may benefit from
having users enter or view data in document form in the tools they commonly use.
Consider the following document-based solutions:
� Reporting data. Your application (Windows- or Web-based) may provide the

user with a feature that lets him or her see data in a document of the appropriate
type — for example, showing invoice data as a Word document, or a price list as
an Excel spreadsheet.

� Gathering data. You could let sales representatives enter purchase information
for telephone customers in Excel spreadsheets to create a customer order docu-
ment, and then submit the document to your business process.

There are two common ways to integrate a document experience in your applica-
tions, each broken down into two common scenarios: gathering data from users and
reporting data to users.

Working with Documents from the Outside

You can work with documents “from the outside,” treating them as an entity. In this
scenario, your code operates on a document that has no specific awareness of the
application. This approach has the advantage that the document file may be pre-
served beyond a specific session. This model is useful when you have “freeform”
areas in the document that your application doesn’t need to deal with but you may
need to preserve. For example, you can choose this model to allow users to enter
information in a document on a mobile device and take advantage of the Pocket PC
ActiveSync capabilities to synchronize data between the document on the mobile
device and a document kept on the server. In this design model, your user interface
will perform the following functions:
� Gathering data. A user can enter information in a document, starting with a

blank document, or most typically, starting with a predefined template that has
specific fields.
The user then submits the document to a Windows-based application or uploads
it to a Web-based application. The application scans the document’s data and
fields through the document’s object model, and then performs the necessary
actions.
At this point, you may decide either to preserve the document after processing
or to dispose of it. Typically, documents are preserved to maintain a tracking
history or to save additional data that the user has entered in freeform areas.

Chapter 2: Designing the Components of an Application or Service 27

� Reporting data. In this case, a Windows- or Web-based user interface provides a
way to generate a document that shows some data, such as a sales invoice. The
reporting code will usually take data from the ongoing user process, business
process, and/or data access logic components and either call macros on the
document application to inject the data and format it, or save a document with
the correct file format and then return it to the user. You can return the document
by saving it to disk and providing a link to it (you would need to save the
document in a central store in load-balanced Web farms) or by including it as
part of the response.
When returning documents in Web-based applications, you have to decide
whether to display the document in the browser for the user to view, or to
present the user with an option to save the document to disk. This is usually
controlled by setting the correct MIME type on the response of an ASP.NET page.
In Web environments, you need to follow file naming conventions carefully to
prevent concurrent users from overwriting each other’s files.

Working with Documents from the Inside

When you want to provide an integrated user experience within the document, you
can embed the application logic in the document itself. In this design model, your
user interface performs the following functions:
� Gathering data. Users can enter data in documents with predefined forms, and

then specific macros can be invoked on the template to gather the right data and
invoke your business or user process components. This approach provides a
more integrated user experience, because the user can just click a custom button
or menu option in the host application to perform the work, rather than having
to submit the entire document.

� Reporting data. You can implement custom menu entries and buttons in your
documents that gather some data from the server and display it. You can also
choose to use smart tags in your documents to provide rich inline integration
functionality across all Microsoft Office productivity tools. For example, you can
provide a smart tag that lets users display full customer contact information
from the CRM database whenever a sales representative types in a customer
name in the document.

Regardless of whether you work with a document from the inside or from the
outside, you should provide validation logic to ensure that all user input is valid.
You can achieve this in part by limiting the data types of fields, but in most cases
you will need to implement custom functionality to check user input, and display
error messages when invalid data is detected. Microsoft Office–based documents
can include custom macros to provide this functionality.

For information about how to integrate a purely Office-based UI with your business
processes, see “Microsoft Office XP Resource Kit for BizTalk Server Version 2.0”

Application Architecture for .NET: Designing Applications and Services28

(http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=
/msdn-files/027/001/743/msdncompositedoc.xml).

For more information about working with Office and .NET, see MSDN. The follow-
ing two articles will help you get started with Office and .NET-based application
development:
� “Introducing .NET to Office Developers” (http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/dnofftalk/html/office10042001.asp)
� “Microsoft Office and .NET Interoperability” (http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/dnofftalk/html/office11012001.asp)

You can manage document-based workflows by taking advantage of the services
provided by Microsoft SharePoint Portal™. This product can manage the user
process and provides rich metadata and search capabilities.

Accessing Data Access Logic Components from the User Interface
Some applications’ user interfaces need to render data that is readily available as
queries exposed by data access logic components. Regardless of whether your user
interface components invoke data access logic components directly, you should not
mix data access logic with business processing logic.

Accessing data access logic components directly from your user interface may seem
to contradict the layering concept. However, it is useful in this case to adopt the
perspective of your application as one homogenous service — you call it, and it’s up
to it to decide what internal components are best suited to respond to a request.

You should allow direct data access logic component access to user interface com-
ponents when:
� You are willing to tightly couple data access methods and schemas with user

interface semantics. This coupling requires joint maintenance of user interface
changes and schema changes.

� Your physical deployment places data access logic components and user inter-
face components together, allowing you to get data in streaming formats (such as
DataReaders) from data access logic components that can be bound directly to
the output of ASP.NET user interfaces for performance. If you deploy data access
and business process logic on different servers, you cannot take advantage of this
capability. From an operational perspective, allowing direct access to the data
access logic components to take advantage of streaming capabilities means that
you will need to provide access to the database from where the data access logic
components are deployed — possibly including access through firewall ports.
For more information, see Chapter 4, “Physical Deployment and Operational
Requirements.”

Chapter 2: Designing the Components of an Application or Service 29

Designing User Process Components
A user interaction with your application may follow a predictable process; for
example, the retail application may require users to enter product details, view the
total price, enter payment details, and finally enter delivery address information.
This process involves displaying and accepting input from a number of user inter-
face elements, and the state for the process (which products have been ordered, the
credit card details, and so on) must be maintained between each transition from one
step in the process to another. To help coordinate the user process and handle the
state management required when displaying multiple user interface pages or forms,
you can create user process components.

Note: Implementing a user interaction with user process components is not a trivial task.
Before committing to this approach, you should carefully evaluate whether or not your applica-
tion requires the level of orchestration and abstraction provided by user process components.

User process components are typically implemented as .NET classes that expose
methods that can be called by user interfaces. Each method encapsulates the logic
necessary to perform a specific action in the user process. The user interface creates
an instance of the user process component and uses it to transition through the
steps of the process. The names of the particular forms or ASP.NET pages to be
displayed for each step in the process can be hard-coded in the user process compo-
nent (thus tightly binding it to specific user interface implementations), or they can
be retrieved from a metadata store such as a configuration file (making it easier to
reuse the user process component from multiple user interface implementations).
Designing user process components to be used from multiple user interfaces will
result in a more complex implementation in order to isolate device-specific issues,
but can help you distribute the user interface development work between multiple
teams, each using the same user process component.

User process components coordinate the display of user interface elements. They
are abstracted from the data rendering and acquisition functionality provided in the
user interface components. You should design them with globalization in mind, to
allow for localization to be implemented in the user interface. For example, you
should endeavor to use culture-neutral data formats and use Unicode string for-
mats internally to make it easier to consume the user process components from a
localized user interface.

The following code shows how a user process component for a checkout process
might look.

public class PurchaseUserProcess
{
 public PurchaseUserProcess()
 {

Application Architecture for .NET: Designing Applications and Services30

 // create a guid to track this activity
 userActivityID = System.Guid.NewGuid();
 }

 private int customerID;
 private DataSet orderData;
 private DataSet paymentData;
 private Guid userActivityID;
 public bool webUI; // flag to indicate that the client UI is a Web site (or not)

 public void ShowOrder()
 {
 if(webUI)
 {
 //Code to display the Order Details page
 System.Web.HttpContext.Current.Response.Redirect
 ("http://www.myserver.com/OrderDetails.aspx");
 }
 else // must be a Windows UI
 {
 //code to display the Order Details window.
 OrderDetails = new OrderDetailsForm();
 OrderDetails.Show();
 }
 }
 public void EnterPaymentDetails()
 {
 // code to display the Payment Details page or window goes here
 }
 public void PlaceOrder()
 {
 // code to place the order goes here
 ShowConfirmation();
 }
 public void ShowConfirmation()
 {
 // code to display the confirmation page or window goes here
 }
 public void Finish()
 {
 //code to go back to the main page or window goes here
 }
 public void SaveToDataBase()
 {
 //code to save your order and payment info in the private variables
 //to a database goes here
 }
 public void ResumeCheckout(System.Guid ProcessID)
 {
 // code to reload the process state from the database goes here
 }
 public void Validate()
 {

Chapter 2: Designing the Components of an Application or Service 31

 //you would place code here to make sure the process
 //instance variables have the right information for the current step
 }
}

Separating the user interaction functionality into user interface and user process
components provides the following advantages:
� Long-running user interaction state is more easily persisted, allowing a user

interaction to be abandoned and resumed, possibly even using a different user
interface. For example, a customer could add some items to a shopping cart
using the Web-based user interface, and then call a sales representative later to
complete the order.

� The same user process can be reused by multiple user interfaces. For example, in
the retail application, the same user process could be used to add a product to a
shopping basket from both the Web-based user interface and the Windows
Forms-based application.

An unstructured approach to designing user interface logic may result in undesir-
able situations as the size of the application grows or new requirements are intro-
duced. If you need to add a specific user interface for a given device, you may need
to redesign the data flow and control logic.

Partitioning the user interaction flow from the activities of rendering data and
gathering data from the user can increase your application’s maintainability and
provide a clean design to which you can easily add seemingly complex features
such as support for offline work. Figure 2.4 shows how the user interface and user
process can be abstracted from one another.

Figure 2.4
User interfaces and user process components

Application Architecture for .NET: Designing Applications and Services32

User process components help you to resolve the following user interface design
issues:
� Handling concurrent user activities. Some applications may allow users to

perform multiple tasks at the same time by making more than one user interface
element available. For example, a Windows-based application may display
multiple forms, or a Web application may open a second browser window.
User process components simplify the state management of multiple ongoing
processes by encapsulating all the state needed for the process in a single compo-
nent. You can map each user interface element to a particular instance of the user
process by incorporating a custom process identifier into your design.

� Using multiple panes for one activity. If multiple windows or panes are used in
a particular user activity, it is important to keep them synchronized. In a Web
application, a user interface usually displays a set of elements in a same page
(which may include frames) for a given user activity. However, in rich client
applications, you may actually have many non-modal windows affecting just
one particular process. For example, you may have a product category selector
window floating in your application that lets you specify a particular category,
the products in which will be displayed in another window.
User process components help you to implement this kind of user interface by
centralizing the state for all windows in a single location. You can further sim-
plify synchronization across multiple user interface elements by using data
bindable formats for state data.

� Isolating long-running user activities from business-related state. Some user
processes can be paused and resumed later. The intermediate state of the user
process should generally be stored separately from the application’s business
data. For example, a user could specify some of the information required to place
an order, and then resume the checkout process at a later time. The pending
order data should be persisted separately from the data relating to completed
orders, allowing you to perform business operations on completed order data
(for example, counting the number of orders placed in the current month) with-
out having to implement complex filtering rules to avoid operating on incom-
plete orders.
User activities, just like business processes, may have a “timeout” specified,
when the activity has to be cancelled and the right compensatory actions should
be taken on the business process.
You can design your user process components to be serializable, or to store their
state separately from the application’s business data.

Chapter 2: Designing the Components of an Application or Service 33

Separating a User Process from the User Interface
To separate a user process from the user interface:
1. Identify the business process or processes that the user interface process will

help to accomplish. Identify how the user sees this as a task (you can usually do
this by consulting the sequence diagrams that you created as part of your re-
quirements analysis).

2. Identify the data needed by the business processes. The user process will need to
be able to submit this data when necessary.

3. Identify additional state you will need to maintain throughout the user activity
to assist rendering and data capture in the user interface.

4. Design the visual flow of the user process and the way that each user interface
element receives or gives control flow.

You will also need to implement code to map a particular user interface session to
the related user process:
� ASP.NET pages will have to obtain the current user process by getting a refer-

ence from the Session object, or by rehydrating the process from another storage
medium, such as a database. You will need this reference in event handlers for
the controls on your Web page.

� Your windows or controls need to keep a reference to the current user process
component. You can keep this reference in a member variable. You should not
keep it in a global variable, though, because if you do, composing user interfaces
will become very complicated as your application user interface grows.

User Process Component Functionality
User process components:
� Provide a simple way to combine user interface elements into user interaction

flows without requiring you to redevelop data flow and control logic.
� Separate the conceptual user interaction flow from the implementation or device

where it occurs.
� Encapsulate how exceptions may affect the user process flow.
� Keep track of the current state of the user interaction.
� Should not start or participate in transactions. They keep internal data related to

application business logic and their internal state, persisting the data as required.
� Maintain internal business-related state, usually holding on to one or more

business entities that are affected by the user interaction. You can keep multiple
entities in private variables or in an internal array or appropriate collection type.
In the case of an ASP.NET-based application, you may also choose to keep
references to this data in the Session object, but doing so limits the useful lifetime
of the user process.

Application Architecture for .NET: Designing Applications and Services34

� May provide a “save and continue later” feature by which a particular user
interaction may be restarted in another session. You can implement this function-
ality by saving the internal state of the user process component in some persis-
tent form and providing the user with a way to continue a particular activity
later. You can create a custom task manager utility component to control the
current activation state of the process. The user process state can be stored in one
of a number of places:
� If the user process can be continued from other devices or computers, you will

need to store it centrally in a location such as a database.
� If you are running in a disconnected environment, the user process state will

need to be stored locally on the user device.
� If your user interface process is running in a Web farm, you will need to store

any required state on a central server location, so that it can be continued
from any server in the farm.

� May initialize internal state by calling a business process component or data
access logic components.

� Typically will not be implemented as Enterprise Services components. The only
reason to do so would be to use the Enterprise Services role-based authorization
capabilities.

� Can be started by a custom utility component that manages the menus in your
application.

User Process Component Interface Design
The interface of your user process components can expose the following kinds of
functionality, as shown in Figure 2.5.
� User process “actions” (1). These are the interface of actions that typically

trigger a change in the state of the user process. Actions are implemented in
user process component methods, as demonstrated by the ShowOrder,
EnterPaymentDetails, PlaceOrder, and Finish methods in the code sample
discussed earlier. You should try to encapsulate calls to business components
in these action methods (6).

� State access methods (2). You can access the business-specific and business-
agnostic state of the user process by using fine-grained get and set properties
that expose one value, or by exposing the set of business entities that the user
process deals with (5). For example, in the code sample discussed earlier, the
user process state can be retrieved through public DataSet properties.

� State change events (3). These events are fired whenever the business-related
state or business-agnostic state of the user process changes. Sometimes you will
need to implement these change notifications yourself. In other cases, you may
be storing your data through a mechanism that already does this intrinsically
(for example, a DataSet fires events whenever its data changes).

Chapter 2: Designing the Components of an Application or Service 35

Figure 2.5
User process component design

� Control functions that let you start, pause, restart, and cancel a particular user
process (4). These functions should be kept separate, but can be intermixed with
the user process actions. For example, the code sample discussed earlier contains
SaveToDataBase and ResumeCheckout methods. Control methods could load
required reference data for the UI (such as the information needed to fill a combo
box) from data access logic components (7) or delegate this work to the user
interface component (forms, controls, ASP.NET pages) that needs the data.

General Recommendations for User Process Components
When designing user process components, consider the following recommendations:
� Decide whether you need to manage user processes as components that are

separate from your user interface implementation. Separate user processes are
most needed in applications with a high number of user interface dialog boxes,
or in applications in which the user processes may be subject to customization
and may benefit from a plug-in approach.

Application Architecture for .NET: Designing Applications and Services36

� Choose where to store the state of the user process:
� If the process is running in a connected fashion, store interim state for long-

running processes in a central SQL Server database; in disconnected scenarios,
store it in local XML files, isolated storage, or local Microsoft SQL Server™
2000 Desktop Engine (MSDE) databases. On Pocket PC devices, you can store
state in a SQL Server CE database.

� If the process is not long-running and does not need to be recovered in case of
a problem, you should persist the state in memory. For user interfaces built
for rich clients, you may want to keep the state in memory. For Web applica-
tions, you may choose to store the user process state in the Session object of
ASP.NET. If you are running in a Web farm, you should store the session in
a central state server or a SQL Server database. ASP.NET will clean up SQL
Server-stored session to prevent the buildup of stale data.

� Design your user process components so that they are serializable. This will help
you implement any persistence scheme.

� Include exception handling in user process components, and propagate excep-
tions to the user interface. Exceptions that are thrown by the user process compo-
nents should be caught by user interface components and published as described
in Chapter 3: Security, Operational Management, and Communications Policies.”

Network Connectivity and Offline Applications
In many cases, your application will require support for offline operations when
network connectivity is unavailable. For example, many mobile applications,
including rich clients for Pocket PC or Table PC devices, must be able to function
when the user is disconnected from the corporate network. Offline applications
must rely on local data and user process state to perform their work. When design-
ing offline applications, follow the general guidelines in the following discussion.

The online and offline status should be displayed to the user. This is usually done in
status bars or title bars or with visual cues around user interface elements that
require a connection to the server.

The development of most of the application user interface should be reusable, with
little or no modification needed to support offline scenarios. While offline, your
application will not have:
� Access to online data returned by data access logic components.
� The ability to invoke business processes synchronously. As a result, the applica-

tion will not know whether the call succeeded or be able to use any returned
data.

Chapter 2: Designing the Components of an Application or Service 37

If your application does not implement a fully message-based interface to your
servers but relies on synchronously acquiring data and knowing the results of
business processes (as most of today’s applications do), you should do the follow-
ing to provide the illusion of connectivity:
� Implement a local cache for read-only reference data that relates to the user’s

activities. You can then implement an offline data access logic component that
implements exactly the same queries as your server-side data access logic com-
ponents but accesses the local storage. You can implement the local cache as a
desktop MSDE database. This enables you to reuse the design and implementa-
tion of your main SQL Server schemas and stored procedures. However, MSDE
affects the global state of the computer it is installed on, and you may have
trouble accessing it from applications configured for semi-trust. In many sce-
narios, using MSDE may be overkill for your state persistence requirements,
and storing data in an XML file or persisted dataset may be a better solution.

� Implement an offline business component that has the same interface as your
business components, but takes the submitted data and places it in a store-and-
forward, reliable messaging system such as Message Queuing. This offline
component may then return nothing or a preset value to its caller.

� Implement UI functionality that provides a way to inspect the business action
“outbox” and possibly delete messages in it. If Message Queuing is used to
queue offline messages, you will need to set the correct permissions on the queue
to do this from your application.

� Design your application’s transactions to accommodate message-based UI
interactions. You will have to take extra care to manage optimistic locking and
the results of transactions based on stale data. A common technique for perform-
ing updates is to submit both the old and new data, and to let the related busi-
ness process or data access logic component eventually resolve any conflicts. For
business processes, the submission may include critical reference data that the
business logic uses to decide whether or not to let the data through. For example,
you can include product prices alongside product IDs and quantities when
submitting an order. For a more detailed discussion of optimistic locking, see
“Designing Data Tier Components and Passing Data Through Tiers” on MSDN
(http://msdn.microsoft.com/library/?url=/library/en-us/dnbda/html/
BOAGag.asp?frame=true).

� Let the user persist the state of the application’s user processes to disk and
resume them later.

The advent of mobile devices based on IP networking, wireless security standard
evolution, the 802.11 standard, IPv6, the Tablet PC, and other technologies will
make wireless networks more popular. The issue with wireless networks is that
with today’s technology, they cannot guarantee connectivity with high confidence
in all areas. For example, building structure, nearby machinery, and other factors

Application Architecture for .NET: Designing Applications and Services38

may cause permanent and transient “dark zones” in the network. If you are design-
ing an application for use in a wireless environment, consider designing it as a
message-based, offline application, to prevent an experience full of exceptions and
retries. For example, you could design an application so that an offline user can
enter data through the same user interface as when connected, and the data can be
stored in a local database or queued and synchronized later, when the user recon-
nects. SQL Server supports replication, which can be used to automate the synchro-
nization of data in a loosely coupled fashion, allowing data to be downloaded to the
offline device while connected, modified while disconnected, and resynchronized
when reconnected. Microsoft Message Queuing allows data to be encapsulated in a
message and queued on the disconnected device for submission to a server-side
queue when connected. Components of the server will then read the message from
the queue and process it. Using local queues or SQL Server replication to handle
communication of user input to the server can help mitigate connectivity issues,
even when the application is nominally connected. Where a more tightly coupled
approach is required, you should use transactions and custom logging to ensure
data integrity.

When data synchronization occurs between a disconnected (or loosely coupled)
application and a server, you must take into account the following security consid-
erations:
� Message Queuing provides its own authorization model, based on Windows

authentication. If your application relies on custom, application-managed
authentication, your client-side components will need to sign the documents
that are submitted to the server.

� The client cannot be impersonated on the server if data is submitted through
a queue.

� If SQL Server replication is used, you may need to specify an account with
permission to access the SQL Server databases on the server. When replicating
from SQL Server CE on a mobile device, a secure connection to the Internet
Information Services (IIS) site containing the SQL Server CE Server Agent must
be established. For more information about configuring SQL Server replication,
see the documentation supplied with SQL Server and SQL Server CE.

� If network communication takes place over an HTTP connection, you may want
to use Secure Sockets Layer (SSL) to secure the channel.

Chapter 2: Designing the Components of an Application or Service 39

Notification to Users and Business Process-to-User Communication
Your application may be required to notify users about specific events. As the
communication capabilities of the Internet grow, you will have more options for
notifying users. Common technologies currently include e-mail, instant messaging,
cell phone messaging, paging, and so on.

Instant notification may involve many possible notification technologies and the
use of presence services to detect the appropriate way to contact a user. Microsoft
Patterns & Practices has released a reference architecture that covers this scenario.
It is available on MSDN at http://msdn.microsoft.com/library/en-us/dnenra/html
/enraelp.asp.

Designing Business Layers
The core of your application is the business functionality it provides. An application
performs a business process that consists of one or more tasks. In the simplest cases,
each task can be encapsulated in a method of a.NET component, and called syn-
chronously or asynchronously. For more complex business processes that require
multiple steps and long running transactions, the application needs to have some
way of orchestrating the business tasks and storing state until the process has
completed. In these scenarios, you can use BizTalk Server Orchestration to define
the workflow for the business process. The BizTalk Server schedule that implements
the workflow can then use BizTalk Server messaging functionality or call your .NET
business components to perform each task as it is required.

You can design the logic in your business layers to be used directly by presentation
components or to be encapsulated as a service and called through a service inter-
face, which coordinates the asynchronous conversation with the service’s callers
and invokes the BizTalk Server workflow or business components. The core of the
business logic is sometimes also referred to as domain logic. Your business compo-
nents may also make requests of external services, in which case you may need to
implement service agents to manage the conversation required for the particular
business task performed by each service you need to use.

Figure 2.6 on the next page shows the business layers of an application.

Application Architecture for .NET: Designing Applications and Services40

Figure 2.6
Business component layers

Business Components and Workflows
When implementing business functionality, you have to decide if you need to
orchestrate the business process or if a set of business components will be sufficient.

You should use business workflows (implemented with BizTalk Orchestration) to:
� Manage a process that involves multiple steps and long-running transactions.
� Expose an interface that implements a business process enabling your applica-

tion to engage in a conversation or contract with other services.
� Take advantage of the broad range of adaptors and connectors for multiple

technologies that are available for BizTalk Server.

Chapter 2: Designing the Components of an Application or Service 41

You can implement the business process using only business components when:
� You do not need to maintain conversation state beyond the business activity, and

the business functionality can be implemented as a single atomic transaction.
� You need to encapsulate functionality and logic that can be reused from many

business processes.
� The business logic that needs to be implemented is computationally intensive or

needs fine-grained control of data structures and APIs.
� You need to have fine-grained control over data and flow of logic.

In the retail example, the process of placing an order involves multiple steps (autho-
rizing the credit card, processing payment, arranging delivery, and so on), and these
steps need to be performed in a particular sequence. The most appropriate design
approach for this kind of business process is to create business components to
encapsulate each individual step in the process and to orchestrate those components
using a business workflow.

Designing Business Components
Business components can be the root of atomic transactions. They implement
business rules in diverse patterns and accept and return simple or complex data
structures. Your business components should expose functionality in a way that is
agnostic to the data stores and services needed to perform the work, and should be
composed in meaningful and transactionally consistent ways.

Business logic will usually evolve and grow, providing higher-level operations and
logic that encapsulates pre-existing logic. In many cases, you will need to compose
pre-existing business functionality in order to perform the required business logic.
When composing business logic, you must take special care when transactions are
involved.

If your business process will be invoking other business processes in the context of
an atomic transaction, all the invoked business processes must ensure their opera-
tions participate in the existing transaction so that their operations will roll back if
the calling business logic aborts. It should be safe to retry any atomic operation if it
fails without fear of making data inconsistent. You can think of a transaction bound-
ary as a retry boundary. Transactions across servers running Windows can be
managed using Distributed Transaction Coordinator (DTC), which is used by .NET
Enterprise Services (COM+). To manage distributed transactions in heterogeneous
environments, you can use COM Transaction Integrator (COMTI) and Host Integra-
tion Server 2000. For more information about COMTI and Host Integration Server,
see http://www.microsoft.com/hiserver.

If you cannot implement atomic transactions, you will need to provide compensat-
ing methods and processes. Note that a compensating action does not necessarily
roll back all application data to the previous state, but rather restores the business

Application Architecture for .NET: Designing Applications and Services42

data to a consistent state. For example, if you are a supplier, you may expose a B2B
shopping interface to partners. A compensating action for canceling an order being
processed may involve charging an order cancellation fee. For long-running trans-
actions and processes, the compensating action may be different at different states
in the workflow, so you need to design these for appropriate stages in the process.

For information about handling transactions and isolation level issues, see
“Transactions” in “.NET Data Access Architecture Guide” on MSDN (http://
msdn.microsoft.com/library/en-us/dnbda/html/daag.asp).

The following list summarizes the recommendations for designing business
components:
� Rely on message-based communication as much as possible.
� Ensure that processes exposed through service interfaces are idempotent, mean-

ing that your application or service will not reach an inconsistent state if the
same message is received twice.

� Choose transaction boundaries carefully so that retries and composition are
possible. This applies to both atomic and long-running transactions. You should
also consider using retries for message-based systems, especially when exposing
your application functionality as a service.

� Business components should be able to run as much as possible in the context of
any service user — not necessarily impersonating a specific application user. This
lets you invoke them with mechanisms that do not transmit or delegate user
identity.

� Choose and keep a consistent data format (such as XML, DataSet, and so on) for
input parameters and return values.

� Set transaction isolation levels appropriately. For information about handling
transactions and isolation level issues, see “Transactions” in “.NET Data Access
Architecture Guide” on MSDN (http://msdn.microsoft.com/library/en-us/dnbda/html
/daag.asp).

Implementing Business Components with .NET
You can create components that encapsulate your business logic using the .NET
Framework. Your managed code can take advantage of Enterprise Services (COM+)
for distributed transactions and other services commonly needed in distributed
applications.

Your business components:
� Are invoked by the user process layer, service interfaces, and other business

processes, typically with some business data to operate on, expressed as a
complex data structure (a document).

Chapter 2: Designing the Components of an Application or Service 43

� Are the root of transactions, and therefore must vote in the transactions they
participate in.

� Should validate input and output.
� May expose compensating operations for the business processes they provide.
� May call data access logic components to retrieve and/or update application

data.
� May call external services through service agents.
� May call other business components and initiate business workflows.
� May raise an exception to the caller if something goes wrong when dealing with

atomic transactions.
� May use the features of Enterprise Services for initiating and voting on hetero-

geneous transactions. You need to consider the fact that different transaction
options can have a great impact on performance. However, transaction manage-
ment is not an adjustment mechanism or variable for improving application
performance. For performance comparisons of different transaction approaches,
see “Performance Comparison: Transaction Control” on MSDN (http://
msdn.microsoft.com/library/en-us/Dnbda/html/Bdadotnetarch13.asp). Your transac-
tional settings can be:
� Required. Use this option for components that may be the root of a transac-

tion, or that will participate in existing transactions.
� Supported. Use this option for components that do not necessarily require

a transaction, but that you want to participate in an existing transaction if
one exists.

� RequiresNew. Use this option when you want the component to start a new
transaction that is independent of existing transactions.

� NotSupported. Use this option when you do not want the component to
participate in transactions.

Note: Using the RequiresNew and NotSupported options will affect transaction composability,
so you need to be aware of the impact of retrying a parent transaction.

Business components are called by the following consumers:
� Service interfaces
� User process components
� Business workflows
� Other business components

Application Architecture for .NET: Designing Applications and Services44

Figure 2.7 shows a typical business component interacting with data access logic
components, service interfaces, service agents, and other business components.

Figure 2.7
Business components

Note the following points in Figure 2.7:
1. Business components can be invoked by components in the presentation layers

(typically user process components) or by business workflows (not shown).
2. Business components can also be invoked by service interfaces (for example, an

XML Web service or a Message Queuing listener function.
3. Business components call data access logic components to retrieve and update

data, and they can also invoke other business components.
4. Business components can also invoke service agents. You need to take extra care

in designing compensation logic in case the service you are accessing is unavail-
able or takes a long time to return a response.

Note: The arrows in Figure 2.7 represent control flow, not data flow.

When to Use Enterprise Services for Your Business Components
Enterprise Services (COM+) is the obvious choice for a host environment for your
business components. Enterprise Services provide your components with role-based
security, heterogeneous transaction control, object pooling, and message-based

Chapter 2: Designing the Components of an Application or Service 45

interfaces for your components by means of Queued Components (among other
things). You may choose not to use Enterprise Services in an application, but for
anything more than simple operations against a single data source, you will need its
services, and taking advantage of the model provided by Enterprise Services early
on provides a smoother growth path for your system.

You should decide at the very beginning of the design process whether or not to use
Enterprise Services when implementing your business components, because it will
be more difficult to add or remove Enterprise Services features from your compo-
nent design and code after it is built.

When implementing components with Enterprise Services, you need to be aware of
the following design characteristics:
� Remoting channel restriction. Only HTTP and DCOM-RPC channels are sup-

ported. For more information, see “Designing the Communications Policy” in
Chapter 3, “Security, Operational Management, and Communications Policies.”

� Strong-named components: You need to sign these components and all compo-
nents they use in turn.

� Deployment. Your components will either be self registering (in which case they
will require administrative rights at run time), or you will need to perform a
special deployment step. However, most server-side components require extra
deployment steps anyway (to register Event Log sources, create Message Queu-
ing queues, and so on).

� Security. You will need to choose whether to use the Enterprise Services role
model, which is based on Windows authentication, or to just use .NET-based
security.

For more information about Enterprise Services, see “Understanding Enterprise
Services (COM+) in.NET” on MSDN (http://msdn.microsoft.com/library/en-us/dndotnet
/html/entserv.asp).

Commonly Used Patterns for Business Components
Regardless of whether your business components are hosted in Enterprise Services,
there are many common patterns for implementing business tasks in your code.
Commonly used patterns include:
� Pipeline pattern. Actions and queries are executed on a component in a sequen-

tial manner.
A pipeline is a definition of steps that are executed to perform a business func-
tion. All steps are executed sequentially. Each step may involve reading or
writing to data confirming the “pipeline state,” and may or may not access an
external service. When invoking an asynchronous service as part of a step, a
pipeline can wait until a response is returned (if a response is expected), or

Application Architecture for .NET: Designing Applications and Services46

proceed to the next step in the pipeline if the response is not required in order to
continue processing.
Use the pipeline pattern when:
� You can specify the sequence of a known set of steps.
� You do not need to wait for an asynchronous response from each step.
� You want all downstream components to be able to inspect and act on data

that comes from upstream (but not vice versa).

Advantages of the pipeline pattern include:
� It is simple to understand and implement.
� It enforces sequential processing.
� It is easy to wrap in an atomic transaction.

Disadvantages of the pipeline pattern include:
� The pattern may be too simplistic, especially for service orchestration in

which you need to branch the execution of the business logic in complex
ways.

� It does not handle conditional constructs, loops, and other flow control logic
well. Adding one step affects the performance of every execution of the
pipeline.

The pipeline pattern is used extensively in applications based on Microsoft
Commerce Server. For more information about how pipelines are used with
Commerce Server, see “Pipeline Programming Concepts” in the Commerce
Server 2000 SDK documentation on MSDN (http://msdn.microsoft.com/library
/en-us/comsrv2k/htm/cs_sp_pipelineobj_woce.asp).

� Event pattern. Events are fired under particular business conditions, and code is
written to respond to those events.
You use the event pattern when you want to have many activities happen but all
receive the same starting data and cannot communicate with each other. Activi-
ties may execute in parallel or sequentially. Different implementations of the
event may or may not run, depending on specific filtering information. If the
implementations are set to run sequentially, order cannot be guaranteed.
Use the event pattern when:
� You want to be able to manage independent and isolated implementations of

a specific ‘function’ independently.
� Responses from one implementation do not affect the way another implemen-

tation works.
� All implementations are write only or fire-and-forget, where the output of the

business process is defined by none of the implementations, or by just one
specific business implementation.

Chapter 2: Designing the Components of an Application or Service 47

Advantages of the event pattern include:
� Maintainability is improved by keeping unrelated business process

independent.
� It encourages parallel processing, which may result in performance benefits.
� It is easy to wrap in an atomic transaction.
� It is agnostic to whether implementations run asynchronously or synchro-

nously because no reply is expected.

Disadvantages of the event pattern include:
� It does not let you build complex responses for the business function.
� A component cannot use the data or status of another component in the event

pattern to perform its work.

Enterprise Services provides the Events service, which provides a good starting
point implementation of the event pattern. For more information about Enter-
prise Services Events, see “COM+ Events” in the COM+ SDK documentation
on MSDN (http://msdn.microsoft.com/library/en-us/cossdk/htm/
pgservices_events_2y9f.asp).

Implementing Business Workflows with BizTalk Server
When your business processes require multiple steps or long-running transactions,
you need to manage the workflow, handling conversation state and exchanging
messages with diverse services as required. BizTalk Server includes orchestration
services that help meet these challenges.

You can design your business processes using BizTalk Server Orchestration services,
and create XLANG schedules that implement your business functionality. XLANG
schedules are created graphically using BizTalk Server Orchestration Designer and
can use BizTalk Messaging Services, .NET components, COM components, Message
Queuing, or script to perform business tasks. XLANG schedules can be used to
implement long-running transactions, and they automatically persist their state in
a SQL Server database.

You can use BizTalk Server Orchestration to implement most kinds of business
functionality. However, it is particularly suitable when your business process
involves long-running workflow processes in which business documents are ex-
changed between multiple services. Documents can be submitted to BizTalk Server
programmatically, or they can be delivered to a monitored file system folder or
message queue known as a receive function. Receive functions ensure that the
delivered documents match the specification defined for expected business docu-
ments, and if so, they consume the document and submit it to the appropriate
business process channel in BizTalk Server. From this point of view, a receive
function can be thought of as a simple form of service interface.

Application Architecture for .NET: Designing Applications and Services48

For an in-depth example that shows how to implement a business process using
BizTalk Server Orchestration and Visual Studio .NET, see “Building a Scalable
Business Process Automation Engine Using BizTalk Server 2002 and Visual
Studio .NET” on MSDN (http://msdn.microsoft.com/library/en-us/dnbiz2k2/html/
BizTalkVSautoeng.asp).

When your business process involves interactions with existing systems, such as
mainframe applications, BizTalk Server can use adapters to integrate with them.
For more information about integrating BizTalk Server with existing systems, see
“Legacy File Integration Using Microsoft BizTalk Server 2000” on MSDN (http://
msdn.microsoft.com/library/en-us/dnbiz/html/legacyfileint.asp).

BizTalk Server Orchestration Implementation
Figure 2.8 shows how an orchestrated business process interacts with service
interfaces, service agents, and business components.

Figure 2.8
An orchestrated business process

Note the following points in Figure 2.8:
1. Business workflows can be invoked from other services or from the presentation

components (usually from user process components) using the service interface.

Chapter 2: Designing the Components of an Application or Service 49

2. A business workflow invokes other services through a service agent, or directly
through the service interfaces. Every outgoing message does not necessarily
need to match an incoming message. You can implement service interfaces and
service agents in code, or if only simple operations are required, you can use the
message transformation and functoid features of BizTalk Server.

3. Business workflows invoke business components. The business workflow or the
components that it invokes can initiate atomic transactions.

4. Business workflows invoke data access logic components to perform data-related
activities.

5. When designing business workflows, you must consider long response times, or
method invocations with no reply at all. BizTalk Server automatically allows for
long running conversations with external services.

BizTalk Server Orchestration schedules are created graphically using the BizTalk
Server Orchestration Designer. Figure 2.9 shows how an orchestration flow in the
previous figure would look as rendered by Microsoft Visio® drawing and diagram-
ming software. Notice how similar the conceptual diagram in Figure 2.9 looks to the
flow a business analyst and developer needs to work with.

Figure 2.9
An orchestration flow in BizTalk Server Orchestration Designer

The drawing is then compiled into an XLANG schedule, which is an XML format
file containing the instructions necessary for BizTalk Server to perform the tasks in
the business process.

Application Architecture for .NET: Designing Applications and Services50

After it is compiled, the schedule can be initiated in one of the following ways:
� A BizTalk Server message can be submitted to BizTalk Server programmatically

or through a file system or Message Queuing receive function.
� A schedule can be started programmatically from COM-based code using the

sked moniker.

For more information about BizTalk Server Orchestration, read BizTalk Server: The
Complete Reference by David Lowe et al (published by Osborne/McGraw Hill)
and “Designing BizTalk Orchestrations” in the BizTalk Server 2000 documentation
(http://msdn.microsoft.com/library/en-us/biztalks/htm/lat_sched_intro_xiju.asp).

For information about adapters for BizTalk:

http://www.microsoft.com/biztalk/evaluation/adapters/adapterslist.asp

The BizTalk Server Adapter’s Developer Guide can be found at:

http://www.microsoft.com/biztalk/techinfo/development/wp_adapterdevelopersguide.asp

Designing a Service Interface
If you are exposing business functionality as a service, you need to provide an entry
point for your clients to call that abstracts the internal implementation. You may
also need to expose similar functionality to different callers with different authenti-
cation requirements and service level agreement (SLA) commitments. You can
provide an entry point to your service by creating a service interface.

A service interface is a software entity typically implemented as a façade that
handles mapping and transformation services to allow communication with a
service, and enforces a process and a policy for communication. A service interface
exposes methods, which may be called individually or in a specific sequence to
form a conversation that implements a business task. For example, the credit
card service in the retail application scenario might provide a method named
AuthorizeCard that verifies credit card details, and a second method named
ProcessPayment that transfers funds from the cardholder’s account to the retailer.
These steps would be performed in the appropriate sequence to process an order
payment

The necessary communication format, data schema, security requirements, and
process are determined as part of a contract, which is published by the service. This
contract provides the information clients need to locate and communicate with the
service interface.

When designing service interfaces, consider the following:
� Think of a service interface as a trust boundary for your application.
� If your service interfaces are exposed to external organizations and consumers,

or made publicly available, you should design them in such a way that changes
to your internal implementation will not require a change to the service interface.

Chapter 2: Designing the Components of an Application or Service 51

� The same business logic in your service may need to be consumed in different
ways by different clients, so you may need to publish multiple service interfaces
for the same functionality.

� Different service interfaces may define different communication channels,
message formats, authentication mechanisms, performance service level
agreements, and transactional capabilities. Common service level agreements
are defined in time to respond to a certain request with a certain amount of
information.

You can implement service interfaces in different ways, depending on how you
want to expose the functionality of your application or service:
� To expose your business logic as an XML Web service, you can use ASP.NET Web

service pages or expose some components through .NET remoting using SOAP
and HTTP.

� To expose your service’s functionality to clients sending Message Queuing
messages, you can use Message Queuing Triggers or Enterprise Services Queued
Components, or you can write your own ‘message receiving’ services.

For more information, see “Designing the Communications Policy” in Chapter 3,
“Security, Operational Management, and Communications Policies.”

Service Interface Characteristics
Consider the following design characteristics of service interfaces:
� Sometimes the .NET infrastructure will let you use a transparent service inter-

face (for example, you can expose Enterprise Services objects as Web services in
Windows .NET Server), and sometimes you may need to add specific artifacts to
your application, such as XML Web services, BizTalk Orchestration workflows,
or messaging ports. Consider the impact of using transparent service interfaces,
because they may not provide the abstraction necessary to facilitate changes to
the business functionality at a later date without affecting the service interface.
Implementing façades has its development cost, but will help you to isolate
changes and to make your application more maintainable.

� Service interfaces can implement caching, mapping, and simple format and
schema transformations; however, these façades should not implement business
logic.

� The service interface may involve a transactional transport (for example, Mes-
sage Queuing) or a non-transactional transport (for example, XML Web services
over HTTP). This will affect your error and transaction management strategy.

� You should design service interfaces for maximum interoperability with other
platforms and services, relying whenever possible on industry standards for
communications, security, and formats, standard or simple message formats (for
example, simple XML schemas for XML Web services), and non-platform specific
authentication mechanisms.

Application Architecture for .NET: Designing Applications and Services52

� Sometimes the service interface will have a security identity of its own, and will
authenticate the incoming messages but will not be able to impersonate them.
You should consider using this approach when calling business components that
are deployed on a different server from the service interface.

Using Business Façades with Service Interfaces
The channel or communication mechanism you use to expose your business logic
as a service may have an associated way of implementing the service interface code.
For example, if you choose to build Web services, most of your service interface
logic will reside in the Web service itself, namely the asmx.cs files. You could also
expose your service through Message Queuing, in which case you could use
Queued Components from Enterprise Services, custom listeners, or Message Queu-
ing Triggers to “fire up” the component that acts as service interface.

If you are planning to build a system that may be invoked through different
mechanisms, you should add a façade between the business logic and the service
interface. By implementing this façade, you can consolidate in one place your
policy-related code (such as authorization, auditing, validations, and so on) so it
can be reused across multiple service interfaces that deal with diverse channels.
This façade provides extra maintainability because it isolates changes in the com-
munication mechanisms from the implementation of the business components.
The service interface code then only deals with the specifics of the communication
mechanism or channel (for example, examining Web service SOAP headers or
getting information from Message Queuing messages) and sets the proper context
for invoking the business façade component. Figure 2.10 shows a business façade
used in this manner.

Figure 2.10
Using a business façade with service interfaces

Chapter 2: Designing the Components of an Application or Service 53

Figure 2.10 shows an example of how a business façade is used with the service
interfaces of a system. IIS and ASP.NET receive an HTTP call (1) and invoke a Web
service interface named MyWebService.asmx (2). This service interface inspects some
SOAP message headers, and sets the correct principal object based on the authenti-
cation of the Web service. It then invokes a business façade component (3) that
validates, authorizes, and audits the call. The façade then invokes a business com-
ponent that performs the business work (4). Later the system is required to support
Message Queuing, so a custom listener is built (5) that picks up messages and
invokes a service interface component named MyMSMQWorker (6). This service
interface component extracts data off the Message Queuing message properties
(such as Body, Label, and so on) and also sets the correct principal object on the
thread based on the Message Queuing message signature. It then invokes the
business façade. By factoring the code of the business façade out of the service
interface, the application was able to add a communication mechanism with
much less effort.

Transaction Management in Service Interfaces
Your service interface will need to deal with a channel that provides transactional
capabilities (such as Message Queuing) or one that doesn’t (such as XML Web
services). It is very important that you design your transaction boundaries so that
operations can be retried in face of an error. To do so, make sure that all the re-
sources you use are transactional, mark your root component as “requires transac-
tion,” and mark all sub components as either “requires transaction” or “supports
transactions.”

With transactional messaging mechanisms, the service interface starts the transac-
tion first and then picks up the message. If the transaction rolls back, the message is
automatically “unreceived” and is placed back in the queue for a retry. When using
Message Queuing, Enterprise Services Queued Components, or Message Queuing
Triggers, you can define a message queue-and-receive operation as transactional to
achieve this automatically.

If you are using a messaging mechanism that is not transactional (such as XML Web
services), you need to call the root of the transaction from the code in the service
interface. In the case of a failure, you can design the service interface code to retry
the operation or return to the caller an appropriate exception or preset data repre-
senting a failure.

Application Architecture for .NET: Designing Applications and Services54

Representing Data and Passing It Through Tiers
When your data access logic components return data, they can do so in a number of
formats. These formats can vary from the data-centric (for example, an XML string)
to the more object oriented (for example, a custom component that encapsulates an
instance of a business entity). Common formats for returning data are:
� XML
� DataReader
� DataSet
� Typed DataSet
� Custom object with properties that map to data fields, and methods that perform

data modifications through data access logic components.

For more information about the choices of data formats available in your applica-
tion design, see “Designing Data Tier Components and Passing Data Through
Tiers” on MSDN (http://msdn.microsoft.com/library/?url=/library/en-us/dnbda/html
/BOAGag.asp?frame=true).

The data format you choose to use depends on how you want to work with the
data. It is recommended that you avoid designs requiring you to transfer data in
a custom object-oriented format, because doing so requires custom serialization
implementation and can create a performance overhead. Generally, you should use
a more data-centric format, such as a DataSet, to pass the data from the data access
logic components to the business layers, and then use it to hydrate a custom busi-
ness entity if you want to work with the data in an object-oriented fashion. In many
cases, though, it will be simpler just to work with the business data in a DataSet.

Representing Data with Custom Business Entity Components
In most cases, you should work with data directly by using ADO.NET datasets or
XML documents. This allows you to pass structured data between the layers of your
application without having to write any custom code. However, if you want to
encapsulate all the details about working with a particular format, or you want to
add behaviors to your data, you may need to develop custom components. This
gives you tight control over what other application components can do with the
data, allows you to abstract internal formats from the data schema that the applica-
tion uses, and enables you to add behavior to your data. This guide refers to the
components you use to represent data as business entities.

For example, the ordering process discussed earlier in this guide could use an
Order object, which has an associated Customer object, and a collection of LineItem
objects. These components form part of the business layers of your application, and
can be consumed by other business components or by presentation components.

Chapter 2: Designing the Components of an Application or Service 55

Entity components contain snapshot data. They are effectively a local cache of
information, so the data can only be guaranteed to be consistent if it is read in the
context of an active transaction. You should not map one business entity to each
database table; typically a business entity will have a schema that is a denormali-
zation of underlying schemas. Note that the entity may represent data that has been
aggregated from many sources.

Because the component stores data values and exposes them through its properties,
it provides stateful programmatic access to the business data and related functional-
ity. You should avoid designing your business entity components in such a way that
the data store is accessed each time a property changes and should instead provide
an Update method that propagates all local changes back to the database. Business
entity components should not access the database directly, but should use data
access logic components to perform data-related work as their methods are called.
Business entities should not initiate any kind of transactions, and should not use
data access APIs—they are just a representation of data, potentially with behavior.
Because they may be called from business components as well as user interfaces,
they should flow transactions transparently and should not vote on any ongoing
transaction.

You may want to design your business entity components to be serializable, allow-
ing you to persist current state (for example, to store on a local disk if working
offline, or into a Message Queuing message).

Business entity components simplify the transition between object-oriented pro-
gramming and document-based development models. Object-oriented design is
common in stateful environments such as user interface design, whereas business
functionality and transactions can typically be expressed more clearly in terms of
document exchanges.

Note: Custom business entity components are not a mandatory part of all applications. Many
solutions (especially ASP.NET-based applications and business components) do not use
custom representations of business entities, but instead use DataSets or XML documents
because they provide all the required information and the development model is more task-
and document- based as opposed to object-oriented.

Business Entity Component Interface Design
Business entity components expose:
� Property accessors (get and set functions) for attributes of the entity.
� Collection accessors for sub collections of related data. (The collections don’t

necessarily yield collections of business entities, so you can design your service
entity to expose DataSets or DataTables directly and not be concerned about
object model traversal.)

Application Architecture for .NET: Designing Applications and Services56

� Control functions and properties commonly used in entity management, for
example, Load, Save, IsDirty, and Validate.

� Methods to access metadata for the entity, which can be useful in improving
maintainability of the user interface.

� Events to signal changes in the underlying data.
� Methods to perform business tasks or get data for complex queries. These meth-

ods may act on the local data only (for example, Order.GetTotalCost) or on the
business components and processes (for example, Order.Place).

� Methods and interfaces needed for data binding.

Consumers of business entity components include:
� User interaction components for rich clients. These components may bind to the

data in business entities or the data exposed by any queries the component may
expose. UI controller functions may also set and get properties of business
entities for data input and display.

� User process components. User process components may hold one or more
business entities as part of their internal business-specific state.

� Business components. Business processes may pass a business entity as a param-
eter to a data access logic component method (for example, an Order object
could be passed to an InsertOrder method in a data access logic component).
Alternatively, business components could also use business entities to access
data behavior (for example by calling a Place method on the Order object, which
in turn passes the order data to a data access logic component), but this approach
is more uncommon than passing the business entity directly to a data access
logic component method because it mixes a functional, document-oriented
model with an object-based model.

Recommendations for Business Entity Design
These recommendations will help you implement the right mechanism to represent
your data:
� Carefully consider whether you need custom entity coding or whether other data

representations work for your requirements. Coding custom entities is a complex
task that increases in development cost with the number of features it provides.
Typically, custom entities are implemented for applications that need to expose
a custom macro or a developer-friendly scripting object model for customization.

� Implement business entities by deriving them from a base class that provides
boilerplate functionality and encapsulates common tasks.

� Rely on keeping internal datasets or XML documents for complex data instead
of internal collections, structs, and so on.

Chapter 2: Designing the Components of an Application or Service 57

� Implement a common set of interfaces across your business entities that expose
common sets of functionality:
� Control methods and properties, such as Save, Load, Delete, IsDirty, and

Validate.
� Metadata methods, such as getAttributesMetadata,

getChildDatasetsMetadata, and getRelatedEntitiesMetadata. This is especially
useful for user interface design.

� Isolate validation rules as metadata, for example by exposing XML Schema
Definition Language (XSD) schemas. Make sure, however, that external callers
cannot tamper with these validation rules.

� Business entities should validate the data they encapsulate through the enforce-
ment of continuous and point-in-time validation rules.

� Implement an implicit enforcement of relationships between entities based on
the data schema and the business rules around the data. For example, an Order
object could have a maximum number of LineItem references.

� Design business entities to rely on data access logic components for database
interaction. Doing so allows you to implement all your data access policies and
related business logic in one place. If your business entities access SQL Server
databases directly, it will mean that applications deployed to clients that use the
business entities will need SQL connectivity and logon permissions.

For detailed design recommendations and sample code that will assist you when
developing your business entity components, see “Designing Data Tier Compo-
nents and Passing Data Through Tiers” on MSDN (http://msdn.microsoft.com/library
/?url=/library/en-us/dnbda/html/BOAGag.asp?frame=true).

Designing Data Layers
Almost all applications and services need to store and access some kind of data.
For example, the retail application discussed in this guide needs to store product,
customer, and order data.

When working with data, you need to determine:
� The data store you are using.
� The design of the components used to access the data store.
� The format of the data passed between components, and the programming

model it requires.

Your application or service may have one or more data sources, and these data
sources may be of different types. The logic used to access data in a data source will
be encapsulated in data access logic components, which provide methods for querying
and updating data. The data your application logic needs to work is related to real-
world entities that play a part in your business. In some scenarios, you may have

Application Architecture for .NET: Designing Applications and Services58

custom components representing these entities, while in others you may choose to
work with data by using ADO.NET datasets or XML documents directly.

Figure 2.11 shows how the logical data layer of an application consists of one or
more data stores, and depicts a layer of data access logic components that are used
to retrieve and manipulate the data in those data stores.

Figure 2.11
Data components

Most applications use a relational database as the primary data store for application
data. Other choices include the Microsoft Exchange Server Web store, legacy data-
bases, the file system, or document management services.

When your application retrieves data from the database, it may do so using a data
format such as a DataSet or DataReader. The data will then be transferred across

Chapter 2: Designing the Components of an Application or Service 59

the layers and tiers of the application and finally will be operated on by one of your
components. You may want to use different data formats for retrieving, passing,
and operating on the data; for example, you might use the data in a DataSet to
populate properties in a custom entity object. However, you should strive to keep
the formats consistent, because it will probably improve the performance and
maintainability of the application to have only a limited set of formats, avoiding the
need for extra translation layers and the need to learn different APIs.

The following sections discuss the choice of data stores, the design of data access
logic components, and the choices available for representing data.

Data Stores
Common types of stores include:
� Relational databases. Relational databases such as SQL Server databases pro-

vide high volume, transactional, high performance data management with
security, operations, and data transformation capabilities. Relational databases
also host complex data logic instructions and functions in the form of stored
procedures that can be used as an efficient environment for data-intensive
business processes. SQL Server also provides a desktop and palm-held device
version that lets you use transparent implementations for data access logic
components. Database design is beyond the scope of this guide. For relational
database design information, see “Database Design Considerations” in the SQL
Server 2000 SDK (http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/createdb/cm_8_des_02_62ur.asp)

� Messaging databases. You can store data in the Exchange Server Web store. This
is useful especially if your application is groupware-, workgroup-, or messaging-
centric and you don’t want to rely on other data stores that may need to be
managed separately. However, messaging data stores typically have lower
performance, scalability, availability, and management capabilities than fully
fledged relational database management systems (RDBMS), and it is therefore
relatively uncommon for applications to use the data store provided in a messag-
ing product. For information about developing an Exchange Server-based data
store, see “Developing Web Storage System Applications” on MSDN (http://
msdn.microsoft.com/library/en-us/dnmes2k/html/webstorewp.asp).

� File system. You may decide to store your data in your own files in the file
system. These files could be in your own format or in an XML format with a
schema defined for the purposes of the application.

There are many other stores (such as XML databases, online analytical processing
services, data warehousing databases, and so on) but they are beyond the scope of
this guide.

Application Architecture for .NET: Designing Applications and Services60

Data Access Logic Components
Regardless of the data store you choose, your application or service will use data
access logic components to access the data. These components abstract the seman-
tics of the underlying data store and data access technology (such as ADO.NET),
and provide a simple programmatic interface for retrieving and performing opera-
tions on data.

Data access logic components usually implement a stateless design pattern that
separates the business processing from the data access logic. Each data access logic
component typically provides methods to perform Create, Read, Update, and
Delete (CRUD) operations relating to a specific business entity in the application
(for example, order). These methods may be used by the business processes. Spe-
cific queries can be used by your user interface to render reference data (such as a
list of valid credit card types).

When your application contains multiple data access logic components, it can be
useful to use a generic data access helper component to manage database connec-
tions, execute commands, cache parameters, and so on. The data access logic com-
ponents provide the logic required to access specific business data, while the
generic data access helper utility component centralizes data access API develop-
ment and data connection configuration, and helps to reduce code duplication.
A well designed data access helper component should have no negative impact on
performance, and provides a central place for data access tuning and optimization.
Microsoft provides the Data Access Application Block for .NET (http://
msdn.microsoft.com/library/en-us/dnbda/html/daab-rm.asp), which can be used as a
generic data access helper utility component in your applications when using SQL
Server databases.

Figure 2.12 shows the use of data access logic components to access data.

Note the following points in Figure 2.12:
1. Data access logic components expose methods for inserting, deleting, updating,

and retrieving data. This includes the provision of paging functionality when
retrieving large quantities of data.

2. You can use a data access helper component to centralize connection manage-
ment and all code that deals with a specific data source.

3. You should implement your queries and data operations as stored procedures (if
supported by the data source) to enhance performance and maintainability.

Note: Data access logic components are recommended for all applications that need to
access business data (such as products, orders, and so on). However, other products and
technologies may use databases to store their own operational data, without the need for
custom data access logic components.

Chapter 2: Designing the Components of an Application or Service 61

Figure 2.12
Data access logic components

Data access logic components provide simple access to database functionality
(queries and data operations), returning both simple and complex data structures.
They hide invocation and format idiosyncrasies of the data store from the business
components and user interfaces that consume them. Implementing your data access
logic in data access logic components allows you to encapsulate all the data access
logic for the entire application in a single, central location, making the application
easier to maintain or extend.

You should design each data access logic component to deal with only one data
store. (This means that these components do not query and aggregate data from
many sources; this is done by the business components.)

When using heterogeneous transactions, your data access logic components should
participate in them, but they should never be the root of the transaction. It is more
appropriate to have a business component as the root of a transaction in which one
or more data access logic components are used to perform database updates.

Data Access Logic Component Functionality
When called, data access logic components typically do the following:
� Perform simple mappings and transformations of input and output arguments.

This abstracts your business logic from database specific schemas and stored
procedure signatures.

Application Architecture for .NET: Designing Applications and Services62

� Access data from only one data source. This improves maintainability by moving
all data aggregation functionality to the business components, where data can be
aggregated according to the specific business operation being performed.

� Act on a main table and perform operations on related tables as well. (Data
access logic components should not necessarily encapsulate operations on just
one table in an underlying data source.) This enhances the maintainability of the
application.

Optionally, they may perform the following work:
� Use a custom utility component to manage and encapsulate optimistic locking

schemes.
� Use a custom utility component to implement a data caching strategy for non-

transactional query results.
� Implement dynamic data routing for very large scale systems that provide

scalability by distributing data across multiple database servers.

Data access logic components should not:
� Invoke other data access logic components. Avoiding a design in which data

access logic components invoke other data access logic components helps keep
the path to data predictable, thus improving application maintainability.

� Initiate heterogeneous transactions. Since each data access logic component deals
with only a single data source, there will be no scenario in which a data access
logic component is the root for a heterogonous transaction. In some cases, how-
ever, a data access logic component may control a transaction that involves
multiple updates in a single data source.

� Maintain state between method calls.

Data Access Logic Component Interface Design
Data access logic components commonly need to provide an interface to the follow-
ing consumers:
� Business components and workflows. Data access logic components need to

provide I/O of disconnected business documents and/or scalars in stateless,
functional style methods, such as GetOrderHeader().

� User interface components. The user interaction components may use data
access logic components for I/O of disconnected business documents for render-
ing data in rich clients and disconnected client scenarios, or for streaming output
(for example, obtaining a DataReader) for ASP.NET and clients that benefit from
stream rendering. You should consider using data access logic components
directly from the user interface if you want to take advantage of the faster
performance this design offers and you have no need for additional business
logic between the user interface and data source.

Chapter 2: Designing the Components of an Application or Service 63

Data access logic components may connect to the database directly using a data
access API such as ADO.NET, or in more complex applications you may choose to
provide an additional data access helper component that abstracts the complexities
of accessing the database. In either case, you should strive to use stored procedures
to perform the actual data retrieval or modification when using a relational data-
base.

The methods exposed by a data access logic component may perform the following
kinds of tasks:
� Common functionality that relates to managing “entities” such as CRUD func-

tions.
� Queries that may involve getting data from many tables for read-only purposes.

The data may be returned as paged or non-paged depending on your require-
ments, and the results may be streamed or non-streamed depending on whether
the caller can benefit from it.

� Actions that will update data and potentially also return data.
� Returning metadata related to entity schema, query parameters, and resultset

schemas.
� Paging for user interfaces that require subsets of data, such as when scrolling

through an extensive product list.

Input parameters to data access logic component methods will typically include
scalar values and business documents represented by XML strings or DataSets.
Return values may be scalars, DataSets, DataReaders, XML strings, or some other
data format. For specific design and implementation guidance in choosing a data
format for your objects, see “Designing Data Tier Components and Passing Data
Through Tiers” on MSDN (http://msdn.microsoft.com/library/?url=/library/en-us/dnbda
/html/BOAGag.asp?frame=true).

Data Access Logic Component Example
The following C# code shows a partial skeleton outline of a simple data access
logic component that could be used for accessing order data. This code is not
intended to be a template for your code, but to illustrate some of the concepts
from the discussion.

public class OrderData
{
 private string conn_string;

 public OrderData()
 {
 // acquire the connection string from a secure or encrypted location
 // and assign to conn_string
 }
 public DataSet RetrieveOrders()
 {

Application Architecture for .NET: Designing Applications and Services64

 // Code to retrieve a DataSet containing Orders data
 }
 public OrderDataSet RetrieveOrder(Guid OrderId)
 {
 // Code to return a typed DataSet named OrderDataSet
 // representing a specific order.
 // (OrderDataSet will have a schema that has been defined in Visual Studio)
 }
 public void UpdateOrder(DataSet updatedOrder)
 {
 // code to update the database based on the properties
 // of the Order data sent in as a parameter of type dataset
 }
}

Recommendations for Data Access Logic Component Design
When designing data access logic components, you should consider the following
general recommendations:
� Return only the data you need. This improves performance and enhances

scalability.
� Use stored procedures to abstract data access from the underlying data schema.

However, be careful not to overuse stored procedures, because doing so will
severely impact the maintainability of your application in terms of code mainte-
nance and reuse. A symptom of overusing stored procedures is having large trees
of stored procedures that call each other. You should avoid using stored proce-
dures to implement control flow, manipulate individual values (for example,
perform string manipulation), or to implement any other functionality that is
difficult to implement in Transact-SQL.

� Rely on RDBMS functionality for data-intensive work. Follow the principle,
“Move the processing to the data, not the data to the processing.” You should
balance using stored procedures against the maintainability and reusability of
your data logic.

� Implement a standard or expected set of stored procedures giving commonly
used functionality, such as insert, read, update, and find functions. Doing so will
save you time when you develop your business components. If you are proactive
about implementing this functionality, you will be able to make the implementa-
tions consistent and enforce internal standards. If your design seems to be
repeatable, you can even use code generators to build basic boilerplate stored
procedures and data access logic component logic.

� Expose the expected functionality that is common across all your data access
logic components in a separately defined interface or base class.

Chapter 2: Designing the Components of an Application or Service 65

� Design consistent interfaces for different clients:
� Your business components can be implemented in many ways, including the

use of custom .NET code, BizTalk Orchestration rules, or a third-party busi-
ness rule engine. The design of the interface for your data access logic compo-
nents should be compatible with the implementation requirements of your
current and potential business components to avoid having additional inter-
faces, façades, or mapping layers between both.

� ASP.NET-based user interfaces will benefit in terms of performance from
rendering data exposed as DataReaders. DataReaders are best for read-only,
forward-only operations in which processing for each row is fast. If your data
access logic components are deployed together with your user interface, you
should expose large query results intended for rendering in data access logic
component functions that return DataReaders. If you plan to operate on the
data for a longer period of time, you can improve scalability by relying on a
disconnected DataSet instead of a DataReader.

� Have the data access logic components expose metadata (for example, schema
and column titles) for the data and operations it deals with. Doing so can help
make applications more flexible at run-time, especially when rendering data in
user interfaces.

� Do not necessarily build one data access logic component per table. You should
design your data access logic components to represent a slightly higher level of
abstraction and denormalization that is consumable from your business pro-
cesses. It is uncommon to expose a relationship table as such; instead, you
should expose the relationship functionality as data operations on the related
data access logic components. For example, in a database where a many-to-many
relationship between books and authors is facilitated by a TitleAuthor table, you
would not create a data access logic component for TitleAuthor, but rather
provide an AddBook method to an Author data access logic component or an
AddAuthor method to a Book data access logic component. Semantically, you
can add a book to an author or add an author to a book, but you cannot “insert
authorship.”

� If you store encrypted data, the data access logic components should perform the
decryption (unless you want the encrypted data to go all the way to the client).

� If you are hosting your business components in Enterprise Services (COM+), you
should build data access logic components as serviced components and deploy
them in Enterprise Services as a library application. This allows them to partici-
pate and explicitly vote in Enterprise Services transactions and use role-based
authorization. Data access logic components don’t need to be hosted in Enter-
prise Services if you are not using any of the services or if they will be loaded in
the same AppDomain as an Enterprise Services caller. For more information
about using Enterprise Services, see “Business Components and Workflows”
earlier in this chapter.

Application Architecture for .NET: Designing Applications and Services66

� Enable transactions only when you need them. Do not mark all data access logic
components as Require Transactions, because this taxes resources and is unneces-
sary for read operations performed by the user interface. Instead, you should
mark them as Supports Transactions by adding the following attribute:

[Transaction (TransactionOption.Supported)]

� Consider tuning isolation levels for queries of data. If you are building an appli-
cation with high throughput requirements, special data operations may be
performed at lower isolation levels than the rest of the transaction. Combining
isolation levels can have a negative impact on data consistency, so you need to
carefully analyze this option on a case-by-case basis. Transaction isolation levels
should usually be set only at the transaction root (that is, the business process
components). For more information, see Designing Business Layers earlier in this
chapter.

� Use data access helper components. For benefits of this approach and details, see
Designing Data Access Helper Components in this chapter.

For more information about designing data access logic components, see “.NET
Data Access Architecture Guide” (http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnbda/html/daag.asp). Microsoft also provides the Data Access Applica-
tion Block (http://msdn.microsoft.com/library/en-us/dnbda/html/daab-rm.asp), a tested,
high-performance data helper component that you can use in your application.

Designing Data Access Helper Components
When an application requires large numbers of data access logic components to
access the same data source, you may find that you need to implement similar
generic data access code in each data access logic component. This duplication of
logic can lead to maintainability issues and makes it difficult to troubleshoot data
access problems. Centralizing generic data access functionality in a data access
helper component can produce a cleaner, more manageable design. Data access
helper components provide an easy invocation model to the underlying data
source. You can consider data access helper components to be generic, caller-side
façades into the data source. They are typically agnostic to the application business
logic being performed. Usually you will only have one or two helper components
for a given data source. Each one may implement different sets of technical func-
tionality for accessing the service. For example, one data access helper component
to a database may let you invoke stored procedures, while another one may allow
you to stream large amounts of data out.

If you are designing your application to be agnostic to the data source type (for
example, to be able to switch from an Oracle database to a SQL Server database),
you can do so by having two simple data access helper components that expose a

Chapter 2: Designing the Components of an Application or Service 67

similar interface. Note, however, that changing the data source should warrant
extra testing of your application and that “no touch” data source transparency
is a dubious goal for most applications, possibly with the exception of “shrink
wrapped” applications developed by ISVs.

The goal of using a data access helper component is to:
� Abstract the data access API programming model from the data-related business

logic encapsulated in the data access logic components, thus reducing and
simplifying the code in the data access logic components.

� Isolate connection management semantics.
� Isolate data source location (through connection string management).
� Isolate data source authentication.
� Isolate transaction enlistment (ADO.NET does this automatically when used to

access data in a SQL Server database or when using ODBC or OLEDB).
� Centralize data access logic for easier maintenance, minimizing the need for data

source-specific coding skills throughout the development team and making it
easier to troubleshoot data access issues.

� Isolate data access API versioning dependencies from your data access logic
components.

� Provide a single point of interception for data access monitoring and testing.
� Use code access and user-based or role-based authorization to restrict access to

the whole data source.
� Translate non-.NET exceptions that may be returned by the data source into

exceptions that your application can handle in traditional ways.

To see an example of a data access helper component, including source code and
documentation, download the Data Access Application Block for .NET from MSDN
(http://msdn.microsoft.com/library/en-us/dnbda/html/daab-rm.asp).

Accessing Multiple Data Sources
If you access an Oracle database or other data sources, you may prefer to abstract
as much as possible the API with which you access them from your data access
logic components. Microsoft has provided Oracle and OLE DB implementations of
the Data Access Application Block and has stress-tested them in the context of the
Nile performance benchmark. These implementations are available for download
on MSDN by following the links in this article: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dndotnet/html/manprooracperf.asp.

Achieving RDBMS transparency is a complex design goal, and using data access
helpers can help to mitigate some of the development, troubleshooting, and mainte-
nance efforts. However, you will still need to test your application with each data

Application Architecture for .NET: Designing Applications and Services68

source due to the different ways in which relational database management systems
handle stored procedures, cursors, and other database artifacts.

If you are envisioning that your application may be deployed in different environ-
ments with different relational database management systems, you may want to
implement your data access helpers with a common interface and provide the
actual component that does the data access for a particular data source in a factory
pattern. You can change the source code supplied for the Application Blocks for
.NET mentioned earlier to accommodate these specific requirements.

Integrating with Services
If your business process involves external services, you will need to handle the
semantics of communicating with each service you need to call. Specifically, you
will need to use the correct communication API to call the service and perform any
necessary translation between the data formats used by the service and those used
by your business process. If the service contract consists of a long-running conver-
sation, you will also need to keep intermediate state while waiting for a response.

You should use a service agent component that encapsulates the logic necessary to
encapsulate these tasks and to initiate and manage a messaging-based conversation
for each service your application must consume. You can think of service agents as
data access logic components for services other than data stores, or as proxies or
emissaries to other services. Some service publishers may provide callers with a
ready-built service agent, while in other cases you may need to develop your own.

The goal of using a service agent is to:
� Encapsulate access to one service.
� Isolate the business process implementation from the service implementation in

terms of data format or schema changes.
� Provide input and output data formats that are compatible with the business

components calling the service.

Service agents may also perform the following common type of tasks if required:
� Perform basic validation of the data exchanged with the service.
� Cache data for common queries.
� Authorize access to the service, providing a granular way to check security

before accessing the service from the calling application’s perspective. Typically,
the service will authenticate and authorize requests as well.

� Set the right security context or provide the right credentials to the service for
authentication. For example, to set the credentials for an XML Web service you
are invoking, you can use the HTTPCredentialCache.

Chapter 2: Designing the Components of an Application or Service 69

� Make sure the right portions of the message are encrypted or that a secure
channel can be established if necessary.

� Provide monitoring information that allows interaction with the service to be
instrumented. This allows you to determine whether your partners are comply-
ing with their service level agreements (SLAs).

Managing Asynchronous Conversations with Services
In some cases, you will need to integrate your application with other services, both
sending and receiving asynchronous calls. In this case, your service interfaces will
be receiving calls from the outside services, and you will be making calls into those
services from your service agents. If these message exchanges are implemented in
an asynchronous way, you may need to keep track of the conversation a certain set
of message exchanges belong to. You should use one of these two options to keep
track of the conversation state:
� Use the business data in the messages to identify the conversation. For example,

you could use an order ID number in all messages to identify the order you are
processing in a particular message exchange. This is the most straightforward
way of correlating messages.

� Provide an infrastructure component or utility that generates GUIDs or IDs for
specific conversations and attaches them to messages. Your service agents and
service interfaces will need access to this information to understand how to
interpret a particular asynchronous call. You will also need a persistent database
to track the state and ID of each conversation. This requires extra development,
and the context of the message is lost if the message needs to be interpreted
outside the service. However, it may be convenient to use your own correlation
IDs if you want to maintain that information private.

For more information about this topic, see Chapter 3, “Security, Operational
Management, and Communications Policies.”

What’s Next?
This chapter described recommendations for designing the different kinds of
components that are common in distributed applications and services. Chapter 3,
“Security, Operational Management, and Communications Policies” discusses the
impact of organizational policies on the design of your application or service.

3
Security, Operational Management,
and Communications Policies

Organizational policies define the rules that govern how an application is secured,
how it is managed, and how the different components of the application communi-
cate with one another and with external services. The policies affect the design of
each layer of the application or service, as shown in Figure 3.1 on the next page.

Policies are not only determined at the organizational level, but they can be deter-
mined within organizations as well. It is useful in some cases to think of zones —
all applications, services, or even application tiers are in the same zone if they share
a subset of the policies. For example, an Internet-facing data center may have a
different set of policies than the rest of a company’s infrastructure, defining a
special zone with tighter security restrictions than other parts of the application.
Applications and services in this data center will thus be in a different zone than
applications and services in the intranet. Understanding the policies of each compo-
nent and thus defining the zones in which it will be executed is an important aspect
of determining where to deploy components.

Application Architecture for .NET: Designing Applications and Services72

Figure 3.1
The effect of organizational policies on the application design

Chapter Contents
This chapter contains the following sections:
� Designing the Security Policy
� Designing the Operational Management Policy
� Designing the Communications Policy

Chapter 3: Security, Operational Management, and Communications Policies 73

Designing the Security Policy
The security policy is concerned with authentication, authorization, secure commu-
nication, auditing, and profile management, as shown in Figure 3.2.

Figure 3.2
Aspects of the security policy

General Security Principles
There are some general security principles that should be considered whenever you
are designing a security policy. Consider the following guidelines:
� Whenever possible, you should rely on tested and proven security systems

rather than building your own custom solution. Use industry-proven algorithms,
techniques, platform-supplied infrastructure, and vendor-tested and supported
technologies. If you decide to do custom development of security infrastructure,
validate your approach and techniques with expert auditing and security review
organizations before and after implementing it.

� Never trust external input. You should validate all data that is entered by users
or submitted by other services.

� Assume that external systems are insecure. If your application receives
unencrypted sensitive data from an external system, assume that the information
is compromised.

� Apply the principle of least privilege. Don’t enable more attributes on service
accounts than those minimally needed by the application. Access resources with
accounts that have the minimal permissions required.

� Reduce surface area. Risk will increase with the number of components and data
you have exposed through the application, so you should expose only the func-
tionality that you expect others to use.

� Default to a secure mode. Don’t enable services, account rights, and technologies
that you don’t explicitly need. When you deploy the application on client and/or
server computers, its default configuration should be secure.

� Don’t rely on security by obscurity. Encrypting data implies having keys and a
proven encryption algorithm. Secure data storage will prevent access under all
circumstances. Mixing up strings, storing information in unexpected file paths,
and so on, is not security.

Application Architecture for .NET: Designing Applications and Services74

� Follow STRIDE principles — STRIDE stands for Spoofing, Tampering,
Repudiability, Information disclosure, Denial of service, and Elevation of privi-
leges. These are classes of security vulnerabilities a system has to protect itself
against. For more information about STRIDE, see “Designing for Securability”
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7
/html/vxcondesigningforsecurability.asp.

� “Check at the gate.” Don’t let processes progress any further than the first place
at which you can authorize users.

� Lock your system down internally and externally: Internal users and operators
may present at least as great a risk as external hackers.

Authentication
Authentication is defined as secure identification, which basically means that you
have a mechanism for securely identifying your users that is appropriate for the
security requirements of your application.

Authentication needs to be implemented in the user interface layer to provide
authorization, auditing, and personalization capabilities. This usually involves
requiring the user to enter credentials (such as a user name and password) to prove
their identity. Other types of credentials include biometric readings, smartcards,
physical keys, digital certificates, and so on.

If your application is exposed as a service, you will also want to authenticate on
certain service interfaces to make sure that you are engaged in an exchange with
a known and trusted partner, and that other external services don’t spoof your
application into believing it’s somebody else who is calling.

Note: For more information about authenticating callers with Microsoft® ASP.NET, see “Authenti-
cation in ASP.NET: .NET Security Guidance” on MSDN (http://msdn.microsoft.com/library/en-us
/dnbda/html/authaspdotnet.asp).

It is a goal of your design to have business logic that is transparent to the authenti-
cation process. For example, it is bad practice to have an extra parameter in compo-
nent methods just to pass in user information, unless it is required by the business
function.

Flowing Identity Across Tiers
The further a certain piece of functionality is from the user, the less meaningful the
user identity becomes. In a services-based solution, some activities may not even be
initiated by a user. You should have a design goal to reduce the relevance of the
calling user the further an activity is from the user interface.

Chapter 3: Security, Operational Management, and Communications Policies 75

You may need to flow the identities of original callers (users or services) through
your application layers to perform authorization or auditing. The identity may be
that of an original caller (user or service) or a service account of an application tier.
To flow the identity, you can let your communication mechanism flow the security
context (for example, using Kerberos delegation with DCOM remoting), you can
pass tokens or authentication tickets, or pass user ID or credentials.

Consider the following scenarios:
� The caller and the application being called do not share platform security sub-

system or a common authentication mechanism. In this scenario, you aren’t able
to “flow” an existing security context; you need to reauthenticate by passing the
appropriate credentials.

� The caller and the application being called are in trusted Microsoft Windows®
domains, or the application performs authorization based on Windows identities
or uses Microsoft .NET Enterprise Services roles. In this scenario, you need to
choose a communication mechanism that flows Kerberos tickets or NTLM
tokens. DCOM-RPC provides this capability. Using the information provided by
the channel, you can recreate your custom principal and attach it to the thread
based on the authentication information. Bear in mind that NTLM tokens can be
used across only one network hop for authentication, and that Kerberos delega-
tion requires policies at the computer, user, and domain levels. For more infor-
mation, see “Designing the Communications Policy” later in this chapter or the
following articles:
� “Windows 2000 Kerberos Delegation” (http://www.microsoft.com/technet

/treeview/default.asp?url=/TechNet/prodtechnol/windows2000serv/deploy
/kerberos.asp)

� “Impersonating and Reverting” (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconimpersonatingreverting.asp)

� The caller and the application being called share a non-Windows authentication
mechanism, such as a single sign-on solution or a centralized Web service that
authenticates users. In this scenario, you flow tokens provided by the authentica-
tion service. You should pass these tokens in out-of-band mechanisms (not in
function parameters) such as SOAP headers. The authentication mechanism
should authenticate the user when presented with a valid token; this implies that
the tokens it authenticates have no affinity with the originating computer. You
must also make sure that the tokens can be authenticated in a time window large
enough, especially for long-running transactions. Tokens are often produced
with a hash of the user’s credentials and a salt value. For the definition of salt
value, see the Security Glossary on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/security/Security/s_gly.asp).

Application Architecture for .NET: Designing Applications and Services76

� The caller and the application being called are running in the same context.
In this scenario, Microsoft .NET makes the call, keeping the existing
CurrentPrincipal object on the thread. This is the case for all activities within the
same AppDomain and for calling Enterprise Services–based applications with
Library activation.

Authenticating with Other Services
Your application may need to invoke different services on behalf of a given user.
Back-end single sign-on schemes map a given user’s tokens and/or credentials for
a set of services or data stores. For example, a user called “Bob” could be authenti-
cated by your application and could access a legacy data store logging on as
“Bobby.” It is recommended that you design your application or service to access
other data stores and other services using service accounts (for example,
“SalesApplication”) rather than impersonate the original user; however, stringent
security requirements imposed by the organization may prevent this option. Devel-
opment of account-mapping features can be complex, especially if you need to
manage credentials, because, typically, user accounts must be kept synchronized.
However, some account-mapping mechanisms, such as mapping client certificates
to Windows accounts using Microsoft Internet Information Services (IIS), can be
used very effectively.

If you need to impersonate user accounts in your own code, the current process
needs to be able to call LogonUser, which on Windows 2000 requires the process
user account have “act as part of the operating system” privileges. This is a very
powerful privilege and it poses a serious risk if the process is compromised. It is not
recommended that you use this privilege for the identities of applications based on
ASP.NET or Enterprise Services except for very special cases.

Custom Authentication Mechanisms
You may need a custom authentication mechanism in your application if you have
proven that you cannot leverage a platform-provided or third-party authentication
mechanism. Using a custom authentication mechanism involves being able to store
user accounts somewhere and have an algorithm to check whether supplied creden-
tials are authenticated by the system. When implementing your own user authenti-
cation, consider the following guidelines:
� Implement the user authentication in a custom Identity object. You should have

a constructor that takes user credentials and sets the internal flag for
IIdentity.IsAuthenticated depending on the result. You can also have a construc-
tor that takes an authentication token.

� Do not store user passwords. Instead, store a hash of the user’s credentials plus
salt values in the database. When authenticating, apply the same algorithm to
the credentials supplied by the user — if the resulting string matches what you
have stored in the database, the user has supplied the right credentials.

Chapter 3: Security, Operational Management, and Communications Policies 77

� Audit failed authentication attempts.
� Add a StrongNameIdentityPermission attribute to methods when you want to

make sure that only your application assemblies can create and invoke your
identity object.

� Expose the authentication token as a property of the Identity object. Your authen-
tication token should be a hash involving the user name and other data. Include
source data (such as computer name or calling assembly) if you want to restrict
the token from being used elsewhere. To restrict the validity of your token to a
certain span of time, you can add a timestamp to the hashed value. The complex-
ity of the hash and encryption will depend on the risk of having the token
compromised.

Authentication in the Presentation Layer
User interface components need to authenticate the user if the application needs to
perform authorization, auditing, or personalization. A wide range of authentication
mechanisms are available for Web-based user interfaces. To choose the right one for
your scenario, see “Authentication in ASP.NET: .NET Security Guidance” on MSDN
(http://msdn.microsoft.com/library/en-us/dnbda/html/authaspdotnet.asp). ASP.NET-based
applications set the current principal in the OnAuthenticate event of Global.asax.

Windows-based user interfaces usually either rely on a custom authentication
mechanism (where the application prompts for a user name and password), or they
authenticate the user with their Windows logon. If you are using a custom authenti-
cation mechanism, you need to implement your own user interface to allow the user
to log on, and set the correct Principal to the main thread and every thread the
application creates.

User process components do not perform authentication; they rely on the security
context set at application start as described earlier (for example, in the
OnAuthenticate event of an ASP.NET-based application).

The user process components should run in the same user context as the user
interface itself, so that all authentication tasks are delegated to the user interface or
even the rendering infrastructure. For example, in ASP.NET any request to an ASPX
page results in IIS requesting authentication credentials or ASP.NET redirecting the
user to a forms-based authentication page. This is handled transparently to any user
process layer and does not interrupt state flow, even when an authenticated session
expires and needs to be reestablished.

Authentication in Business Components
The business components must authenticate the caller or delegate authentication to
a service interface. The caller may be of many types, for example:
� A user interface component
� A user process component

Application Architecture for .NET: Designing Applications and Services78

� A business workflow (for example, a Microsoft BizTalk Server® XLANG
schedule)

� Another business process component

The identity of the caller can be:
� A particular user.
� A service account representing the run-time identity of a particular portion of

your application or an external system. For example, it could authenticate a call
as coming from the Web UI tier.

� An external partner for which you have a special “service account.”

If your business components authenticate callers, you need to consider how the three
preceding caller identities can be authenticated and how they affect authorization.

Authentication in Data Access Components
Data access components are designed to be used by other components in the appli-
cation or service. They are not usually intended for exposure for calling from scripts
or other applications, so you can design them to rely on the security context set by
the caller (the Principal object of the thread) or the authentication mechanism of
your remoting strategy.

Data access components can authenticate with the database in two main ways:
� Using service accounts
� Impersonating the caller

In this case, you use one or a limited set of service accounts that represent roles or
user type. In most cases, it will be just one service account, but you could use more
if you need more fine-grained control over authorization. For example, in the order
processing application you could access the database as “TheOrderApplication”
or log on selectively as “OrderProcessingManager” or “OrderProcessingClerk”
depending of the role of the caller identity.

Use service accounts when:
� You connect to the underlying data source from an environment in which imper-

sonation of the initial caller is unavailable (for example, BizTalk Server).
� You have very limited change control over the accounts that can log on to the

other system (for example, logging in to a relational database management
system, which is strictly managed by the database administrator).

� The data store you are accessing has a different authentication mechanism than
the rest of your application (for example, you are logging on to a Web service
across the Internet).

� Accessing the data store through a large number of accounts negates connection
pooling, thus degrading performance and scalability.

Chapter 3: Security, Operational Management, and Communications Policies 79

Do not use service accounts when:
� You don’t have a secure way of storing and maintaining service credentials.
� You need to access the data store with specific user resources because of security

policies (for example, you need access to data or objects in Microsoft SQL
Server™ on behalf of users).

� The data store audits activities, and these audits need to map to individual users.

You are impersonating the caller when you access a data store with a set of accounts
that map one to one with your application user base. For example, if “Joe” logs on
to your application, and your data access components access a database, you are
impersonating Joe if you log on to this database with Joe’s credentials.

You need caller impersonation when:
� The data store performs authorization based on the logged on user.
� The data store needs to audit the activities of each individual end user.

Two implementation mechanisms are commonly used to impersonate callers:
� Platform impersonation services. Windows 2000 and later provides user imper-

sonation through Kerberos across the network. This means that if Joe accesses
your Web application, and you have used Windows authentication, you can
impersonate Joe across the network all the way to your database.
Impersonation is usually supported only if you have the same authentication
mechanism all the way across the network, or a compatible standard authentica-
tion mechanism (such as Kerberos).
In Windows 2000, the platform-provided impersonation level across multiple
network hops is called delegation. To be able to delegate security context, the
domain, computer, and user account need to be enabled for delegation. Windows
.NET Server provides constraint delegation, which adds more management flex-
ibility.

� Back-end single-sign-on solutions. Back-end single sign on mechanisms will
provide you with the credentials (for example, user name and password) of a
user to log on to a data source when you provide them evidence that you have
authenticated that user by another mechanism. This type of approach is a form
of “weak impersonation” because it requires a mapping that usually cannot
propagate more than one logical hop.

For guidelines on connecting to SQL Server from your distributed applications, see
the “.NET Data Access Architecture Guide” on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/daag.asp).

Note: The considerations for implementing authentication in service agents are similar to
those relating to data access components as described earlier.

Application Architecture for .NET: Designing Applications and Services80

Authentication in Business Entity Components
Business entity components are sometimes provided for custom development as
an SDK or object model for the application to be used from script or the Microsoft
Visual Basic® development system in clients.

If your business entities will not be used by other application components or cus-
tom script, they do not need to present an authentication boundary. In this case,
they should rely on the current security context (the Principal object attached to
the current thread) for authentication.

If you plan to expose business entities to allow custom scripting or consumption
from other applications, you may need to provide an extra component that helps
the client to “log on” from code and sets the security context required by these
objects if you are not relying on platform authentication. You should not design
business entities to rely on having a Windows security context for a particular
human user if your business entities will be invoked by non-impersonating
mechanisms (for example, a business process started asynchronously).

Authorization
The authorization aspect of the security policy is concerned with identifying the
permissible actions for each authenticated security principal. In simple terms, the
authorization policy determines who can do what. To determine your authorization
policy, you need to take into account two major factors:
� User permissions and rights
� Code access security

User permissions and rights determine what a user account is permitted to do in the
context of the application. Technically, the term “permissions” refers to allowable
actions on a resource (such as a file or a database table), while “rights” refers to
system tasks the user is allowed to perform (such as setting the system time or
shutting down the computer). User permissions and rights can be assigned on an
individual user-by-user basis, but are more manageable when users are arranged
logically into groups or roles. Most resources have some kind of related permissions
list, stating the permissions assigned to users for that particular resource. For
example, in the Windows environment, resources are secured using an access
control list (ACL), which lists the security principals assigned permissions on the
resource, and what those permissions are. Permissions are usually cumulative, so a
user who has “read” permission on a file and who is in a group that has “change”
permission on the same file will have a net permission of “change.” The exception
to this rule is when a “deny” permission is assigned. If a user, or any of the groups
that user is a member of, is explicitly denied access to a resource, the user cannot
access the resource, regardless of any other user or group permissions that have
been assigned.

Chapter 3: Security, Operational Management, and Communications Policies 81

Code access security, which was introduced by .NET, gives developers and adminis-
trators an extra dimension of access control and the possibility of cross-checking the
correct security configuration. Unlike user permissions and rights, code access
security is concerned with what an assembly can do. For example, a .NET assembly
could be configured in such a way that the code is unable to access file system
resources, and any code that attempts to do so will trigger an access violation
exception. You can establish trust zones that apply different code access security
policies to different assemblies based on a number of factors.

You need to incorporate the results in the following matrix into your access control
design:

User Access Security
User access security is used to determine what the current identity can do. You can
check what a caller can do with many mechanisms. In applications with a user
interface, your business logic may be impersonating the caller, but in most back-
ends and especially services without user interfaces, your code will generally use
as a specified “service” account.

Instead of using the actual account the current process is running as, you can set
your own identity on a running thread manually by changing the Principal object.

What the user can do to the environment and platform is usually controlled with
ACLs, which are checked against the current process or thread Windows identity.
Common resources checked against the Windows identity are NTFS files, System
APIs, .NET Enterprise Services (COM+) components, and services configured for
Windows authentication.

Windows provides extensive group, user rights, and security management features.
Some services may implement their own abstraction over these, such as role-based
authorization in Enterprise Services. For example, Enterprise Services performs
authorization against roles, where each role is actually an ACL.

.NET provides a comprehensive and extensible framework for managing user
access security — including identities, permissions, and the notion of a principal
and roles.

Application Architecture for .NET: Designing Applications and Services82

To make sure users in a certain role call into a given method, set an attribute on the
class method, as shown in the following code.

[PrincipalPermission(SecurityAction.Demand, role="Managers")]
public void PlaceOrder(DataSet Order)
{
 // This code will not execute if the principal attached
 // to the thread returns false when IsInRole is invoked
 // with "Managers" as argument
}

For more information, see “PrincipalPermissionAttribute Constructor” in the .NET
Framework SDK on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/
frlrfsystemsecuritypermissionsprincipalpermissionattributeclassctortopic.asp?frame=true).

If your component relies on being deployed in Enterprise Services and authenti-
cates users through Windows, you can use Enterprise Services role management as
shown in the following code.

[SecurityRole("HelpDesk")]
public DataSet GetCancelledOrders(System.Guid CustomerID)
{ //… }

If you are accessing your components remotely, the use of Enterprise Services role
management requires you to access them through the DCOM-RPC channel.

Code Access Security
Code access security is concerned with what the assembly can do, but you can also
decide whether your code runs or not, based on the code that is trying to access it.
For example, this prevents your objects from being called from scripts that may be
run unknowingly by someone with enough privileges. Note that code access secu-
rity policy will not work through .NET remoting — all checks will be performed
when invoked from the same application domain.

You can check code access based on the following factors:
� The application’s installation directory
� The cryptographic hash of the assembly
� The digital signature of the assembly publisher
� The site from which the assembly originates
� The cryptographic strong name of the assembly
� The URL from which the assembly originates
� The zone from which the assembly originates

Chapter 3: Security, Operational Management, and Communications Policies 83

Security policies can be enforced for the enterprise, computer, user, and application.
The zones defined by .NET are: Internet, intranet, MyComputer, NoZone, trusted,
and untrusted. For in-depth information about these items, see the following
articles in the MSDN Library:
� “Code Access Security” (http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/cpguide/html/cpconcodeaccesssecurity.asp)
� “Introduction to Code Access Security” (http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/cpguide/html/cpconintroductiontocodeaccesssecurity.asp)
� “SecurityZone Enumeration” (http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/cpref/html/frlrfsystemsecuritysecurityzoneclasstopic.asp)

Implementing Complex Authorization Checks
In some cases, your application will need to perform complex authorization checks.
For example, consider the following set of conditions: “Let this order placement go
through if the caller is in the Salesman role, or if it is a service calling from a partner
and the order does not exceed $1000, or if the caller is a Manager or a more power-
ful role.” This authorization policy requires AND, OR, and “lesser than” and
“greater than” combinations of permissions, plus knowledge about the price of the
order being placed. These types of authorization checks are better performed in
your own application code as programmatic checks, and require considerable
development to separate them out as pure rules. In other, simpler scenarios, you can
implement the authorization logic declaratively by using attributes or configuration
settings.

Design of Custom Application-Level Authorization Schemes
Having a custom authorization scheme is a common requirement where a subset of
the application authorization is managed by users and not operators, and authori-
zation data is stored in your database or other external store. In these cases, your
application will typically provide a user interface for security management and a
database schema to manage role membership. When developing this type of frame-
work, consider the following guidelines:
� Expose all your authorization logic through a principal object. Your principal

will be created with a particular identity as a constructor argument. Check the
IsAuthenticated property of the identity and use the name of your identity to
locate the correct authorization data. Exposing your authorization logic through
the IsInRole function lets your application use PrincipalPermission attributes
and provides a consistent development model that lets you use other authentica-
tion and authorization schemes in the future. For an example of such a use,
see “Creating WindowsIdentity and WindowsPrincipals Objects” on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconcreatingwindowsidentitywindowsprincipalobjects.asp?frame=true).

Application Architecture for .NET: Designing Applications and Services84

� Authenticate communication with the authorization data store. Make sure that
the store of authorization data can’t be compromised and that only the appropri-
ate accounts can read and write this data. Your application should access this
store with a read-only account, and only the parts of the application modifying
this data should have read-write access.

� When not using Windows authentication, decouple user credentials and authen-
tication identifiers from the authorization data schema. Your authorization data
should refer internally to the users by a private ID. This lets you change authen-
tication schemes in the future, lets your authorization rules be used from appli-
cations with different authentication mechanisms, and lets users change their
user IDs.

� Cache for performance. You may decide to cache authorization information (for
example, role membership) in your principal object instead of accessing the store
every time. If you cache authorization data, you should sign or hash it to make
sure it has not been tampered with.

� Provide offline capabilities for disconnected clients. This may involve embed-
ding authorization logic with the client itself or caching a digitally signed copy
locally.

� Design your authorization data store logic to be pluggable. This allows you to
choose different locations and products without changing the framework design.

� Set code access calling assembly attributes with a
StrongNameIdentityPermission attribute if you want to make sure that only your
application assemblies can create and invoke your principal object.

Note: Windows .NET Server provides new features to help simplify the implementation of
custom authorization functionality.

Users, Roles, and Trusted Applications and Services
Interacting applications and services usually have separate user accounts and role
definitions, unless they are deployed in an organization where users and groups
may be defined organization-wide. Even in this case, you should not rely on an-
other service’s definition of roles and users, but rather on your organization’s role
and user definitions and those defined for your service.

When dealing with interacting services, it is recommended that you authenticate
and authorize callers at a service-wide granularity. For example, your service may
interact with other services in partner organizations, in which case it will be useful
to define roles such as “Standard Partner” and “Premier Partner.” Using roles to
perform authorization of external services and partners will enable your application
to grow and work with many partners in the future without affecting your code or
design.

Chapter 3: Security, Operational Management, and Communications Policies 85

If your service shares user accounts with calling services and needs to do authoriza-
tion at the user granularity, user information should be contained as part of the
exchanged business data. If you need to make sure that the business data was
submitted by a particular user, you should include an authentication token or
sign the document to show it came from the user or a service that you trust.

Setting Security Context at System Boundaries
A custom principal on a given thread doesn’t flow across processes or through
remoting channels, so you usually need to set the security system yourself at system
boundaries.

To set a custom principal on the current thread you should:
1. Create the appropriate identity object, passing the credentials, user token, or

user ID (or another type of identifier) into the constructor. If you have a custom
implementation of the identity object, you will need to keep an internal flag
indicating whether the identity has been authenticated.

2. Create your principal object, passing in the identity instance as an argument for
the constructor. Your principal object should keep hold of this identity object so
that it can return it when Iprincipal:Identity is called.

Windows principals flow with remoting if you are using DCOM-RPC as the
remoting channel.

For more information about the .NET Principal and Identity objects and code
samples illustrating this pattern for custom an windows principals, see “Principal
and Identity Objects” on MSDN (http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/cpguide/html/cpconprincipalidentityobjects.asp?frame=true).

Authorization in User Interface Components
User interface components show data to users and gather data from them. Perform
authorization at this level if you need to:
� Hide or show specific data fields to the user.
� Enable or disable controls for user input.

If the user is not supposed to see a certain piece of information, the most secure
option is to avoid passing that piece of information to the presentation components
in the first place.

It is common to perform some level of personalization of the root user interface or
menu so that the user can only see the panes, Web parts, or menu entries that he or
she can act on depending on his or her roles.

A user interface .exe file usually starts the application. You should set code access
permissions on the user interface assemblies if you don’t want to let it (or the local
components it calls) access sensitive resources such as files.

Application Architecture for .NET: Designing Applications and Services86

You should consider the security context in which the presentation components of
the application will run, and test them in an appropriately restricted environment.

Authorization in User Process Components
User process components manage data and control flow between user processes.
You should perform authorization at this level if you need to:
� Control whether a user can start a user interface interaction process at all.
� Add and remove “steps” or full user interface components in a user interaction

flow based on who is executing it. For example, a salesperson may see data for
only his or her region, so there’s no need to present him or her with a wizard
step to choose the region of a sales report.

Ideally, the parent dialog box will be proactive and will hide or disable the user
interface elements required to start a dialog box that a user is not authorized to use.
If the parent dialog box is the “root” dialog box, then this means hiding the appro-
priate menu entries, dashboard Web parts, and so on, proactively.

You can set authorization declaratively for user processes by adding
PrincipalPermission attributes to the classes or methods that implement them.

User process components are typically consumed only from user interface compo-
nents. You can use code access security to restrict who is calling them. You can also
use code access security to restrict how user process components interact with each
other. This approach is especially important in portal scenarios where it is critical
that a user process implemented as a plug-in cannot gather unauthorized informa-
tion from other user processes and elements.

Authorization in Business Components
Take into account the following recommendations for authorization in business
components:
� Try to make the business process authorization independent of user context,

especially if you will use many communication mechanisms as queues and Web
services, which won’t let your process impersonate the caller.

� Use role-based security as much as possible rather than relying on user accounts.
This provides better scalability, eases administration, and avoids problems with
user names that support many canonical representations. You can define roles for
serviced components in an Enterprise Services–based application, or you can use
Windows groups or custom roles for .NET components that are not running in
Enterprise Services.

� If you decorate a method with the PrincipalPermission attribute, always
check the authentication type specified by the Identity object. The .NET
PrincipalPermissionAttribute makes sure your principal is in a role, but
does not specify an authentication mechanism.

Chapter 3: Security, Operational Management, and Communications Policies 87

Authorization in Service Agents and Service Interfaces
Service agents are the gateway through which calls to external services are made,
so you should add authorization functionality to these components whenever you
want to prevent specific users or roles from accessing them. Note that the external
service may also implement its own further authorization checks.

You can implement authorization in service interface components using IIS and
ASP.NET authentication for Web services, or using Windows ACLs if the service
interface is exposed through Microsoft Message Queuing.

Authorization in Data Access Components
Data access components are the last components that expose business functionality
before your application data, so they should perform any needed fine-grained
authorization checks. Perform authorization at this level if you need to:
� Share the data access components with developers of business processes that you

do not fully trust.
� Protect access to powerful functions exposed by the data stores.

Because data access components expose a fine-grained interface into the underlying
systems, security can be managed only at a detailed level and does not take into
account the aggregation needed for a particular business process operation. Thus, if
you implement authorization checks at this level, granting or revoking permissions
to execute a high-level business process to an identity may involve changing per-
missions for data access components as well.

To perform authorization, you can rely on Enterprise Services roles, and .NET
PrincipalPermission attributes if you are using Windows authentication, or on .NET
roles and attributes if you are not relying on a Windows security context.

If you are flowing the same user context into your data store, you can use the
database’s authorization functionality (for example, granting or revoking access to
stored procedures). You can only do so if you are either:
� Using a set of service accounts to access the database representing different

combinations of roles.
� Impersonating the callers all the way to your database.

Note: Flowing impersonated user contexts through to the database affects performance and
scalability because connections are pooled per user. In addition, business processes started
asynchronously will not automatically impersonate the originating user, and thus a Windows
principal will be unavailable (unless you have access to the user’s user name and password,
which in most designs would be less secure and undesirable).

Application Architecture for .NET: Designing Applications and Services88

Because data access components are typically called only by other application
components, they are a good candidate for restricting callers to the necessary set
of assemblies — usually a combination of assemblies with components of the user
interface layer, business process components, and business entities (if present).

Authorization in Business Entity Components
Business entity components can enforce authorization rules based on the security
context of the caller (for both users and service accounts). For example, you can
make sure that users in a particular role do not access private information of a
Customer object. To implement this functionality, you will need to:
� Make sure that your security contexts are consistent in all physical tiers of your

application: Different physical tiers that use business entities should have
equivalent Principal objects in the running context.

� Place the appropriate checks through PrincipalPermission attributes and
PrincipalPermision.Demand calls in your business entity calls.

You can enforce authorization on business entity components for proactive checks,
but the final check should be performed by the business process components and
data access components where the work is done. Note that having two places
enforcing authorization over related functionality may entail more maintenance in
keeping the authorization policies synchronized.

You may want to restrict access to business entity components from the code access
standpoint. Doing so ensures that your business entities are invoked only by trusted
code. You should do so to prevent power users from writing custom script against
these objects to gain access to unauthorized information.

Secure Communication
In addition to authenticating users and authorizing requests, you must ensure that
communication between the tiers of your application is secure to avoid attacks in
which data is “sniffed” or tampered with while it is being transmitted or is being
stored in a queue.

Secure communications involve securing data transfers between remote compo-
nents and services.

Secure communication does not imply the use of an authentication mechanism, but
may be coupled with the use of a one-way or two-way authentication mechanism
that makes sure the communication endpoints are who they claim to be.

Chapter 3: Security, Operational Management, and Communications Policies 89

You have the following options for secure communications:
� Securing the whole channel:

� Secure Sockets Layer (SSL). This is the recommended option for HTTP chan-
nels, is a widely accepted standard, and is usually accepted to open SSL ports
on the firewalls. This option is recommended when exposing a service inter-
face to the Web.

� IPSec. This mechanism is a good choice when both endpoints of the communi-
cation are well known and are under your control. IPSec is used mostly when
making calls between services or physical application tiers within a data
center or across data centers of the same organization.

� Custom remoting channel performing encryption. This approach is generally
not recommended. Programming secure communications is a complex task
that requires deep security skills and extensive testing.

� Virtual private networks (VPNs). A VPN lets you establish a point-to-point IP
transport over the Internet (or other networks). It is most suitable for provid-
ing a set of employees or partners access to an internal network from the
Internet. Implementing VPN requires extensive infrastructure support.

� Securing the data:
� Signing a message. This makes the message tamper-evident. Signatures can be

used for authentication in the same process.
� Encrypting a whole message. This makes the whole message unreadable if the

network packets become compromised. Encrypting a message with the
appropriate algorithms also make it tamper-evident.

� Encrypting sensitive parts of the message. Use this when only a small part of
the message is sensitive to being exposed.

Digital signing usually involves calculating a hash of the signed part of the mes-
sage, encrypting the hash with the private key of the signer, and including the
encrypted hash in the header. The receiver decrypts the signature received with the
message using the public key of the signer, and it compares the resulting hash with
the one it computes from the signed parts of the message. If the hashes match, it
means that the message has not been tampered with. If they don’t match, the
message has been corrupted and you should audit the failed message and caller
information and return an exception.

Note: Digitally signed and hashed messages can still be used in a replay attack, in which the
same message is sent repeatedly to the server. You may need to build further mitigation logic
into your messaging layer to deal with this kind of attack. For example, you could add a
timestamp to the message body or design your process so that messages are idempotent.

Application Architecture for .NET: Designing Applications and Services90

For example, with XML Web services, you can implement XML digital signatures
in SOAP by using the SignedXml class and SOAP headers. For more information
about the SignedXml class, see “SignedXml Class” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/
frlrfSystemSecurityCryptographyXmlSignedXmlClassTopic.asp). For more information
about SOAP headers, see “Using SOAP Headers” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconusingsoapheaders.asp?frame=true).

Securing the communication channel will affect performance, so whenever you are
evaluating the techniques described earlier, you should scope the channel security
to those specific areas where it is needed, such as securing specific Web service
URIs, specific ASP.NET pages, or sensitive pieces of business data. Different mecha-
nisms will have different performance implications depending on what data your
application exchanges, the number of endpoints, and the type of security required.

For more information about channels that support secure communication channels,
see “Designing the Communications Policy” later in this chapter.

Secure Communication in User Interface Components
User interface components communicate only with the user. In general, you should
avoid showing sensitive information without a warning. Passwords should never
be displayed or transmitted in plain text. For Web applications, you should use SSL
whenever sensitive data is being exchanged with the user, such as when submitting
logon forms or displaying personal financial information.

User process components typically reside together with the user interface compo-
nents, so there is no need to secure the channel between them.

Secure Communication in Service Agents and Service Interfaces
It is the role of the service agent to establish the appropriate channel security
mechanism between itself and the invoked service. For example, if messages need
to be signed or if an SSL connection is needed, the service agent must implement
this logic to isolate these requirements from the business components and
workflows.

A service interface such as an XML Web service may need to enforce the need for
secure communications, repudiating connections and messages that do not comply.
Both Message Queuing and XML Web services make it easy to establish a secure
communication channel. For more information, see “Designing the Communica-
tions Policy” later in this chapter.

Chapter 3: Security, Operational Management, and Communications Policies 91

Secure Communication in Data Access Components
Data access components typically rely on data access helper components to perform
the connections with the data store. It’s these components that should handle any
kind of communication encryption policy with the data store. Additionally, specific
data stores may support multiple communications protocols (for example, SQL
Server supports named pipes, TCP/IP, IPX/SPX, and others). The communications
policy of the organization could affect this aspect of the design by dictating a
particular protocol.

Different data sources support different types of communication security, or may
even support none natively. Sometimes you will need to protect communication
with the service with a platform-provided or standard security mechanism, such
as SSL.

Data access helper components should manage the connection parameters to
enforce communication security. For example, data access helper components can
encapsulate the following:
� Logic to choose the appropriate security provider for SQL Server
� Implementation of SOAP encryption mechanisms
� Code to establish a connection over SSL

Profile Management
User profiles consist of information about the user that your application can use to
customize its behavior. A user profile may include user interface preferences (for
example, background colors) and data about the user (for example, the region he
or she is in, credit card details, and so on). Profile information can be exposed as a
collection by the Principal object. You may decide to cache profile information for
offline applications. If the profile information contains sensitive data, you may
consider encrypting it or hashing it to make sure that it can’t be read and that it
hasn’t been tampered with.

Auditing
In many cases, you will need to implement auditing functionality to track user and
business activity in the application for security purposes. To audit your business
activities, you need a secure storage location — in fact, auditing can be thought of as
“secure logging.” If you are implementing your own auditing solution, you must
make sure that audit entries are tamper-proof or at least tamper-evident (achieved
with digital signatures) and that storage location is secured (for example, connec-
tion strings cannot be changed and/or storage files cannot be replaced). Your
auditing mechanism can use document signing, platform authentication, and
code-access security to make sure that spurious entries cannot be logged by mali-
cious code.

Application Architecture for .NET: Designing Applications and Services92

The auditing interface to your application may be exposed as a utility function or
as a method of the application’s Principal object if the audited action needs to be
correlated with the user.

Auditing in User Interface and User Process Components
The activity that occurs in the user interface components is not usually audited.
A user interface application may want to audit global events such as logon, logoff,
password changes, and all security exceptions in general.

Because user process components represent user activities (that may be stopped,
abandoned, and so on) it is not common to audit them. As always, you may want
to audit security-related exceptions.

Auditing in Business Process Components
Business processes are prime auditing targets. You will want to know who per-
formed key business activities and when the activities occurred.

If you are auditing within the context of a transaction, to a transactional resource
manager such as SQL Server, you will want to have a new transaction started by
your auditing component, so failures in the original transaction tree don’t also roll
back the audit entry.

Auditing in Data Access Components
Data access components are the closest custom business logic layer to the data store.
Just as it is for fine-grained authorization, the data access components layer is a
good location for implementing fine-grained auditing.

Your data access components will usually invoke stored procedures that actually
do the data-intensive work, so you may want to also audit inside the RDBMS. For
information about how to implement auditing in SQL Server, see “Auditing SQL
Server Activity” in the SQL Server 2000 SDK on MSDN (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/adminsql/ad_security_2ard.asp).

Designing the Operational Management Policy
The operational management policy is concerned with the ongoing, day-to-day
running of the application, and covers issues such as exception management,
monitoring, business monitoring, metadata, configuration, and service location,
as shown in Figure 3.3.

Chapter 3: Security, Operational Management, and Communications Policies 93

Figure 3.3
Aspects of the operational management policy

Exception Management
Exception management encompasses catching and throwing exceptions, designing
exceptions, flowing exception information, and publishing exception information to
diverse users.

All applications should implement some kind of exception handling to catch run-
time errors. Exceptions should be caught and resolved if possible. If an error state
cannot be resolved, the application should display a meaningful message to the
user and provide some way of logging or publishing the exception information for
debugging purposes.

Note: For more information about handling exceptions in .NET-based applications, see “Excep-
tion Management in .NET” on MSDN (http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnbda/html/exceptdotnet.asp).

For a Microsoft-provided reference building block for exception management that
implements the outlined design, see “Exception Management Application Block for
.NET” on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbda/html/emab-rm.asp).

Catching and Throwing Exceptions
Your code should catch exceptions if it is capable of adding relevancy to the excep-
tion information or making a business flow decision based on the type and data of
the exception. It is advisable to catch exceptions at layer boundaries in order to
wrap them in exception types that are relevant to the callers. You can throw a new
exception, and optionally preserve the original caught exception as an
InnerException member of the new exception object you are throwing.

Designing Exception Classes
Exceptions classes for your application should derive from ApplicationException.
You may decide to build your own exception class that provides more features, such
as the ability to add arbitrary data to the exception. The Exception Management

Application Architecture for .NET: Designing Applications and Services94

Application Block for .NET provides a base class that you can use to derive from
that provides these extra features.

It is common to derive two main branches of exceptions: business exceptions and
technical exceptions. This design makes it easier to catch and publish the appropri-
ate type of exceptions in different parts of your application.

Flowing Exception Information
Exceptions provide an upstream information flow. Exceptions need to be serializable
in order to flow upstream across tiers. This is especially important when reaching
a service interface or user interface that you don’t want to flow the exception
verbatim, but rather translate it into something actionable for the caller, and with-
out exposing sensitive business or technical information about your application and
service (such as a database connection string in case of a connection failure) that
could be used against the system or organization.

Exceptions will flow only if the communication is two-way. In the case of Message
Queuing and one-way communication mechanisms, you will need to implement
your own mechanism to let the caller know that the message caused an error. The
client also needs to be able to handle failures that prevent messages from reaching
the server at all.

Publishing Exception Information
If an exception occurs, you want your application to notify the appropriate people.
Operations and technical support staff need to know about technical exceptions,
and managers and helpdesk users may need to know about business exceptions.
Each type of audience will want additional environment information about the
exception to perform its role, such as OrderIDs or source computers.

You should publish relevant information for each audience through channels that
communicate with the tools used by them. This means that your application may
publish some Windows Management Instrumentation WMI events in case of a
technical exception, contact a helpdesk Web service in case of a business exception,
and log exceptions to the event log in all cases.

For tested code that implements these features, see the “Exception Management
Application Block for .NET” on MSDN (http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnbda/html/emab-rm.asp?frame=true).

Exception Management in User Interface Components
User process components will need to handle exceptions coming from the business
processes and data access components, and decide whether to:
� Retry the operation.
� Expose the issue to the user.
� Stop, restart, or continue with the user interface flow of the application.

Chapter 3: Security, Operational Management, and Communications Policies 95

User process components may need to hide exceptions from the user, depending on
the operation. If the exception needs to be displayed, the user process will probably
branch control execution to some visual representation of the error, and not propa-
gate it to its caller (which may be an ASP.NET page or Windows form, for example).

ASP.NET provides some basic error-state user interface flow capabilities which
you may leverage in such applications. For more information, see “Exception
Management in .NET” on MSDN (http://msdn.microsoft.com/library/en-us/dnbda/html
/exceptdotnet.asp).

User interface components should publish their exceptions to help isolate problems,
especially in rich client applications. It is common to publish the exceptions to some
central server (for example, through Web services) and/or to a local file or event log
in the case of disconnected applications.

Exception Management in Business Process Components
Handling exceptions in the business components often requires catching exceptions
and errors returned by the business objects and abstracting them into an exception
that can be understood by the caller. Business components need to handle excep-
tions coming from the data access components. These include:
� Technical exceptions (for example, a failed database connection).
� Business exceptions (for example, violation of a foreign key constraint).

The business components should not hide these exceptions from the calling code
and should propagate the exceptions they receive. Microsoft recommends propagat-
ing the exceptions as they are, but you may choose to wrap them, especially if you
have only one type of client that may benefit from higher-level exception information.

Business components should raise new exceptions when:
� The caller is trying to perform an operation with insufficient or incorrect data

(for example, calling the Save method on a Customer object for which no first
name has been provided).

� A constraint violation occurs when performing an operation.

Business components need to propagate all data access components exceptions; for
example, if:
� There are technical problems accessing the data or errors raised from the back-

end data access components. Most of these exceptions can be propagated with-
out rewrapping.

� You are using an optimistic locking scheme (this is common when the business
entities are used from the user interface layers) and an update would overwrite
data that has been updated since it was read.

Application Architecture for .NET: Designing Applications and Services96

In general, business components should not hide any exception raised from the
layers they call. Hiding exceptions could mislead business processes in terms of
transactional state and make the user believe that certain operations were successful.

Exceptions should be published in business layers, because this is where transaction
outcome is known and internal service level agreements are defined.

Exception Management in Data Access Components
Data access components will usually need to handle two main classes of exceptions:
� Exceptions deriving from technical errors connecting to and invoking the data

store.
� Business exceptions deriving from stored procedures implementing data-intensive

business logic.

If the running activities are transactional, all exceptions will abort the current
transaction. It is important that your data access components explicitly vote on the
current Enterprise Services transaction if something has gone wrong.

Handling exceptions in the data components often requires catching exceptions
and errors returned by the underlying data source (or data access API) and map-
ping them to the exception schema used in the rest of the application. Data access
components should propagate exceptions, wrapping them in exception types that
make sense for their clients. Wrapping the exceptions in two main exception types
(business and technical) improves exception handling structure and exception
publishing logic for the potentially diverse callers.

The functionality to map data source exceptions (for example, SqlExceptions, which
represent SQL Server errors raised with RAISERROR in stored procedures) to your
.NET-based application exception schema should be implemented in the data access
components. Performing the mapping may involve one or more of the following:
� Translating or mapping a service-specific error code or HResult into an exception

of the appropriate type in .NET.
� Wrapping a low-level .NET exception with a more significant exception.
� Extracting verbose error information through the service API and adding the

information to the appropriate fields of the exception being created.

Note: If the data access API is designed for .NET (as ADO.NET is), most of this translation and
wrapping is done automatically, so catching and re-throwing is unnecessary in the data access
components. ADO.NET, for example, throws a SqlException exception when an error is returned
by SQL Server. However, in most cases, you should wrap these data access API–specific
exceptions in custom exceptions that have more relevance in your application.

Chapter 3: Security, Operational Management, and Communications Policies 97

Data access components should always publish their exceptions by writing excep-
tion details to a log file, sending an alert, or otherwise publishing the exception.
Technical exceptions and business exceptions may be published using different
mechanisms (for example you might choose to send alerts to operators through
WMI when a technical issue arises, but log business exceptions to an application-
specific error log or database).

Exception Management in Business Entity Components
Business entities may be called from the user interface or business process compo-
nents, so it’s important that you raise and propagate exceptions that can be con-
sumed by both.

In the special cases where your business entities are exposed for consumption by
script developers as an SDK to a larger system, you may choose to wrap all excep-
tions in friendlier exception types that contain the original exception as an
InnerException member.

Monitoring
You need to instrument your application to give your operations staff insight into
application health, compliance with service level agreements (SLAs), and scaling/
capacity management. For detailed guidelines on how to add instrumentation to
your application, see “Monitoring in .NET Distributed Application Design” on
MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/monitordotnet.asp?frame=true).

Your application may benefit from the following types of monitoring:
� Health monitoring: Are the components running well? Are there transient locks,

hangs, process exits, blocked queues and so on?
� SLA compliance: Are the business processes running within the expected param-

eters? Are the services you integrate with meeting expectations? Is your applica-
tion or service meeting your caller’s performance and turnaround expectations?

� Scale management: Is the computer, farm, or network that the components are
deployed within correctly designed for the task they are handling? Is perfor-
mance predictable from available resources?

� Business monitoring: Can you make your business processes more efficient? Can
critical decisions be made earlier? What are the organizational bottlenecks to
efficient business processing?

These different questions can be answered by monitoring the right parts of your
application or service. Not all types of monitoring need to be active at all times. For
example, you may decide to monitor business factors before planning the next
version of your application.

Application Architecture for .NET: Designing Applications and Services98

Business Monitoring
Business monitoring is intended to provide a reactive capacity to business decision
makers with regard to business process health, business-level SLA compliance, and
organizational capacity management. Rather than telling you there are network
errors, this type of monitoring gives you an insight into business structure and
process efficiency. For example, you may determine that business processes are
stalled for days whenever a certain partner is involved in shipping and handling.

Business monitoring is a component of business intelligence, but does not replace
other techniques such as OLAP analysis and data mining, which derive their data
from ETL (extract, transform, load) processes from the application or service’s stores
to inform proactive decisions based on trends of past data. The main distinguishing
factor is that business metrics are transient and may not even be reflected in the
application data.

Monitoring in User Process Components
User process components may provide interesting business statistics to improve
application UI design and efficiently interact with users. The following are some
examples of indicators you can obtain from user process components:
� Average total duration for a given user process.
� Whether user processes tend to pause at a certain point, typically indicating that

the user interface could provide more complete business information or could be
more self-explanatory.

� What user processes are started and never finished, and at what stage they are
dropped off in an incomplete state. You may be able to use this information to
design user interfaces that let a user decide whether to start the process at all in
an earlier stage.

Monitoring in Business Process Components and Workflows
Health monitoring of your business components and workflows is critical, because
it is where transaction outcome is ultimately known, and where compensation,
service, and data store problems are channeled. You should instrument your classes
as described in “Monitoring in .NET Distributed Application Design” on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/monitordotnet.asp?frame=true).

Most (if not all) business-level monitoring is typically done in the business layers.
If your business layers are implemented with Enterprise Services (COM+), you can
use AppMetrics for COM+ from XTremesoft (http://www.xtremesoft.com/). For BizTalk
workflow monitoring, you can use BizTalk Document Tracking. XTremesoft also
provides a product called AppMetrics for BizTalk Server.

Chapter 3: Security, Operational Management, and Communications Policies 99

For more information about tracking documents in BizTalk Server, see “Using
BizTalk Document Tracking” on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/biztalks/htm/lat_track_docs_gsra.asp).

Monitoring in Data Access Components
Data access components participate in transactions and talk to data access API
components that handle connection with data services. These components are
important candidates for monitoring in order to track the duration of long-running
data operations, object lifetime duration, activity throughput and latency, memory
usage, and other technical indicators of health.

Transactional aborts are expensive to the application as a whole. Monitoring these
components and having a good exception publishing policy will help you isolate
components that tend to fail from a business logic or technical perspective.

Whenever you are connecting to a database, you should also monitor connection
usage, connection pooling statistics, and connection security statistics.

It is also common to monitor the response time of the external data if an SLA is
associated with the use of the data or external data source.

For guidelines on how to add monitoring capabilities to your components, see
“Monitoring in .NET Distributed Application Design” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/monitordotnet.asp?frame=true).

If your business layers are implemented with Enterprise Services, you can use
AppMetrics for COM+ from XTremesoft, or use instrumented classes as described
in “Monitoring in .NET Distributed Application Design.”

Configuration
Applications require configuration data to function technically. Settings that modify
the behavior of the policies (security, operational management, and communica-
tions) are considered configuration data.

Configuration data is maintained in .NET configuration files at the user, machine,
and application level. Custom configuration stored here can be defined with any
schema and can be accessed easily by using the ConfigurationSettings class in your
application.

It is very important to consider configuration security sensitivity — for example,
you should not store SQL connection strings in clear text in XML configuration files,
especially if they contain SQL credentials. You should restrict access to security
information to the proper operators, and for added security, you may consider
digitally signing information to make sure that the configuration data has not been
tampered with.

Application Architecture for .NET: Designing Applications and Services100

Configuration data can be stored in many places, each one with its advantages and
disadvantages:
� Application XML configuration files: Storing configuration data here enables

your application clients to work offline, and this model is easy to implement.
With rich client applications, this approach may increase change management
costs because it requires that all your clients have the same configuration infor-
mation. In server environments, it is easy to push configuration changes using
Application Center server or Microsoft Active Directory directory services, or by
copying batch files. Note that reloading application configuration data requires
an AppDomain restart. However, ASP.NET will restart the AppDomain for you
when it detects a change in the configuration files. Application configuration
files are stored in plain text, which may be an unacceptable security risk. For
example, in most scenarios you should not store connection strings containing
user names and passwords in application configuration files.

� SQL Server or the application data store: This is a common storage location
for application-managed configuration data, but even more so for application
metadata. If you store configuration here, it is recommended that you keep your
metadata in a different SQL Server database than your business data. Accessing
the database often results in a performance hit, so you should consider caching.

� Active Directory: Within an organization, you may decide to store application
metadata in Active Directory. Doing so makes the metadata available for clients
on the domain. You can also secure the information in Active Directory with
Windows ACLs, making sure that only authorized users and service accounts
can access it.

� Constructor strings: If you are using Enterprise Services–based components, you
can add configuration data to the constructor string for the components.

� Other locations for special cases: These include the Windows Registry, the
Windows Local Security Authority (LSA) store, and custom implementations.
They are used in very special cases and add requirements for the application
privileges on the machine and deployment mechanisms.

� Third-party configuration management solutions that may also provide
versioning and deployment features.

Accessing configuration data and metadata frequently can cause a performance hit,
especially if the data is stored remotely. To prevent this, you can cache application-
managed configuration data and metadata in memory. However, you need to make
sure that you are not adding a security hole by exposing sensitive information to
the wrong application code. If you cache configuration data, it is useful to specify
refresh rates and frequencies so that the cached data is flushed and refreshed at
predetermined times rather than at relative intervals (for example, force configura-
tion cache refreshes every hour on the hour, not “one hour since the last refresh”).

Chapter 3: Security, Operational Management, and Communications Policies 101

This helps your operators understand what configuration data your application is
based on at a given point in time.

Configuration in the Presentation Layers
Your user process components usually require the following configuration settings:
� Location information to reach the business process components and the data

access components.
� Connection data (such as a connection string or a file path) for the resource that

handles persisting user process data for long-running processes.

Configuration in Service Agents
Service agents need to have configuration information to connect to the external
service using Web services, message queuing, or some other means. The configura-
tion schema and data depends on the particular service being accessed.

Configuration in Data Access Components
Your data access components usually need the following:
� They need to have the ability to map logical data source names to physical

connection parameters (for example, to map the “Sales” database to an actual
connection string).

� If your data access components perform dynamic data routing, you will need to
have configuration data that expresses the routing parameters (for example,
customer region), algorithms (for example, hashing), and routing destinations
(for example, connection strings for databases). It is common to wrap dynamic
data routing logic in a separate utility component.

Metadata
To make your application more flexible with regard to changing run-time condi-
tions, you may want to provide it with information about itself. Designing your
application to use metadata in certain places can make it easier to maintain and
enables it to adapt to change without costly redevelopment or deployment.

There are two main times when you can use metadata in your application:
� Design time: For example, you may use information about your database to

generate code, stored procedures, .NET classes, or even user interface compo-
nents for commonly repeated patterns. Using metadata during development
saves reactive development time, reduces the need for communication between
teams, concentrates and “persists” special skill sets, and enforces design, nam-
ing, and implementation standards. The resulting components behave more
predictably and are less prone to errors, so developer productivity increases.

Application Architecture for .NET: Designing Applications and Services102

However, this approach requires specialized knowledge and an initial extra
development effort in creating the templates and the code that combines them
with the metadata.

� Run time: Your application may be easier to maintain if you take advantage
of the right metadata for commonly changing aspects. For example, you may
decide to take headers for a UI list or grid from metadata, so they are not hard-
coded into your application. Your application may also take advantage of
metadata when establishing relationships between components or when process-
ing predictable patterns, such as validation rules. However, using metadata at
run time is usually expensive in terms of performance, so you should test and
profile your application design early in the application lifecycle. You can design
your components to expose metadata about themselves, but you should do so
only if your application plans to use it; otherwise, the metadata could be a
security hole.

You can avoid performance issues when using metadata at run time by using
advanced techniques such as generating code on the fly and compiling it using the
.NET reflection classes while the application is running. This design technique is
complex and is not recommended for any but the most complex scenarios due to
the skills required and the security implications of run-time code compilation and
metadata storage. Run-time customization can be more easily achieved in most
cases with .NET scripting. For more information about .NET scripting, see “Script
Happens .NET” on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnclinic/html/scripting06112001.asp?frame=true).

Metadata can be stored in multiple places as discussed earlier in “Configuration.”
For centralized stores, you can use SQL Server databases or Active Directory. If you
want to distribute your metadata alongside your assemblies, you can implement it
in XML files, or even custom .NET attributes.

For a good conceptual foundation on the use of metadata in software design (a
technique sometimes called metaprogramming, which is related to intention-based
programming) read Generative Programming: Methods, Tools and Applications by
Krzysztof Czarnecki and Ulrich Eisenecker (ISBN: 0201309777).

The following discussion illustrates potential uses of metadata.

Metadata in User Interface Components
You usually use metadata in user interfaces to specify column headers, user assis-
tance text, error messages, menu hierarchies, and other types of information that
do not ultimately affect the business data of your application.

If your application requires some level of customization, it is common to use
metadata to manage simple customization options. For more complex
customizations, it is better to use .NET scripting.

Chapter 3: Security, Operational Management, and Communications Policies 103

Metadata in User Process Components
If you model your user processes in a consistent way, you may find that having the
following metadata helps you create a more maintainable design:
� What user processes exist and what menu items trigger them
� What internal business state is needed for the UI process, and what the default

values are.
� A representation of the behavior of the user process, such as what UI component

to show when the customer clicks “Confirm purchase.”

Metadata in Business Components
Your business processes may benefit from using metadata to model simple rules
or patterns. For example, a pipeline pattern may be implemented as an engine that
uses metadata to determine what classes and methods to call in what sequence, as
illustrated by the Microsoft Commerce Server 2002 purchasing pipelines. You may
also use metadata to help calling components identify compensation methods for
particular business activities.

Metadata in Data Access Components
If your data access component exposes an interface that provides Create, Read,
Update, and Delete (CRUD) functionality, it could be useful to expose the schema of
the returned data and metadata it uses. Similarly, it is useful to expose XSD schemas
of complex input and output parameters for special queries or actions.

Your data access components may rely on metadata instead of procedural code to
perform data transformations and mapping. You can use XSL documents to trans-
form one XML schema into another, use a rules-based approach to do the mapping,
or use SQLXML annotated schemas to map XML documents to data in the underly-
ing database. Using a metadata-based approach may be especially useful if this
mapping tends to change often.

Metadata in Business Entity Components
It is recommended that you expose business entity metadata to consumers, espe-
cially to user interface components, where it is helpful to have information about
the business entities available to assist in such tasks as:
� Filling column headers in tables.
� Displaying descriptions of attributes for tooltips and user interface friendliness.
� Using relationships between logical entities in your application to let the user

interface expose them and allow their navigation.
� Validating business entity data values, so the user interface can proactively

enforce them (for example, the maximum number of addresses per customer, or
data formats).

Application Architecture for .NET: Designing Applications and Services104

You can expose metadata in form of XSD or XML documents with a custom schema.

It is also recommended that you keep frequently changing validation rules as meta-
data. Designing your validation rules as metadata enables you to change them
without affecting the implementation or redeploying the business entity compo-
nents. This is particularly important because business entities may be used from
client desktops where change management is expensive. Validation rules for entities
could be expressed in an XSD schema deployed with the application.

Service Location
When calling remote services, you need to determine where .NET objects and
external services that can process your request are located and how to reach them.
This is especially important when you are using Web services hosted by other
organizations or third parties.

Locating Local Assemblies
.NET provides extensive features to let you specify what assemblies to link to at run
time. For in-depth technical information on how .NET locates local assemblies when
creating objects, see “How the Runtime Locates Assemblies” on MSDN (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconhowruntimelocatesassemblies.asp).

Locating Classes for .NET Remoting
.NET remoting enables you to call objects located in another application domain,
process, or computer. You can expose objects to be used by remoting, and locate
objects you want to call remotely, by specifying configuration information or by
writing code in your application. You will also need to let your application know
about the channels you intend to use for remote communication.

For more information about using .NET remoting configuration to expose types,
find types, and register channels, see “Registering Remote Objects Using Configura-
tion Files” on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpguide/html/cpconregisteringremoteobjectsusingconfigurationfiles.asp?frame=true).

Locating Message Queuing Queues for Asynchronous Messaging
To send a Message Queuing message, you need to know which queue you are
sending it to. The way you reference Message Queuing queues varies depending on
Message Queuing configuration and whether you are sending messages over the
Internet.

If Message Queuing has been installed in domain configuration, you can locate
queues by name, ID, or other attributes. With MSMQ 2.0 (found in Windows 2000),
this capability requires that your queue clients and servers refer to the same domain

Chapter 3: Security, Operational Management, and Communications Policies 105

controller that maintains a registry of existing queues in Active Directory. In domain
configurations, you can specify a label or FormatName to identify the queue.

If you installed Message Queuing in a workgroup configuration on the sender, you
need to specify the full path of the queue. For more information about using Mes-
sage Queuing, see the following MSDN articles:
� “MessageQueue.Path Property” (http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/cpref/html/
frlrfSystemMessagingMessageQueueClassPathTopic.asp?frame=true)

� “MessageQueue.QueueName Property” (http://msdn.microsoft.com/library/en-us
/cpref/html/frlrfsystemmessagingmessagequeueclassqueuenametopic.asp)

Locating Web Services on the Internet and Within an Organization
The URI for an XML Web service can be retrieved dynamically at run time from the
application configuration file. This approach enhances your application’s maintain-
ability. For more information about storing Web service location information in the
configuration file, see “Web References” on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/vsintro7/html/vxconWebReferences.asp?frame=true).

An industry initiative called UDDI (Universal Description, Discovery, and Integra-
tion) exists to help services and businesses find other services and expose services
and their interfaces to interested callers. UDDI is based on standards such as SOAP,
WSDL, and DNS, which makes it inherently platform-independent. You can use a
worldwide UDDI registry to expose your service to the outside partners and ser-
vices. Additionally, you can deploy an implementation of the UDDI specification in
your enterprise to help locate and integrate internal services.

Microsoft provides UDDI Services natively with Microsoft Windows .NET Server.
For more information about this feature, see the Windows .NET Server Web site
(http://www.microsoft.com/windows.netserver/developers/default.mspx). If you do not
have Microsoft .NET Server, you can also use the Microsoft UDDI SDK (http://
www.microsoft.com/downloads/release.asp?ReleaseID=35940) to install UDDI on a local
computer.

For more information about UDDI, see the UDDI Web site (http://www.uddi.org/) and
the following MSDN articles:
� “UDDI – an XML Web Service” (http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/dnexxml/html/xml12182000.asp?frame=true)
� “Using UDDI at Run Time” (http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/dnuddi/html/runtimeuddi1.asp?frame=true)

Application Architecture for .NET: Designing Applications and Services106

Designing the Communications Policy
The communications policy defines how the components in your application will
communicate with each other. The communications policy covers such issues such
communication synchronicity, format, and protocol, as shown in Figure 3.4.

Figure 3.4
Aspects of the communications policy

Choosing the Correct Communication Model
You should carefully consider whether or not the components of your application
will communicate using messages or using a more tightly coupled, connected
approach such as DCOM or .NET remoting. Connected communication is easier to
design and implement, but has limitations in terms of scalability, availability, and
manageability.

Separating Inter- and Intra-Application Communication
Inter-application communication (in other words, communication with external
services) should be implemented using a message-based model such as SOAP-
based XML Web services or Microsoft Message Queuing. Internally, the components
of your application may require a communication mechanism that provides high
performance and specific capabilities such as transaction or security context flow.
You can accomplish this using connected communication models such as DCOM.
However, when transaction or identity flow is not required, you could use XML
Web services between the tiers of your application. It is recommended that you use
a message-based communication mechanism whenever possible in your applica-
tion. This includes communication between the user interface layers, business
processes, and the user interface, and between service interfaces and business
layers.

Note: XML Web services do not currently support standards-based transactions or identity
flow. Global XML Web Services Architecture (GXA) will address these issues by defining
specifications for transactions and security. More information on GXA can be found at http://
msdn.microsoft.com/library/en-us/dnglobspec/html/wsspecsover.asp.

Chapter 3: Security, Operational Management, and Communications Policies 107

The different requirements and constraints of inter-application communication and
intra-application communication will drive most technology decisions. In many
cases, it may not be a maintenance issue to have tightly coupled components that
are built, deployed, and managed as a unit. However, in some cases it may be
useful to view the different tiers of applications as services and strive to have the
same loose coupling between application tiers that is found between unrelated
services. Figure 3.5 illustrates this concept.

Figure 3.5
Implementing communication between the presentation and business tiers using the message bus

Application Architecture for .NET: Designing Applications and Services108

Figure 3.5 shows that the application is designed as a service (1) that is accessed
using a message bus (2). The presentation tier (3) uses the same communication as
other calling services (4), potentially invoking other services (6) directly as well.
Service agents (5) invoke other services by using the message bus as well (6). Com-
munication with the data components is most realistically implemented using other
communication mechanisms (7), unless the data needs to be exposed for data-to-
data or process-to-data scenarios, in which case the data sources would also be
accessed by using the message bus.

Using the same communication bus between tiers and services leads to a more
modular design of the system, where other services may choose finer-grained pieces
of functionality to integrate with. It also leads to a higher level of independence
between the teams and platforms used for each tier.

Viewing tiers as services may be a compelling long-term vision for a system, but it
may pose several design challenges:
� The business layers may rely on having context such as security information

provided by the user interface, which may be unavailable when trying to invoke
the same logic from an application.

� The message bus or communication has to support all the requirements of intra-
application communication, such as transaction flow, efficient transfer of large
payloads, high throughput and low latency, and transfer of rich exception
information. Standards are evolving in all these areas, but the development
model still required to use them is not transparent.

� It is tough to design the same level of resiliency and availability between UI and
the business layers as the level expected between services. The communication
between the user interface and the business tiers is probably the best place to
design communication based on the same standards used between services. The
communication between data and business tiers of an application is still territory
for efficient but non-generic communication mechanisms.

If your goal is to have a more traditional application design, and if service integra-
tion is only a small aspect of the overall architecture, you may want to use the Web
services, standards-based message exchanges for integration purposes only and use
DCOM or .NET remoting for intra application communication, as shown in Figure 3.6.

In Figure 3.6, the presentation, business, and data tiers communicate with each
other using efficient but probably nonstandard communication mechanisms. The
use of standards-based and message-based communication is left for integration
purposes, where service interfaces accept calls from potential external callers (3 and
4) and service agents make the calls to other services (5 and 6).

Chapter 3: Security, Operational Management, and Communications Policies 109

Figure 3.6
Using the message bus for integration purposes only

Message-based communication, especially when implemented asynchronously on a
store-and-forward transport, provides the best choice of communication for integra-
tion, but the gain is not for free: You must consider many design issues before you
can implement it correctly.

Advantages of Asynchronous Message-Based Communication
Using an asynchronous message-based communication mechanism provides the
following advantages:
� Scalability and availability: Message-based communication provides better

scalability and availability (both in terms of robustness and resiliency) for your
application and service. With message-based communication, you can better
utilize your hardware resources and isolate your application from software or
infrastructure failures.

Application Architecture for .NET: Designing Applications and Services110

� Location transparency: Message-based communication also provides true trans-
parency of remote functionality, because it doesn’t assume that a connection is
present and that a message can always be sent.

� Similarity to business models: Real-world business processes are mostly mod-
eled asynchronously, in terms of exchanges between parties and users. Using
message-based communications may provide a cleaner mapping between your
requirements and the behavior of your application.

� SLA isolation: It is easier to define and keep SLAs in terms of message ex-
changes. Using message-based communication also enables you to isolate inter-
nal bottlenecks in your internal business processes or external services from the
performance SLAs you want to guarantee to your users.

� Transport agnostic: An application or service correctly designed for message-
based communication can easily take advantage of new messaging technologies
as they appear.

Disadvantages of Message-Based Communication
Message-based communication comes at a premium. As you read this list of design
considerations, keep in mind the preceding advantages — the effort in designing
message-based communications pays itself off easily during the lifetime of the
service or application. Disadvantages of message-based communication are:
� Deterministic outcome: In a connected scenario, you know whether a request

succeeded or failed at the end of it. In message-based communication, you need
to consider extra states in which no return message has been received. This
means that you have to manage conversation state in addition to your normal
business logic (for example, you may have to log sent messages for later process-
ing in case a response is not received).

� Message correlation: Because there is no automatic pairing of messages sent and
received, you will need to implement a correlation mechanism that identifies
that a certain message involves a particular instance of a business process or
conversation. You can implement this correlation in the messaging transport (for
example, by setting correlation IDs in Message Queuing messages) or in the
business data. Implementing the correlation in the business data will help you to
easily change messaging transport and to achieve idempotency of business
processes more easily.

� Message delay: Messages may arrive later than expected. You have to implement
your business logic such that it can deal with messages that never arrive. You
also should design your message receipt logic to make sure the message is still
valid when received. For example, if you are receiving an order, you could
specify a drop dead time after which the order will not be processed. Consider a
case in which your catalog prices have changed between the order submission by

Chapter 3: Security, Operational Management, and Communications Policies 111

the caller and the message receipt. In this case, you will either need to specify
whether the order is processed with the new prices, the prices at the time, or not
processed at all. It may be useful in some cases for the message to include critical
reference data it is based upon — such as the prices of the products—so your
business logic can actually compare and make more fine-grained decisions on
what to do with a message.

� Transaction flow: Message-based communication implies a different transaction
model. If you are using a transactional transport (such as transactional Message
Queuing queues), a transaction commit will make sure that the send operation is
performed. You will not be able to send a transactional message and receive its
response in the context of one atomic transaction. This means that you will need
to manage conversations involving multiple exchanges in a long-running trans-
action, and expose the appropriate compensation activities.

� Repeated messages: Your logic will need to handle a special case in which
messages may arrive more than once. You can implement this by designing your
processes and logic to be idempotent when receiving the same message more
than once. For example, in a payment processing service that debits funds from
a customer’s account and credits them to the retailer’s account, you must avoid
transferring the money for a particular purchase multiple times if the payment
request message is received more than once. You can avoid this problem by
requiring a transaction ID to be supplied with the payment request and ignoring
all subsequent requests with the same transaction ID. You can also achieve
idempotency by specifying the old and new data for operations that will update
the database. In this case, receiving a message to change the shipped attribute of an
order from No to Yes twice is not a problem (if your business logic determines so).

� Message sequence: If you are expecting more than one incoming message, you
may not receive the messages in the expected sequence. In this case, you can
either handle this in the conversation state or in your business logic. You can
force sequencing in your business logic by making the conversation depend on
acknowledgements. For example, you could determine that all order update
messages have an ID which you have provided to the issuer. This design tech-
nique defeats some of the advantages of message-based communication, so use
it only when required.

Scenarios for Message-Based Communication
You should design an interface to your application or service to be message-based
(such as when using SOAP) and based on asynchronous store-and-forward mecha-
nisms such as Message Queuing when:
� You are implementing a business system that represents a medium- to long-term

investment; for example, when building a service that will be exposed to and
used by partners for a long period of time.

Application Architecture for .NET: Designing Applications and Services112

� You are implementing large scale systems with high availability characteristics.
� You are building a service that you want to isolate from other services it uses and

from services it is exposed to.
� You expect the communication of both endpoints to be sporadically unavailable,

as in the case of wireless networks or applications that can be used offline.

Synchronicity
It is common to think of message-based communication as an asynchronous model.
For example, it is evident that two applications communicating with each other
using Message Queuing are doing so using messages. However, message-based
communication can also be encapsulated in a synchronous programming model
(for example, by using Web service proxies generated by Microsoft Visual Studio®
.NET), in which the client waits for a response message. In this case, the application
developer can gain the benefits of message-based communication without having to
deal with the complexities of programming in an asynchronous model.

For more information, see “Architectural Options for Asynchronous Workflow” on
MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/bdadotnetarch12.asp?frame=true).

Choosing Technologies for Asynchronous Communications
A number of approaches can be used for asynchronous communication, including
message-based approaches such as Message Queuing and XML Web services, and
connected technologies such as .NET remoting and DCOM. Of these approaches,
queuing technologies offer the greatest level of flexibility and richness of features.
Message Queuing provides a store-and-forward messaging transport for use in
applications. In addition to scalability and availability, Message Queuing provides
many development options to assist the application’s development and deployment
in many scenarios.

Message Queuing provides the following options and features:
� Internet store-and-forward messaging.
� Transactional messaging with exactly once message delivery guarantee.
� Cluster-based storage for high availability.

You can find more information on the next version of Message Queuing at http://
www.microsoft.com/msmq/MSMQ3.0_whitepaper_draft.doc

When using Message Queuing, you will need to determine the endpoint technology
and the message format. The following endpoints and formats are available:
� Sending and receiving endpoints

Chapter 3: Security, Operational Management, and Communications Policies 113

You can develop code that uses the objects in the System.Messaging namespace,
or you can use the Message Queuing trigger service to listen for messages. If you
control both endpoints and have no requirements around message format, you
can use Enterprise Services Queued Components, which completely encapsulate
Message Queuing–related development. Your endpoints can also include COM-
based applications, BizTalk Server ports, and bridges to MQSeries and other
messaging technologies.

� Formats
You can use SOAP, binary, and Microsoft ActiveX® formats. SOAP is used for
maximum interoperability, binary is used for message size efficiency, and
ActiveX is used for interoperability with COM-based senders and listeners.
Because it is COM-based, MSMQ Triggers requires the use of ActiveX formatting.
Queued Components send messages in an opaque DCE RPC format, which is
kept transparent to the developer.

Enterprise Services Queued Components

You can use Enterprise Services Queued Components when:
� You control both the sender and receiver of the message.
� Your receiving component is a Serviced Component.
� You don’t care about the format of the message (it will be an opaque RPC NDR

binary format).

Queued Components have these advantages:
� You can use Enterprise Services role-based authorization with no need to do

extra development to sign the message on the sender.
� You can use the built-in retry mechanism in Message Queuing to make sure that

messages are eventually run.
� You can use exception classes to get notification of errors so you can take alter-

nate actions.
� Messages can be sent by both COM and .NET senders.
� You can easily work with transactions transparently with the Enterprise Services

model.

Message Queuing Triggers

Message Queuing triggers provide a listener service. Use Message Queuing triggers
when:
� You don’t control the senders.
� You need to trigger an .exe file or COM component when a message arrives.
� Your message format can be ActiveX.
� You are prepared to implement the receiver function as a .NET-based component

that will be invoked using COM Interop.

Application Architecture for .NET: Designing Applications and Services114

Custom Receivers

Writing a custom receiver gives you the greatest degree of control over format, retry
behavior, exception management, and so on. However, it is not recommended that
you develop your own listener service because doing so requires skills in asynchro-
nous communication management, multithreading, security, and exception manage-
ment. If you build your own receiver service, you should test it extensively before
deployment.

Alternative Asynchronous Technologies

As an alternative to using Message Queuing, you can also create an XML Web
service proxy with Visual Studio .NET, in which case each method exposed by the
Web service can be called asynchronously using the Begin<method name> method
and specifying a callback function.

You can also use callbacks to implement asynchronous method invocations over
.NET remoting channels. For more information about implementing asynchronous
operations with .NET remoting, see the Asynchronous Remoting section in the
.NET Framework documentation on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconasynchronousremoting.asp).

Choosing Technologies for Synchronous Communications
.NET provides many options for synchronous communication. Each option is
defined as a combination of an endpoint (for example, IIS), a protocol (for example,
HTTP), and a format (for example, SOAP). Each possible combination represents a
channel through which communication can take place. You can also implement
custom channels by defining your own combination of endpoint, protocol, and
format.

Channels have many attributes, the importance of which depends on the compo-
nents intercommunicating. These attributes include:
� Transaction context flow capability.
� Breadth of reach to different clients on different platforms.
� Security capabilities (authentication, authorization, and channel encryption).
� Protocol requirements over networking infrastructure.
� Efficiency as function of data type and size being transmitted.

Answering the following questions will help you choose a synchronous communi-
cation technology based on your requirements:
1. Do you need transaction flow or to flow Windows security context?

If so, use DCOM. Your endpoints will be hosted in Enterprise Services to take
advantage of the transactions. The callee will be able to learn the identity of the
original caller of the component by using the SecurityCallContext class.
Otherwise, move on to question 2.

Chapter 3: Security, Operational Management, and Communications Policies 115

2. Do you need broad reach?
If you need to expose your service in a standard way to ensure maximum reach,
you can use SOAP and HTTP to implement XML Web services. You can expose
Web services in two ways in Windows 2000: Using ASP.NET .asmx files or using
the HTTP/SOAP remoting channel. Move on to question 4.
Otherwise, move on to question 3.

3. Do you need to authenticate the caller?
If you don’t need transactions, security flow, or broad reach you can use .NET
remoting channels. .NET remoting relies on IIS to perform authentication of the
caller when calling over HTTP, so you will need to have an IIS endpoint if you
need authentication.
If you don’t need authentication, you can use any .NET remoting channel hosted
in any process.

4. Do you need to implement façade code to expose your business functionality?
If you need to wrap your business logic in an extra façade, to perform extra
validation, transformation, or maybe even caching, you can use ASP.NET Web
services to easily implement functions that are callable by SOAP.
If you don’t need an extensive façade layer, then you can expose your types
directly as Web services. Note that you cannot expose Enterprise Services classes
directly. If your business components are Serviced Components, you will need to
create a façade layer with ASP.NET Web services or remoting classes on Windows
2000.

Note: Using DCOM with the latest fixes will enable you to establish communication through
only one known port. For more information, see the following Knowledge Base articles:
Q154596—HOWTO: Configure RPC Dynamic Port Allocation to Work with Firewall (http://
support.microsoft.com/support/kb/articles/q154/5/96.asp)
Q312960—Cannot Set Fixed Endpoint for a COM+ Application (http://support.microsoft.com
/default.aspx?scid=kb;en-us;q312960)

For more information about deciding between XML Web services and .NET
remoting, see “Choosing Communication Options in .NET” in the .NET Framework
documentation on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/cpguide/html/cpconchoosingcommunicationoptionsinnet.asp).

The following sources provide more information on .NET remoting:
� “Exposing Existing Code as a Web Service Using the .NET Framework” (http://

msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/
bdadotnetwebservice1.asp?frame=true)

� “An Introduction to Microsoft .NET Remoting Framework” (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/
introremoting.asp?frame=true)

Application Architecture for .NET: Designing Applications and Services116

� The DotNetRemoting.cc Web site (http://www.dotnetremoting.cc)
� “Performance Comparison: Exposing Existing Code as a Web Service” (http://

msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/
bdadotnetarch11.asp?frame=true)

� Advanced .NET Remoting by Ingo Rammer (ISBN 1590590252)

Recommendations for Communications
When implementing your service and application, consider these recommendations:
� Cut call chains with queues and caches as much as possible. Doing so will

enhance the scalability and availability of the overall solution.
� Push out asynchronous boundaries close to the user, service interfaces, and

service agents, to isolate your service from external dependencies.
� If you need to expose functionality as a synchronous operation, evaluate whether

you can wrap an internally asynchronous operation as described in the following
discussion.

Encapsulating Asynchronous Communication in Synchronous Requests
Your application design should strive to use asynchronous communications as
much as possible. However, in some cases, it is reasonable or unavoidable for the
client to expect a synchronous response. You may also want to rely on fully asyn-
chronous design only if the service you are calling doesn’t meet your expectations
in terms of response times. This pattern applies mostly to implementing service
agents.

You can design your components such that you use asynchronous operations, yet
you provide a synchronous interface to callers. The basic design for achieving this is
as follows:
1. The caller submits a synchronous request to a component.
2. The component receives the request and, at minimum, creates or identifies an

ID or cookie to unequivocally identify this request, optimally backed up by a
database entry.

3. The server submits an asynchronous request to the service.
4. The component sets itself to wait for a response message, with a timeout.
5. If the component receives the message in time, it builds the response and returns

it to the synchronous caller.
6. If the component doesn’t receive the message in time, it returns a “boilerplate”

response with the request ID to the caller, or an exception that the caller can
handle. The server component should then deactivate.

Chapter 3: Security, Operational Management, and Communications Policies 117

7. You then have two options for getting the result to the caller:
� The caller optionally then invokes a server component (maybe a different

function in the same component) to poll for the result after some time (sec-
onds or minutes) based on the request ID. If the caller is a human user, it is
common practice to entertain him or her with some graphic animation.

� The server notifies the caller using an asynchronous mechanism, such as a
user notification (e-mail, Windows Messenger, or a pager message) or sends a
message back to the client so it can display the right result. In this case, either
the application or the user has to have an addressable “message sink,” such as
an e-mail or a Message Queuing message path. If you are using Message
Queuing, you should correlate the return message using the correlation ID.
The Instant Notification reference architecture is available on MSDN at http://
msdn.microsoft.com/library/en-us/dnenra/html/enraelp.asp.

Communication Format, Schema, and Protocol
The format in which you send and receive data and the schema of the data you
exchange are important factors when designing your application communication.

The following factors influence the format and schema:
� Do you control both endpoints of the communication? If so, you can choose

formats and protocols that optimize performance and provide extra features
(such as security or transaction flow) at the cost of broad interoperability. This
is the case when you are communicating the tiers of your application and you
consider all tiers to be strongly related or coupled.

� Do you want your service to be accessible to external callers inside or outside the
organization? If so, you should strive to choose widely accepted standards for
protocols (such as TCP), formats (for example SOAP), and even schemas (for
example, using schemas available in www.uddi.org), especially for service
interfaces and service agents. If the service you are contacting or your own
communication does not rely on standards, you may need to use bridges or
extra translation layers between the endpoints.

A Look Ahead
Service communication based on industry standards is quickly maturing, and
Microsoft is providing facilities in its next generation of products to maker it even
easier to expose and consume business functionality through standard mechanisms.

The following links will provide you some insight into what the future looks like:
� “COM+ Web Services: The Check-Box Route to XML Web Services” (http://

msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/
comwscheckb.asp?frame=true)

Application Architecture for .NET: Designing Applications and Services118

� “The Windows .NET Server Application Environment (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnnetserv/html/windowsnetserver.asp)

� “An Introduction to GXA: Global XML Web Services Architecture” (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dngxa/html/
gloxmlws500.asp?frame=true)

� “Reliable XML Web Services” (http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnexxml/html/xml11192001.asp?frame=true)

� http://msdn.microsoft.com/webservices
� http://www.gotdotnet.com/team/XMLwebservices/default.aspx
� http://www.gotdotnet.com/team/XML_wsspecs/
� http://discuss.develop.com/

What’s Next?
This chapter discussed organizational policies for security, operational manage-
ment, and communications. Chapter 4, “Physical Deployment and Operational
Requirements,” describes strategies for deploying your application in a physical
environment, and discusses ways to achieve operational requirements.

4
Physical Deployment and
Operational Requirements

This chapter describes the different options available when deploying your applica-
tion in a physical environment and suggests strategies for meeting the operational
(nonfunctional) requirements of your application.

Chapter Contents
This chapter includes the following sections:
� Deploying Application Components
� Common Deployment Patterns
� Operational Requirements
� Feedback and Support

Deploying Application Components
So far, this guide has described the application architecture in terms of logical
layers. It is important to remember that these layers are simply a convenient way to
describe the different kinds of functionality in the application. They are conceptual
divisions rather than a physical deployment pattern. How you deploy your physical
application layers into tiers is driven by how the layers interact with each other
and the different requirements they have in terms of security, operations, and
communication.

Your application will eventually be deployed into a physical infrastructure. In some
cases, the application architect will be able to define the physical infrastructure, but
in many other cases, the IT department will determine it. Physical deployment

Application Architecture for .NET: Designing Applications and Services120

patterns are usually decided through negotiation between the IT department and
application developers driven by the solution architect.

In any deployment scenario, you must:
� Know your target physical deployment environment early, from the planning

stage of the lifecycle.
� Clearly communicate what environmental constraints drive software design and

architecture decisions.
� Clearly communicate what software design decisions require certain infrastruc-

ture attributes.

Physical Deployment Environments
Physical deployment environments vary depending on the kind of application
being deployed, the user base of the application, scalability, performance require-
ments, organizational policies, and other factors. A number of infrastructure pat-
terns with similar characteristics can be identified for specific kinds of applications,
particularly Internet-based solutions. For example, the Microsoft® Systems Archi-
tecture Internet Data Center documentation describes a recommended physical
deployment pattern for Web-based applications, as shown in Figure 4.1. For more
information, see “Microsoft Systems Architecture: Internet Data Center” on
Microsoft TechNet (http://www.microsoft.com/technet/treeview/default.asp?url=/technet
/itsolutions/idc/default.asp).

Just as an application is made up of components and services, the infrastructure
that hosts an application can be thought of as consisting of a number of infrastruc-
ture building blocks, referred to as physical tiers. These physical tiers represent the
physical divisions between the components of your application, and may or may
not map directly to the logical tiers or layers used to abstract the different kinds of
functionality in the application. The physical tiers may be separated by firewalls or
other security boundaries to create different units of trust or security contexts. There
are two main families of physical tiers, farms and clusters. Farms consist of identi-
cally configured and extendable sets of servers sharing the workload. Clusters are
specialized sets of computers controlling a shared resource such as a data store,
designed to handle failures of individual nodes gracefully.

A number of common infrastructure building blocks can be found in many applica-
tion deployment environments.

Chapter 4: Physical Deployment and Operational Requirements 121

Figure 4.1
The Internet Data Center architecture

Application Architecture for .NET: Designing Applications and Services122

Web Farms
A Web farm is a load-balanced array of Web servers. A number of technologies can
be used to implement the load-balancing mechanism, including hardware solutions
such as those offered by Cisco and Nortel switches and routers, and software
solutions such as Network Load Balancing. In either case, the principle is the same:
A user makes a request for an Internet resource using a URL, and the incoming
request is serviced by one of the servers in the farm. Because the requests are load
balanced between the servers in the farm, a server failure will not cause the Web site
to cease functioning. The requests can be load balanced with no affinity (that is,
each request can be serviced by any of the servers in the farm), or with affinity
based on the requesting computer’s IP address, in which case requests from a
particular range of IP addresses are always balanced to the same Web server. In
general, you should try to implement load balancing with no affinity to provide
the highest level of scalability and availability.

For more information about how Web farms are implemented in Microsoft Systems
Architecture Internet Data Center, see the Internet Data Center Reference Architecture
Guide on TechNet (http://www.microsoft.com/technet/treeview/default.asp?url=/technet
/itsolutions/idc/rag/ragc02.asp).

When designing a Web-based user interface that will be deployed in a Web farm,
you should consider the following issues:
� Session state. In Active Server Pages (ASP)–based applications, you should

avoid depending on the ASP Session object for state data between requests
because each new request may be sent to a different server. ASP holds session
data in-process, so the same session data will not exists on all servers in the farm.
With Microsoft ASP.NET-based solutions, this limitation is removed. ASP.NET-
based applications can be configured to store their session state out of process on
a remote Microsoft Internet Information Services (IIS) server, or in a Microsoft
SQL Server™ database. ASP.NET also provides an easy way to configure
“cookieless” sessions, so that the Session object can be used even when the user’s
browser does not support cookies. For more information about using the Session
object in ASP.NET–based applications, see “ASP.NET Session State” on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspnet/html
/asp12282000.asp).

� ViewState. ViewState is used in ASP.NET pages to maintain user interface
consistency between post-back requests. For example, a page may contain a
drop-down list that automatically posts the page’s data back to the Web server
for server-side processing. ViewState is used to ensure that the other controls
on the page are not reset to their original default values after the post-back.
ViewState is implemented as a hidden form field and can be secured using
encryption. In a Web farm environment, this requires consistency between

Chapter 4: Physical Deployment and Operational Requirements 123

settings in the machine.config file on each server in the farm. For more informa-
tion about using ViewState in a Web farm, see “Taking a Bite Out of ASP.NET
ViewState” on MSDN (http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnaspnet/html/asp11222001.asp).

� SSL Communications. If you are using Secure Sockets Layer (SSL) to encrypt
traffic between the client and the Web farm, you need to ensure that affinity is
maintained between the client and the particular Web server with which it
establishes the SSL session key. To maximize scalability and performance, you
may choose to use a separate farm for HTTPS connections, allowing you to load
balance HTTP requests with no affinity, but maintain “sticky sessions” for
HTTPS requests.

Application Farms
Applications farms are conceptually similar to Web farms, but they are used to
load balance requests for business components across multiple application servers.
Application farms are used to host business components, in particular those compo-
nents that use .NET Enterprise Services (COM+) services such as transaction man-
agement, loosely coupled events, and other component services. If the components
are designed to be stateless, you can implement the load-balancing mechanism of
the application farm using Network Load Balancing, because each request can be
serviced by any of the identically configured servers in the farm. Alternatively, you
can implement an application farm using Component Load Balancing (CLB), a
function provided by Microsoft Application Center 2000. For more information
about CLB, see the Application Center home page (http://www.microsoft.com
/applicationcenter/).

Database Clusters
Database clusters are used to provide high availability of a database server. Win-
dows Clustering provides the basis for a clustered SQL Server–based solution and
supports two or four node clusters. Clusters can be configured in Active/Passive
mode (where one member of the cluster acts as a failover node), or Active/Active
mode (where each cluster member controls its own databases while acting as a
failover node for the other cluster member).

For more information about implementing clustered SQL Server–based solutions,
see Chapter 5 of the Internet Data Center Reference Architecture Guide (http://
www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/idc/rag
/ragc05.asp).

When designing a .NET–based application that will connect to a database hosted
in a cluster, you should take extra care to open and close connections as you need
them, and not hold on to open connection objects. This will ensure that ADO.NET
can reconnect to the active database server node in case of a failover in the cluster.

Application Architecture for .NET: Designing Applications and Services124

EAI Clusters
Microsoft BizTalk® Server relies on four SQL Server databases to store its messag-
ing and orchestration data. These databases can benefit from Windows Clustering
for high availability. For general information about clustering BizTalk Server, see
“High-Availability Solutions Using Microsoft Windows 2000 Cluster Service” in
the BizTalk Server 2002 documentation on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbiz2k2/html/bts_2002clustering.asp). For information
about clustering BizTalk Server in the Internet Data Center infrastructure, see the
Internet Data Center Reference Architecture Guide.

BizTalk Server Orchestration persists its schedule data in a SQL Server database.
Because the enterprise application integration (EAI) tier is a unit of trust, this data
store should be considered private, and it should not be directly accessible to any
software component outside the tier. You will need to decide whether you want to
deploy the integration functionality in a perimeter network (also known as demili-
tarized zone, or DMZ) that can interact with the Internet, or on the internal net-
work, which provides better connectivity with the organization’s services and
applications. The Internet Data Center Reference Architecture Guide discusses these
issues in detail.

By introducing multiple BizTalk “Receive” and “Worker” servers around a single
shared work queue (itself hosted in a clustered SQL Server environment), you can
increase the performance and throughput of the BizTalk cluster as needed and
achieve high availability.

Your physical environment will probably include some, if not all, of these common
infrastructure building blocks, on which your application components will be
deployed.

Rich Clients
Another possibility is to deploy components to rich clients. It is assumed that rich
clients are running the Microsoft Windows® operating system and that they are
able to run .NET components. You can also create a rich user interface through
integration with applications such as those in the Microsoft Office suite.

In most enterprises, using rich clients implies:
� The ability to authenticate users through Microsoft Active Directory® directory

service (thus having access to a Windows Identity and Principal).
� Access to richer state management options, including maintaining session-

related state in memory. (In high scalability and availability scenarios, it is
not a good idea to keep in-memory state on the server.)

� The ability to work offline.

Rich clients are also better targets for the user interface of complex operations.

Chapter 4: Physical Deployment and Operational Requirements 125

It is important to thoroughly test rich client applications, because the security
context that they run under is typically constrained by the user policy and any code
access security policy present on the computer.

Thin Clients
Thin clients usually manage HTML or even simpler UI models, so they are not
typically considered a deployment target for your components. You can include
.NET controls in HTML pages, but in that case you are simply using the browser
as a deployment vehicle, and should consider your user interface to be rich.

Planning the Physical Location of Application Components
One of the most important decisions you need to make as an application architect is
where you will physically deploy the components in your application. As with all
aspects of application architecture, physical deployment decisions involve trade-
offs between performance, reusability, security, and other factors. Organizational
policies regarding security, communications, and operational management also
affect the deployment decisions you make.

It is common to wonder whether different pieces of interacting software should be
deployed together, especially if they are part of the same service or application.
There is no one correct answer to the question of whether to distribute your compo-
nents across separate physical tiers. However, there are certain factors to consider
that can help you reach a decision about deploying components together or deploy-
ing them separately.

When deciding on the physical architecture of your application, you should keep
one thing in mind: distributing your components results in a performance hit. There
are a number of good reasons to distribute components, but doing so always affects
performance negatively. Distributing components can improve the scalability and
manageability of your application, lower financial costs, and so on.

In general, choosing a deployment consists of three main stages involving both
infrastructure and application architects:
1. Identifying the minimum topologies that work. Early in the design phase, you

must determine what conditions your application requires if it is to work at all.
For example, your service agents may need to call out to Web services on the
Internet. The application will not work if you cannot establish the appropriate
outgoing communication. You should make a list of these typed of “must have”
requirements.

2. Applying restrictions and enforcing requirements. A requirement from your
application design (for example, the use of Microsoft Distributed Transaction
Coordinator [DTC] transactions) translates to a set of requirements for the
infrastructure (for example, the DTC uses remote procedure call [RPC] ports
to communicate, so those must be open in the internal firewalls).

Application Architecture for .NET: Designing Applications and Services126

The infrastructure architect should make a list of “must have” requirements for
his or her data center similar to the one you made in the previous stage. Then
you should start at the infrastructure and follow the same process of applying
restrictions and identifying requirements. A design characteristic of the infra-
structure may be considered unchangeable, and it may affect how you design
your application. For example, the infrastructure may not provide access to
corporate domain users on an external Web farm due to security. This is a design
constraint that precludes you from authenticating users of your application with
Windows authentication.
As in the previous step, these requirements and constraints should be laid out
early in the design cycle before building the application. Sometimes the require-
ments of the application and those of the infrastructure will conflict. The solution
architect should arbitrate the decision.

3. Optimizing the infrastructure and application. After you have determined the
requirements and constraints for the infrastructure and application and have
resolved all conflicts, you may find that many characteristics of both the applica-
tion and infrastructure design have been left unspecified. Both the application
and infrastructure should then be tuned to improve their characteristics in these
areas. For example, if the infrastructure architect has provided access through
firewall ports for Message Queuing, but your application is not using it, he or
she may improve security by closing those ports. On the other hand, the infra-
structure may be agnostic to the authentication mechanism you use with your
database, so you may choose to use integrated Windows or SQL Server authenti-
cation depending on your application security model.

Factors Affecting Component Deployment
A number of quantitative and qualitative factors influence the decision to deploy
components together or distribute them. These factors can be grouped around
abilities of your application and are closely related to the policies: security, opera-
tional management, and communication:

Security

In deciding how to deploy components, you should consider the following security
factors:
� Location of sensitive resources and data. Your security policy may determine

that certain libraries, encryption keys, or other resources cannot be deployed in
particular security contexts (for example, on a Web server or on users’ desktop
computers).
You may also want to prevent access to sensitive resources from components
deployed in less trusted physical zones. For example, you may not want to allow
access to your database from a Web farm, but may instead require a separate
layer of components behind a firewall to perform database access.

Chapter 4: Physical Deployment and Operational Requirements 127

� Increased security boundaries. By physically distributing components over
several tiers, you increase the number of obstacles that a potential attacker must
overcome to compromise the system.

� Security context of running code. Physically distributing your components
may cause them to run in drastically different security contexts. For example, a
remote component tier usually runs under a service account, whereas Web tier
components may run under the authenticated user account. If you distribute
your components, you will have to decide how you will manage identity flow,
impersonation, and auditing of actions performed under service accounts.

Management

The management factors affecting component deployment are as follows:
� Management and monitoring. To make it easier to manage and monitor a piece

of your application logic that is used by multiple consumers, you may want to
deploy it in only one place where everyone can access it. For example, you may
decide to deploy a business component that is used by multiple user interfaces
in a single central location.
Backup and restore capabilities may not be available for all physical tiers of your
application , so you should make sure that critical databases and queues are
accessible to your backup and restore solution.

� Component location dependencies. Some of your components may rely on
existing software or hardware and must be physically located on the same
computer. For example, your application may use a connection to a proprietary
network that can only be established from a particular computer in the existing
physical environment. In this case, some of your application logic needs to be
deployed on that particular server.

� Licensing. Some libraries and adaptors cannot be deployed freely without
incurring extra costs. Also, some products are licensed on a per-CPU basis. CPU-
based licensing makes it more efficient to dedicate fewer CPUs to such a product
rather than to share many CPUs among many products and tasks.

� Political factors. In some organizations, political factors may influence where
you locate certain functionality. For example, a group within an organization
may want ownership of a particular piece of a service or application.

Performance, Availability, and Scalability

Your decision to deploy components together or to distribute them should take into
account the following factors involving performance, availability, and scalability:
� Complexity of interfaces. It is more efficient to distribute components whenever

the interface between them is designed to require fewer information exchanges
or calls with more data. Such an interface is usually referred to as “chunky” (as
opposed to a “chatty” interface). The granularity of interaction between your
components thus dramatically affects performance and how state is managed,
with the related impact on scalability and availability.

Application Architecture for .NET: Designing Applications and Services128

� Communications. You will need to move your atomic transaction root to a place
where it can communicate with all resource managers. DTC uses RPC to commu-
nicate through port 135 and a dynamic range of other ports. You may not want to
open these ports on a firewall that separates your Web farm from your business
components.

� Availability. You can improve your application’s availability by physically
separating business-critical activities from other computers and components that
could fail. For example, you may choose to implement long-running business
processes on a separate tier of clustered servers, so that a failure in your Web
farm does not prevent business processes from being completed.

� Performance. As mentioned before, distributing components results in the
performance hit of serializing and deserializing data and establishing network
connections. However, you may improve the overall scalability of your applica-
tion by separating units of work that affect each other.

� Hardware capabilities. Specific types of servers are better suited to perform
particular tasks and host particular products and technologies. For example,
Web servers are typically computers with good memory and processing power.
However, they do not tend to have robust storage capabilities (such as RAID
mirroring, and so on) that can be replaced rapidly in the event of a hardware
failure. Because of this, you shouldn’t install a database with mission critical
data on a computer that is intended as a Web server.

Distribution Boundaries Between Components
If you design your application according to the guidelines in chapters 2 and 3 of this
guide, you will find that it is more efficient to deploy certain types of components
together, whereas other types of components interact with their callers in a way
better suited for remote access.

Planning User Interface Deployment
Deciding on a deployment location for the user interface components is very
straightforward: You deploy Windows-based applications on the clients, and
ASP.NET pages on Web servers.

User process components should be deployed together with the user interface
components that they orchestrate. In Web environments, this means deploying the
user process components on the IIS Web servers, and for Windows clients this
means deploying the user process components with the Windows Forms–based
application. The user process components should be deployed in a.NET assembly
that is separate from the user interface logic to facilitate reuse and easy maintenance.

Chapter 4: Physical Deployment and Operational Requirements 129

Planning Business Component Deployment
The question of where to deploy business logic usually provokes strong feelings
and debate among application and infrastructure architects. Although there are
many possible physical deployment patterns for business components, you should
consider the following recommendations:
� Business components that are used synchronously by user interfaces or user

process components can be deployed with the user interface to maximize perfor-
mance and ease operational management. This approach is more appropriate in
Web-based applications than in Windows-based applications because you would
probably not want to deploy your business components to every desktop.
However, even in Web scenarios, if you want to isolate your business logic so it
is not in the same trust boundary as the user interface, or if you need to reuse the
business logic for multiple user interfaces, you may choose to deploy the busi-
ness components on a separate tier of application servers and use a communica-
tions technology such as .NET remoting, DCOM, or SOAP over HTTP to make
them accessible to the user interface logic. In Web scenarios, the inclusion of a
firewall between the user interface and the application servers may add configu-
ration and management complexity.

� Business processes that are implemented as a service, and are therefore commu-
nicated with asynchronously, should generally be deployed on a separate physi-
cal tier. Usually, asynchronous services should have their own application
cluster, separate from other synchronous application servers, so that they form
their own trust zone. This is true when implementing a business workflow using
custom .NET components or BizTalk Server orchestration. The business compo-
nents used “internally” by the service should generally be deployed on the same
physical tier as the service interface components used to call into the service.

� Service agent components should generally be deployed with the business
components or processes that use them. However, you may want to deploy
service agents on a separate physical tier if the tier handles communication with
an external service over the Internet and you want to isolate the Internet-facing
communication in a different security context from your business components.

� Business entity components and strongly typed DataSets should generally be
deployed with the code that uses them. Calling business entities remotely is
usually not a good design choice from a performance perspective, because they
tend to be stateful and expose ”chatty” interfaces, which would cause a great
deal of network traffic in a remote deployment scenario.

Business components manage no persistent state, so you are not constrained to
deploying them in a particular physical farm or cluster. Potentially, you could
deploy them in multiple places, including a Web farm facing the intranet, an EAI
cluster, and another farm facing the intranet.

Application Architecture for .NET: Designing Applications and Services130

Planning Service Interface and Service Agent Deployment
Service interfaces and service agent components receive calls from, and make calls
to, external applications and services. These external applications and services may
be located within the organization’s network, in a zone that shares security and
management policies, or they may be located outside the organization, probably
requiring communication over the intranet or extranet.

Service interfaces can be deployed together with the business components and
workflows they expose, or they can be deployed remotely. The criteria for deciding
whether to deploy service interfaces together with the business logic are similar to
those used when deciding where to deploy the user interface. If the service interface
requires a connection to the Internet or a less trusted environment, the extra net-
work hop may provide the extra security required. Having your service interfaces
deployed remotely from your business components may allow two Web farms (one
for ASP.NET-based UIs, and one for XML Web services) to call into the same appli-
cation farm that hosts your business components.

Service agents pose a similar set of decisions, except that these components call
services instead of receiving calls. Common infrastructure designs may limit
the servers from which outgoing HTTP calls are made.

Planning Business Workflow Deployment
It is recommended that you deploy any BizTalk EAI clusters in a set of computers
separate from the servers hosting any ASP.NET user interfaces and business compo-
nents used by the UI. Doing so enables you to optimize processor usage for the
typically asynchronous business workflow tasks and provide management pro-
cesses that are adequate for BizTalk, Message Queuing, and the other specific
technologies business workflows rely on.

It is important to decide whether to deploy the business components and data
access components used by the business workflow into the same cluster. It is com-
mon to do so because the business workflows are usually deployed in a secure
environment. However, deploying the same business components in multiple places
adds complexity to the management processes, so it is generally recommended that
you separate the following into distinct assemblies:
� Business components called by UI components
� Business components used only from business workflows or other business

components

You should then deploy the appropriate assembly (or set of assemblies) with the
business workflows or Web/component farms. This mechanism provides greater
flexibility, better performance, and easier management for larger applications.
However, it is suitable only if you can easily identify distinct business activities
and components for use from the UI and from the business workflows.

Chapter 4: Physical Deployment and Operational Requirements 131

Planning Data Access Component Deployment
Application data is nearly always stored on a dedicated database server, which for
all but the most simple of applications should be clustered to ensure high availabil-
ity. In Web applications, this database server should be in a VLAN somewhere
behind the second firewall of the perimeter network to protect your data.

Deploying data access components with the components that use them yields the
following advantages:
� Data transfers will be optimized because cross-process marshalling is avoided.
� Transactions involving business processes and data access components do not

need to travel through firewalls, which means that extra ports do not need to be
opened.

� Distributing components adds transaction failure nodes.
� Deploying components together guarantees automatic security context flow,

so there is no need to set principal objects or reauthenticate remoting channels.
Doing so also enables you to leverage code-access security to restrict which
assemblies can call your data access components.

Data access components are usually used by business components, but may also be
used from user interface components and user process components. For Web sce-
narios, it is recommended that you deploy them together with the user interface if
your user interface takes advantage of DataReader streaming. However, you may
not want to do so for various reasons, including:
� You want to prevent direct network access to your data sources from your Web

farms for security reasons (this is a common reason to deploy the components
separately). In such cases, you should deploy data access components in a
physical business tier (and therefore a separate security context) and invoke
them remotely from your Web tier.

� You want to use the data access components from both business components and
the user interface components, but do not want to deploy duplicate components
in two locations.

Each data source will have its own communication requirements for accessing it.
For more information about accessing SQL Server over a firewall, see the “.NET
Data Access Architecture Guide” on MSDN (http://msdn.microsoft.com/library/en-us
/dnbda/html/daag.asp)

Partitioning Your Application or Service into Assemblies
.NET assemblies are units of deployment — a .NET assembly is deployed and
versioned as a unit. .NET provides rich versioning and deployment capabilities that
allow for versioning policy enforcement after an application has been deployed, but
you need to carefully plan assembly partitioning to take full advantage of them. The

Application Architecture for .NET: Designing Applications and Services132

assemblies that you create and the way that you distribute the components among
them have a long-term impact on how your application is developed, deployed,
managed, updated, and maintained.

Many factors affect how you distribute your components into separate assemblies.
The following recommendations will help you make the appropriate choices
for your application size, team composition and distribution, and management
processes:
� Create a separate assembly for each component type. Using separate assemblies

for data access components, business components, service interfaces, business
entities, and so on gives you basic flexibility for deployment and maintenance
of the application.

� Avoid deploying one assembly into multiple locations. Deploying the same
components in multiple places increases the complexity of your deployment and
management processes, so carefully consider whether you can consolidate all
deployments into one physical tier, or whether you should use more than one
assembly for a particular component type.

� Consider having more than one assembly per component type. Not all compo-
nents of the same type follow the same development and maintenance cycles.
For example, you may have multiple service agent components abstracting
service calls for multiple business partners. In this case, it may be better to create
one assembly per business partner to simplify versioning. Consider the follow-
ing factors when deciding whether to use more than one assembly per compo-
nent type:
� What components, services, or data sources the assembly deals with — you

may want to have a different assembly for service agent components that deal
with different business partners, for components that deal with a specific
primary interop assembly, or for business components that will be invoked
from the user interface or business workflow exclusively. Separating compo-
nents based on where they are called from or what they call improves your
application management because you won’t need to redeploy components; it
also prevents you from having unused code deployed in different places.

� Data access components may deal with multiple data sources. Separating data
access components that work with different data sources into different assem-
blies may be beneficial if the implementation accessing a particular data
source changes frequently. Otherwise, it is recommended that you use only
one data access component assembly to provide abstraction from the fact that
you are working with multiple sources.

� Separate shared types into separate assemblies. Many components in your
application may rely on the same types to perform their work. It is recom-
mended that you separate the following types into their distinct assemblies:

Chapter 4: Physical Deployment and Operational Requirements 133

� Exceptions. Many application layers may need to deal with the same excep-
tion types. If you factor out in a separate assembly the exceptions that all your
application layers rely on, you will not need to deploy assemblies containing
business logic where the logic is not needed.

� Shared interfaces and base classes. Your application may define interfaces
for other developers to use, or for easy addition of logic after the application
is deployed. Separating interfaces and base classes used by others into assem-
blies that are separate from your business logic implementation will prevent
complex versioning bindings in case your implementation changes, and will
let you share the assemblies with the interface definition without sharing the
assembly with your organization’s code to external developers.

� Utility components. Your application typically relies on a set of utility com-
ponents or building blocks that encapsulate specific technologies or provide
services that may be used by many application layers, such as data access
helpers, exception management, and security frameworks. Factoring these
into their own assemblies simplifies development, maintenance, and
versioning.

� Consider the impact on the development process. Having a large number of
assemblies adds flexibility for deployment and maintenance, but it may increase
the complexity of the development process because more build references,
projects, and versioning issues will need to be taken care of. However, using
separate assemblies that deal with a particular technology may help to distribute
the workload to the right developers with the right skills, and using multiple
Microsoft Visual Studio® .NET projects may facilitate work across development
teams. For detailed guidelines on how to partition assemblies with regard to
complex development teams or assembly dependencies, see Chapter 3 of “Team
Development with Visual Studio .NET and Visual SourceSafe” on MSDN (http://
msdn.microsoft.com/library/?url=/library/en-us/dnbda/html/tdlg_rm.asp?frame=true).

� Avoid deploying unused code. If you partition assemblies that may be invoked
from multiple components and deploy them in multiple places, you may end up
deploying unused code. Some organizations may consider this a security or
intellectual property risk, so consider whether you can re-factor your assemblies
so that a component is deployed only where it is needed. .NET assemblies have a
very small footprint, so disk space is not an important consideration.

� Use a factoring approach to assembly partitioning. You may want to start your
project by defining a base set of well-planned assemblies, and then use common
re-factoring disciplines to drive the creation of further assemblies by analyzing
change frequencies, dependencies, and the other factors outlined earlier in this
chapter.

� Enforce assembly partitioning with enterprise templates. Visual Studio .NET
Enterprise templates let you define and enforce policies that developers use

Application Architecture for .NET: Designing Applications and Services134

when creating the application, including assembly structure and dependency. If
you will be developing a large application or developing many applications with
a similar architecture, consider creating or tailoring an enterprise template to suit
your needs.

Packaging and Distributing Application Components
To distribute your application, you will need to choose a way to package it and
deploy it. Visual Studio .NET provides multiple options for packaging your applica-
tions, including but not limited to Microsoft Windows Installer files and CAB files.

You can also deploy some .NET–based applications with no packaging by copying
the right files to the destination, sending them through e-mail, or providing FTP
downloads.

There are also other tools and Microsoft services which you can use to distribute
your application. These include:
� Microsoft Application Center
� Microsoft Systems Management Server
� Microsoft Active Directory

Detailed guidance about choosing the right packaging mechanism for your
application and using the right distribution technology is available in “Deploying
.NET Applications: Lifecycle Guide” on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/DALGRoadmap.asp)

Common Deployment Patterns
The deployment pattern a particular application uses is typically determined by the
architect in a process that involves parties responsible for operations and develop-
ment. Different organizations or software vendors will approach the problem
differently, so there is no single approach to determining the infrastructure. This
section discusses several deployment patterns for your components and considers
their pros, cons, and requirements.

Many variations of deployment patterns are possible (for example, you may need
to deploy Microsoft Mobile Information Server in your solution), but not all are
described in this section. To understand specific deployment characteristics and
requirements, see the Internet Data Center guidelines earlier in this chapter and the
appropriate product documentation.

You should also note that you can combine deployment patterns. It is advisable
to deploy each component of the solution in only one physical tier or farm, but
for security reasons you may want to consider deploying the same component
in multiple locations at the expense of manageability.

Chapter 4: Physical Deployment and Operational Requirements 135

Note: In the discussion that follows, the figures reference component types, but not specific
assemblies. To determine assembly partitioning, follow the guidelines provided earlier in this
chapter.
These figures look slightly different from Figure 4.1, which illustrates the Internet Data Center
architecture, in that they show individual firewall instances between farms. The physical firewall
devices in Internet Data Center may host multiple firewall instances, which in turn makes the
physical network layout look different. All deployment patterns illustrated in the following
diagrams can be mapped directly to small variations of the Internet Data Center illustrated in
Figure 4.1.

Web-Based User Interface Scenarios
The two deployment scenarios outlined in the following discussion are common
variations found when working with Web-based user interfaces.

Web Farm with Local Business Logic
A Web farm with local business logic is a common deployment pattern that places
all application components — user interface components (ASP.NET pages), user
process components (if used), business components, and data access components —
on the Web farm servers. Having the data access on the Web farm allows you to use
data readers for fast data rendering. This pattern provides the highest performance,
because all component calls are local, and only the databases are accessed remotely,
as illustrated in Figure 4.2.

Figure 4.2
Web farm with local business logic

Requirements and considerations for using a Web farm with local business logic
include:
� Clients (1) can access the Web farm through a firewall (2) using HTTP and

possibly SSL ports.
� The Web farm (3) can host ASP.NET pages and your business components,

possibly in Enterprise Services.

Application Architecture for .NET: Designing Applications and Services136

� Access to the database is allowed from the Web farm through a firewall (4). The
Web farm will need to host client libraries and manage connection strings, which
adds important security requirements.

� If the components are using Enterprise Services transactions, RPC ports are open
in (4) to allow access to the data sources (5).

Web Farm with Remote Business Logic
Another common deployment pattern is the Web farm with remote business logic.
This places all application business components on another farm that is accessed
remotely from the ASP.NET pages on the Web farm servers. Performance is slower
than in the previous scenario, but this pattern allows multiple clients (for example,
desktop clients on an intranet) to share an application farm, which simplifies
management. This pattern also provides better separation of the servers managing
user interface and the servers managing business transactions, which improves
availability by isolating failure points. Scalability may be better in some scenarios
where independent resource-intensive operations are needed in both the Web and
application farms because these operations will not compete for resources: Your
Web servers will serve pages faster and your components will finish sooner.

Figure 4.3 illustrates this deployment pattern.

Figure 4.3
Web farm with remote business logic

Requirements and considerations for using a Web farm with remote business logic
include:
� Clients (1) can access the Web farm through a firewall (2) using HTTP and

possibly SSL ports.
� The Web farm (3) can host ASP.NET pages and user process components. These

pages will not be able to take advantage of DataReaders to render data from data

Chapter 4: Physical Deployment and Operational Requirements 137

access components unless you deploy data access components on the Web farm
and enable the appropriate firewall ports to access the data.

� All business components are hosted in an application farm (5) that other clients
can also access. These components are reached through a firewall (4). Depending
on the communication channel being used, you may need to open different ports.
If your business components are hosted in Enterprise Services, you will need to
open RPC ports. For more information about port requirements, see “Designing
the Communications Policy” in Chapter 3, “Security, Operational Management,
and Communications Policies.”

� An infrastructure will typically have either firewall (4) or (6) in place. Internet
Data Center provides the capability to have both.

� Access to the database is allowed from the Web farm through the firewall (6).
The application farm will need to host client libraries and manage connection
strings.

� If the components are using Enterprise Services transactions, RPC ports are open
in (6) to allow access to the data sources (7).

Rich Client User Interface Scenarios
The following two scenarios assume a rich client.

Rich Client with Remote Components
A common deployment pattern for rich client applications deployed on an intranet
uses remote components. The pattern consists of one server farm that hosts data
access components and business components, with all user process and user inter-
face components deployed on the client. as shown in Figure 4.4.

Figure 4.4
Rich client with remote components

Application Architecture for .NET: Designing Applications and Services138

Requirements and considerations for using a rich client with remote components
include:
� Rich clients (1) have locally deployed user interface components (for example,

Windows Forms, user controls, and so on) and user process components (if
used). You can deploy these components using SMS, over Active Directory, or
download them using HTTP. If your application provides offline functionality,
rich clients will also provide the local storage and queuing infrastructure re-
quired for offline work.

� Although shown, firewalls (2) and (4) are not present in any but the largest
enterprise data centers. Smaller environments will have clients, application
servers, and data sources on the intranet with no network separation. Firewall (2)
will require ports to be opened for your specific remoting strategy between
clients and servers (typically, a TCP port if using .NET remoting, or DCOM
ports, and Message Queuing, if used). Firewall (4) will require ports open to
access the database and allow for transaction coordination with the data sources.

� Having remote business components in the application farm (3) as shown allows
other clients (for example, a Web farm facing the Internet or intranet) share the
deployment. Data access components will also be located in this farm and will be
accessed remotely from the clients.

Rich Client with Web Service Access
In some cases, you want to provide rich client experience to your users while
accessing data and business logic over the Internet. In these cases, you can expose
your business logic and data access logic used by the client in a façade or service
interface. The rich clients can then invoke this service interface directly with the
Web service proxies that Visual Studio .NET generates. Because the rich functional-
ity needed by the user interface is exposed to a larger audience, you must take extra
care in the areas of authentication, authorization, and secure communication be-
tween clients and the service interface.

Figure 4.5 illustrates the rich client with Web access pattern.

Requirements and considerations for using a rich client with Web service access
include:
� This scenario is similar to using a rich client with remote components, except

that in this case an XML Web service (ASP.NET .asmx file) service interface
provides access to appropriate parts of your application’s business logic and
data access logic. This service can access your application components locally in
the application farm (3) as shown or they can invoke components remotely (not
shown).

� Rich clients can access the server functionality using standard protocols and
formats. The use of SOAP allows others to build other UI layers that meet their
needs.

Chapter 4: Physical Deployment and Operational Requirements 139

Figure 4.5
Rich client with Web service access

Service Integration Scenarios
The following scenarios show patterns that are commonly used when you need to
expose and invoke external services and applications.

Service Agents and Interfaces Deployed with Business Components
Deploying the service interfaces (such as XML Web services) and service agents
(components that may call Web Services, or that may connect with other platforms)
with the business logic is a scenario very similar to deploying ASP.NET user inter-
faces and business logic components together. Figure 4.6 on the next page shows
a physical deployment pattern for a service-based application.

Requirements and considerations for using service agents and interfaces with local
business logic include:
� Clients and services calling into your application (1) can access the Web farm

through a firewall (2) using HTTP and possibly SSL ports. The Web farm (3) can
host XML Web services, Message Queuing listeners, and other service interface
code.

� The service interfaces in the Web farm invoke your business components that
will potentially reside in Enterprise Services. When determining the infrastruc-
ture for application tiers using Message Queuing, you need to consider the
scalability and availability of your application: You will need to make a Web
farm to load balance XML Web service calls, but if your components are receiv-
ing Message Queuing messages, you will need to build a failover cluster to
ensure the message store availability. Because components may be farmed, a
failover cluster may not be the most economically efficient way to utilize the
servers. You may decide to split the infrastructure pattern used for Message
Queuing messages and XML Web service calls if a small set of computers cannot
provide your scalability and availability requirements.

Application Architecture for .NET: Designing Applications and Services140

Figure 4.6
A service with local business logic

� Calls to data sources (4) and internal services (5) can be initiated anywhere from
the farm. This requires that the firewall at (5) allow outgoing calls (HTTP calls in
the case of Web services). In Internet Data Center, outgoing calls to outside
services are made through a separate logical firewall (6). Using a different fire-
wall to allow incoming and outgoing HTTP sessions to the Internet can increase
security if the computers making the calls and those receiving them are on
different VLANs. With the appropriate firewall rules, firewalls (2) and (6) can be
merged.

� Access to the data sources is allowed from the Web farm through the firewall at
(5). The Web farm will need to host client libraries and manage connection
strings, which adds important security requirements.

� If the components are using Enterprise Services transactions, RPC ports are open
in (5) to allow access to the data sources. Message Queuing ports may be need to
be opened on this firewall if queues are used to communicate with the internal
services.

Chapter 4: Physical Deployment and Operational Requirements 141

Business Components Separated from Service Agents and Interfaces
Another pattern used in service integration scenarios is the separation of business
components from the service agents and service interfaces. This infrastructure
model is used to separate the tiers that have contact with the Internet (either by
receiving calls or by making calls to other servers) from the farms hosting business
logic. When using this pattern, you also need to deploy service agent components in
a different cluster when using clustered Message Queuing to receive messages, so
that you can achieve availability and still have a load-balanced farm hosting your
business components. Figure 4.7 shows this approach.

Figure 4.7
Isolating service agents in a separate farm

Requirements and considerations for using a Web farm with remote business logic
include:
� Calling services (1) can access the service interfaces in the Web farm (3) hosting

XML Web services or Message Queuing HTTP endpoints through a firewall (2)
using HTTP and possibly SSL ports.

� The Web farm can host XML Web services and possibly data access logic compo-
nents as discussed in Chapter 2, “Designing the Components of an Application
or Service.” You can deploy data access components in this Web farm to take
advantage of DataReaders to render data for the results of Web service calls.

Application Architecture for .NET: Designing Applications and Services142

If you do so, though, you will have to allow database access through a second
firewall (4). If this is a security concern, you will have to access the data provided
by data access layer components and business components remotely.

� All business components are hosted in an application farm (4) that other clients
may also access. These components are reached from the Web farm through the
second firewall. Depending on the communication channel being used, you may
need to open different ports. If your business components are hosted in Enter-
prise Services, you will need RPC ports open for DCOM. For more information
about port requirements, see “Designing the Communications Policy” in Chapter
3, “Security, Operational Management, and Communications Policies.”

� The business components will call data access components (5) and service agents
for internal services locally (6). Databases and internal services are accessed
through the firewall at (7).

� An infrastructure will typically have either firewall (4) or (7) in place, depending
on whether business components can be inside the DMZ or need extra protec-
tion. Internet Data Center provides the capability to have both.

� If the components are using Enterprise Services transactions, RPC ports are open
in firewall (7) to allow access to the data sources.

� Service agents (8) that need to make calls out to the Internet can be deployed in
the Web farm (or another farm) to isolate the tier that has Internet exposure from
the business logic that has access to internal databases and services. Note that
there are two firewalls separating the application from the Internet – one for
incoming calls (2) and one for outgoing calls (9). If you are implementing secu-
rity by isolation, you should use this deployment pattern to deploy service
agents remotely. If you need to consolidate the servers hosting the service inter-
faces and service agents, you can also merge these two firewalls into one firewall
with both outgoing and incoming ports open.

EAI Clusters and Application Components
You should approach Enterprise Application Integration (EAI) infrastructure
components separately from the infrastructure that hosts traditional applications.

However, the EAI cluster will probably host business workflows that use business
components to implement steps in the business processes. These components may
be hosted locally or remotely from the cluster running the business workflow. You
have three options in this case:
� You could host the business components locally on the EAI cluster if the EAI

cluster can access the database and if the components will only be used in the
context of the business workflows that run in this cluster.

� You could call your business components through .NET remoting, DCOM, or
XML Web services and access them on the application or Web farm where they
are deployed. This implies that your EAI cluster can make calls to the application
farm.

Chapter 4: Physical Deployment and Operational Requirements 143

� Finally, you could deploy your business components assemblies on both the EAI
cluster and the application or Web farm, with the associated management costs
of having the same assembly in more than one location.

Figure 4.8 illustrates one configuration option for EAI clusters, in which you sepa-
rate the EAI components from the business components.

Figure 4.8
Separating EAI components from business components

Figure 4.8 shows user interface components on a Web farm (1) calling business
components on an application farm (2), which in turn work with the application
data source (3). The EAI cluster (4) has its own business components needed to
perform the steps in its business workflows, and accesses other services (in this
example, only internal services) through a firewall (5).

Composing Deployment Scenarios
The deployment patterns in the preceding discussions are commonly found in well-
architected applications. Of course, particular scenarios may vary, and these ex-
amples may not precisely match your requirements and needs. You can compose

Application Architecture for .NET: Designing Applications and Services144

almost any infrastructure required for a layered application based on these patterns.
The important thing is to follow the conceptual model outlined earlier and to
understand the application design, the infrastructure design, and how they affect
each other early in the application lifecycle.

Production, Test, and Staging Environments
You may have separate data centers for developing, testing, staging, and stress-
testing your application. These data centers will usually vary in design, mainly
because it is not cost-effective to have a full production data center just for applica-
tion staging. If your data centers are different, here are some things you should
consider:
� Firewalls: Even if you don’t have firewalls deployed in non-production environ-

ments, you should plan ahead and test taking into account port restrictions and
direction of communication. Software products that emulate firewalls are avail-
able and are a good addition to the test platform.

� Network topology: Your staging environment may be smaller than the produc-
tion environment, but you should strive to keep the network topology consistent.
In other words, you want to make sure communication across computers works
as expected.

� Processor count: If your target environment has multiple processors, you should
test your application on multiple processors to make sure multithreaded code
will not behave in unexpected ways.

Operational Requirements
The goal of the following discussion is to provide you with design techniques and
practices that will enable you to achieve the operational (nonfunctional) require-
ments for your application and services. These requirements include the levels of
scalability, availability, maintainability, security, and manageability your applica-
tion must achieve. They may affect the design of the application policies, but they
will also affect the way you design your application logic.

In some cases, complying with some operational requirements will create chal-
lenges to comply with others. For example, it is common to lower the manageability
of an application favoring security. It is important to prioritize application features
supporting operational requirements early in the life cycle so these tradeoffs and
decisions can be factored into the application implementation from the start.

The following discussion is by no means complete, but will help you isolate key
issues pertaining important operational requirements.

Chapter 4: Physical Deployment and Operational Requirements 145

Scalability
An application’s scalability is its ability to provide an acceptable level of overall
performance when one or more load factors is increased. Common load factors
include the number of users, the amount of data being managed by the application,
and the number of transactions.

Overall performance can be measured in terms of throughput and response time.
Throughput measures the amount of work that the application can perform in a
given time frame, and response time measures the amount of time between a user
or a process making a request and seeing the results of the request. A number of
factors can affect both throughput and response time, including hardware perfor-
mance, physical resources such as memory, network latency (the amount of time it
takes to transmit data over a network link), and application design. While many
performance and scalability issues can be resolved by increasing hardware re-
sources, an application that is not designed to operate efficiently will nearly always
perform poorly regardless of how much hardware you throw at the problem.

Consider the following design guidelines for highly scalable applications:
� Use asynchronous operations. Reduce response time and throughput demand

by using asynchronous operations.
Synchronous operations require that the user wait until a business operation is
complete. By making business operations asynchronous, system control can be
returned to the user more quickly and processing requests can be queued,
helping to control throughput demand without overwhelming the business
components. For example, suppose that a user places an order in an e-commerce
site. If the order process is performed synchronously, the user will have to wait
until the credit card has been authorized and the goods have been ordered from
the supplier before receiving confirmation. If you implement the order process
asynchronously, the user can be given a confirmation or failure message by
e-mail after the operation is complete. Designing asynchronous applications
creates more work for the developer (especially when they require transactional
logic) but can greatly improve scalability.

� Cache data where it is required. Whenever possible, you should try to cache
data at the location where it is required, and therefore minimize the number of
remote data requests made to your data store. For example, the e-commerce site
described earlier will provide a much higher level of scalability if the product
data is cached in the Web site instead of being retrieved from the database each
time a user tries to view a list of products.

� Avoid holding state unnecessarily. Where possible, you should design your
operations to be stateless. Doing so prevents resource contention, improves data
consistency, and allows requests to be load balanced across multiple servers in

Application Architecture for .NET: Designing Applications and Services146

a farm. On some occasions, state will need to be persisted; for example, a
customer’s shopping cart must be stored across HTTP requests. In these sce-
narios, you must plan your state persistence and rehydration logic carefully. You
should only rehydrate state when it is actually needed (for example, when a user
wants to view their shopping cart or check out).

� Avoid resource contention. Some resources, such as database connections, are
limited, and some resources, such as database locks, are exclusive. You should
design your application in such a way that resources are held for the shortest
possible time. You should use database connection pooling effectively, and you
should design operations to open the most contentious resources last (so that
they are not held for the entire operation). This is particularly true when using
atomic transactions. For example, if the Orders table of a database is used by
many parts of the application, you should make the insertion of order data the
last step in the ordering process to avoid holding a lock on the table while
waiting for credit card authorization.

� Partition data, resources, and operations. You can spread the load of your
application across farms of servers using load balancing technologies such
as Network Load Balancing. This allows you to adopt a “scale out” strategy
whereby you increase scalability simply by adding more servers to the farm.
Scaling out is usually more cost effective than scaling up by adding hardware
resources to your servers.
Databases should be scaled up primarily by adding hardware resources, but
you can also scale out data by partitioning your database across multiple data-
base servers, with each server assuming responsibility for a subset of the data.
Dynamic data routing logic is used in the middle-tier to direct requests to the
appropriate database server. For more information about partitioning a SQL
Server database, see Chapter 5, “SQL Server Database Design” in the “Internet
Data Center Reference Architecture Guide” on MSDN (http://www.microsoft.com
/technet/treeview/default.asp?url=/technet/itsolutions/idc/rag/ragc05.asp).

Availability
Availability is a measure of the percentage of time your application is able to re-
spond to requests in a way that its callers expect. It is generally accepted that even
the most robust of applications must occasionally be unavailable, but you should
design your application in such a way that the risk of unexpected outages is mini-
mized. For business critical applications, many organizations aim for “five nines,”
or 99.999% availability, and this level of robustness requires careful planning and
design.

Chapter 4: Physical Deployment and Operational Requirements 147

Consider the following high availability strategies for application design:
� Avoid single points of failure. In your application design and deployment

infrastructure, you should try to avoid having any single component that, if
taken offline, would render the application unusable. You can avoid single points
of failure in a Web or application farm by using load balancing management
software, such as that provided with Microsoft Application Center, which will
remove an unresponsive server from a load balanced farm without disrupting
the operations of the remaining servers.
You should store business data in data stores (such as databases or queues) that
are deployed in failover clusters, so that if a server controlling the data store fails
for any reason, the application will “fail over” to the standby server. You should
also provide redundant data paths so that there is more than one physical net-
work path to the database server, allowing the application to continue to func-
tion in the event of a network cable failure.
To protect the application from hard disk failures, disk redundancy measures
such as Redundant Array of Inexpensive Disk (RAID) technologies should be
used.

� Use caching and queuing to minimize “same time and place” requirements.
Caching read-only reference data where it is needed not only provides improved
scalability, but it also reduces reliance on the underlying data store. In the event
that the database becomes unavailable, the application can continue to function
because the data is still available in the cache.
Similarly, by queuing requests to insert or update data, the application can
still service client requests even when the underlying data sources and services
are unavailable. This would allow an e-commerce organization to continue
taking orders, even though the order data could not be written to the database
immediately.

� Plan an effective backup strategy. Regardless of the high availability measures
in place, you must ensure that you have an effective backup strategy that mini-
mizes the time taken to recover the system to an operable state in the event of
a catastrophic failure.

� Rigorously test and debug your code. Of course, you should always test and
debug your code, but when high availability is a requirement it is even more
important to ensure that you remove any potential infinite loops, memory
leaks, or unhandled exceptions that might cause the application to fail or stop
responding.

Application Architecture for .NET: Designing Applications and Services148

Maintainability
With respect to maintainability, your application should be designed and deployed
in such a way that it can be maintained and repaired easily.

Consider the following recommendations for designing a maintainable application:
� Structure your code in a predictable manner. Keeping your coding techniques

consistent throughout the application makes it easier to maintain. You should
use a standardized convention for namespace, variable, class, and constant
names, consistent array boundaries, and inline comments.

� Isolate frequently changing data and behavior. Encapsulate frequently chang-
ing logic and data into separate components that can be updated independent of
the rest of the application.

� Use metadata for configuration and program parameters. Storing application
configuration data, such as connection strings and environmental variables, in
external metadata repositories, such as XML configuration files, makes it easy
to change these values in the production environment without editing code or
recompiling the application. For more information about using metadata, see
“Designing the Operational Management Policy” in Chapter 3, “Security, Opera-
tional Management, and Communications Policies.”

� Use pluggable types. When a certain piece of application logic can be imple-
mented in many ways, it is useful to define an interface and have the application
load the correct class that implements the interface at run time. This lets you
“plug in” other components that implement the interface after the application
has been deployed without having to modify it. You can store fully qualified
type names in a configuration store and use them to instantiate objects at run
time. When using this approach, you must ensure that your configuration store
is adequately secured to prevent an attacker from forcing your application to use
a component of his or her own devising.

� Interface design. Design your component interfaces so that all public properties
and method parameters are of common types. Using common types reduces
dependencies between your component and its consumers.

Security
Security is always a major concern when designing an application, particularly
when the application will be exposed to the Web. To a large extent, the decisions
you make regarding security will depend on your security policy. Regardless of the
specific details of your security policy, you should always consider the following
recommendations:
� Evaluate the risks. Take some time during the design of your application to

evaluate the risks posed by each implementation or deployment decision. Re-
member to consider internal risks, as well as those posed by external hackers.

Chapter 4: Physical Deployment and Operational Requirements 149

For example, you may use secure HTTP connections to prevent a customer’s
credit card number from being “sniffed” as it is passed to your site over the
Internet, but if you then store the credit card number in plain text in your data-
base, you run the risk of an unauthorized employee obtaining it.

� Apply the principle of “least privilege.” The principle of least privilege is a
standard security design policy that ensures each user account has exactly the
right level of privilege to perform the tasks required of it and no more. For ex-
ample, if an application needs to read data from a file, the user account it uses
should be assigned Read permission, not Modify, or Full Control. No account
should have permission to do anything it does not need to do.

� Perform authentication checks at the boundary of each security zone. Authen-
tication should always be performed “at the gate.” A user’s process should not
be allowed to perform any tasks in a given security zone until a valid identity
has been established.

� Carefully consider the role of user context in asynchronous business
processes. When your application performs business tasks asynchronously,
remember that user context is less meaningful than if the task is performed
synchronously. You should consider using a “trusted server” model for asyn-
chronous operations, rather than an impersonation/delegation approach.

Manageability
Your organization’s operational management policy will determine the aspects
of your application that need to be managed. You should design instrumentation
into your application so that it exposes the critical management information needed
for health monitoring, service level agreement (SLA) verification, and capacity
planning. For a more complete discussion about management of distributed .NET-
based applications, see Chapter 3, “Security, Operational Management, and Com-
munications Policies.”

Performance
Application and service performance is critical to a good user experience and
efficient hardware utilization. While performance is an attribute that can be im-
proved by tuning the implementation and code of the system after it is built, it is
important to give thought to performance at the architecture and design stages.
While a detailed discussion on profiling is beyond the scope of this guide, you may
want to follow this process at various stages in application prototyping, develop-
ment, testing, and so on to make sure that performance goals are met, or that
expectations are being reset as early as possible:
1. Define the measurable performance requirements for specific operations (for

example, throughput and/or latency under certain utilization, such as “50
requests per second with 70% average CPU usage on a specific hardware con-
figuration”).

Application Architecture for .NET: Designing Applications and Services150

2. Do performance testing: Stress test the system and collect profiling information.
3. Analyze the test results: Does the application meet the performance goals?
4. If the application does not meet the performance goals, identify bottlenecks in

the application. (For tools that can help you isolate performance bottlenecks, see
the articles referred to at the end of this list.)

5. Repeat Step 2 until the performance results meet the goals.

The following articles contain information needed to perform this process:

“.NET Framework SDK: Enabling Profiling” (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconenablingprofiling.asp?frame=true)

“.NET CLR Profiling Services: Track Your Managed Components to Boost Applica-
tion Performance,” MSDN Magazine, November 2001 (http://msdn.microsoft.com
/msdnmag/issues/01/11/NetProf/NetProf.asp)

5
Appendices

This chapter includes the following appendices:
� Appendix 1: Product Map

This appendix provides a high level map of Microsoft® products that you can
use to help you implement a distributed .NET application, based on the
Microsoft .NET Framework, arranged by logical layers.

� Appendix 2: Glossary
This appendix provides a glossary of technical terms relating to distributed
application development.

� Appendix 3: Layered Architectures
This appendix explains the relationship between the layers described in this
guide and other naming schemes commonly used in the computer industry.

Appendix 1: Product Map
The product map provided in this appendix shows how different Microsoft tech-
nologies and products provide a platform for the logical application tiers that are
described throughout this guide. Figure 5.1 shows a simplified view of the applica-
tion and its tiers, while Figure 5.2 (the product map) details the various technolo-
gies associated with the tiers shown in Figure 5.1.

A distributed solution should use only the products and technologies dictated by
its requirements. However, Figure 5.2 shows many of them together to expose how
they could be related to each other. This figure shows how the products are mapped
to logical components, not a physical deployment pattern.

For the sake of clarity, Figure 5.2 does not show the products and technologies used
to implement the security, management, and communications policies. Most of the

Application Architecture for .NET: Designing Applications and Services152

technologies not shown are provided by the Microsoft Windows® operating system,
such as Microsoft Active Directory® directory service, Message Queuing, Windows
Management Instrumentation (WMI), and so on.

Figure 5.1
Simplified view of the tiers of an application

Chapter 5: Appendices 153

Fi
gu

re
 5

.2
P

ro
du

ct
 m

ap

Application Architecture for .NET: Designing Applications and Services154

Appendix 2: Glossary

Assembly
An assembly is a unit of deployment in an application based on the .NET frame-
work.

Atomic Transaction
An atomic transaction is an operation in which either all steps in the operation
succeed, or they all fail. Atomic transactions are commonly used to perform data
modifications in a data store, where either all the data relating to the operation is
successfully modified, or none of it is modified and the data remains as it was
before the operation started.

Commutativity
Commutativity is a design pattern for an implementation in which messages will
result in the same outcome, regardless of the order they are received in. For ex-
ample, a commutative operation might involve two steps: “change product two’s
category to ‘widget’” and “increase product two’s price by 10%.” It doesn’t matter
in what order these steps are performed; the net result is that product two is in the
“widget” category and has had its price increased by 10%. Conversely, an operation
in which the two steps are “change product two’s category to ‘widget’” and “in-
crease the price of all widgets by 10%” is not commutative, because product two’s
price will be increased only if its category is changed before the price increase step
is performed.

Component
In simple terms, a component is a part of an overall system. A more specific defini-
tion of component is a unit of functionality that can be amortized across multiple
implementations. A component is usually implemented as a software object that
exposes one or more interfaces and that implements logic.

Contract
A contract is a binding agreement between multiple parties that dictates the valid
communication semantics. The contract determines the protocols used to communi-
cate and the format of messages as well as the service level agreement and legal
declarations.

Chapter 5: Appendices 155

Conversation
A conversation is the exchange of messages between a client application and a
service that is required to complete a business task.

CRUD
CRUD is an abbreviation of Create, Read, Update, and Delete. It refers to the opera-
tions that can be performed in a data store. In SQL terms, Create, Read, Update, and
Delete refer to INSERT, SELECT, UPDATE, and DELETE operations respectively.

Demilitarized Zone (DMZ)
A DMZ is the physical zone behind an Internet facing firewall and in front of a
second level firewall that protects back-end systems and data. In a typical Internet
application scenario, the DMZ is the physical virtual local area network (VLAN) on
which the Web servers are deployed.

Dynamic Data Routing
Dynamic data routing is logic that is used to determine which database server to
send a date retrieval or modification request to when the data is partitioned across
multiple servers. DDR can be implemented using a hashing algorithm, a rule table,
or some other partitioning scheme.

Emissary
An emissary is a generic term for a software component that communicates with
an external resource on behalf of your application. The emissary abstracts the
semantics of communicating with the external resource from your application, and
it manages all aspects of the conversation, including the persistence of state for long-
running processes.

Fiefdom
A fiefdom is a design pattern for a collection of services that encapsulate shared
durable state and are deployed together. A fiefdom represents a boundary of trust,
where the software components inside the fiefdom distrust those outside.

Firewall
A firewall is a software- or hardware-based security implementation that applies
filtering rules to network traffic between two zones.

Application Architecture for .NET: Designing Applications and Services156

Idempotency
Idempotency means the ability to perform a particular action multiple times and
still achieve the same result as you would when performing it once. An idempotent
message such as an instruction to “change the price of product two to $10.00” will
cause no side effect when received multiple times, whereas a non-idempotent
message such as an instruction to “increase the price of product two by 10%”
will produce a different result depending on how many times it is received.

Layer
A layer can be thought of as an architecture pattern in which components use
services in layers below. Layering helps maintainability. The communication be-
tween two layers determines how well the application can be partitioned at that
point for physical distribution across tiers. Strict layering schemes don’t allow
layers to access anything but the layers immediately below, while relaxed layering
schemes allow a given layer to use any other layer below it.

Long-Running Transaction
A long-running transaction is an implementation of a business process or part of a
business process that contains the logic to compensate for the activities that have
already been executed in case of cancellation.

Message
A message is a unit of information transmitted electronically from one service to
another.

Orchestration
Orchestration is the automation of a workflow. Microsoft BizTalk® Server provides
an orchestration engine that can be used to orchestrate business workflows.

Policy
A policy is a set of rules with respect to security, operational management, and
communication that is applicable in a specific zone.

Service
A service is a software component that can be used in part of an overall business
process. Services support a message-based communication interface, through which
a conversation takes place. A service encapsulates its own state and business data,
and it can be communicated with only through the service interfaces it exposes.

Chapter 5: Appendices 157

Service Agent
A service agent is an emissary that is used to handle a conversation with an external
service.

Service Interface
A service interface is an entry point for a service. It provides a public interface that
callers can use to query the contract supported through the interface and make
message-based method calls to the service.

Stateful
Stateful is the opposite of stateless. In a stateful conversation, information relating
to aspects of previously exchanged data must be recorded to allow meaningful
exchanges subsequently.

Stateless
Stateless refers to a conversation in which all messages between parties can be
interpreted independently. No state is held between messages.

Two-Phase Commit
The two-phase commit protocol is used to ensure that multiple parties synchronize
their state when a transactional operation is performed. The two-phase commit
protocol can be used for atomic transactions as well as for business transactions.

Workflow
Workflow refers to a business process in which steps must be performed in a par-
ticular order, and predefined conditions must be met, before moving from one step
to the next. For example, a workflow for purchasing goods might involve first
validating the purchaser’s credit card details, then ordering the goods from a
supplier, and finally arranging delivery. The goods cannot be ordered until the
credit card details are authorized, and delivery cannot be arranged until the goods
have been received from the supplier.

Zone
A zone is a trust boundary, a communication boundary, and an operational bound-
ary. The zone may map to a real-world entity, such as a company or department, or
it may define a particular area within the physical deployment environment of the
application, such as a Web farm or even just a process. Zones are useful mental
models when determining application deployment and the relationship of applica-
tion design to the infrastructure design.

Application Architecture for .NET: Designing Applications and Services158

Appendix 3: Layered Architectures
This guide has split an application into layers with distinct roles and functionalities
with the goal of helping you maximize the maintainability of the code, optimize the
way the application works when deployed in different ways, and provide a clear
location where certain technology or design decisions must be made when building
distributed applications based on the .NET Framework.

Splitting application functionality into layers has been done by the design pattern
community. This table is intended to roughly illustrate how the component layers
that are described in this guide map to the terminology for layers and design
patterns used by some of these authors.

This guide Related patterns and layers

User Interface Components Presentation Layer
View Layer
Client Layer

User Interface Processes Application Controller Pattern
Controller/Mediator Layer
Application Model Layer

Service Interfaces Remote Façade Pattern

Business Workflows Domain Layer2

Business Components Domain Layer
Transaction Script Pattern

Business Entities Data Transfer Object1

Domain Model

Data Access Logic Components3 Data Source Layer
Infrastructure Layer
Integration Layer

Service Agents3 Data Source Layer
Infrastructure Layer
Integration Layer

Notes on the table:

1. Using the data transfer object design pattern for business entity components assumes you are using the
business entities as the way you transfer data between layers, either by using ADO.NET DataSets or your
custom serializable objects. Another use for business entities that goes beyond the data transfer object
pattern is to build an object model or domain model for the whole application, encapsulating both business
behavior and state.

Chapter 5: Appendices 159

2. Business workflows can be thought of as a set of transaction script patterns that has the capability to
track and persist state across incoming calls from asynchronous and synchronous callers. It is grouped
under domain here because business workflows in the end implement business logic.

3. Data access logic components and service agents may be used to encapsulate data mapping and
aggregation/de-aggregation activities, in which case they can be referred to as a data mapping layer or data
mapper, depending on the author.

Feedback and Support
Questions? Comments? Suggestions? To give feedback on this guide, please send an
e-mail message to devfdbck@microsoft.com.

Collaborators and Contributors
Solution Architect & Program Manager: Edward A. Jezierski

Many thanks to our collaborators, sponsors and reviewers:

Keith Short, Mike Pizzo, Johannes Klein, Rodney Limprecht, Chris Anderson,
Anders Hejlsberg, Mark Anders, David Treadwell, Jonathan Hawkins, Erik Olson,
Brad Rhodes, Rob Howard, Ron Jacobs, John Shewchuck, Luca Bolognese, David
Schleifer, Riyaz Pishori, Pablo Castro, Brian Pepin, Mark Boulter, Shawn Burke,
Michael Platt, Maarten Mullender, Mike Burner, Dino Chiesa, John Montgomery,
Richard Burte, Steve Kirk, Richard Irving, Srinath Vasireddy, Steve Newbury,
Sharon Bjeltich, Tom Devey, Kurt Schenk, Bryan Lamos, Paddy Srinivasan,
Yves Dolce, Rob Macdonald, Mark Phillips, Blair Shaw, Jeremy Rule, Paul Gomes,
Dale Michalk, Martin Petersen-Frey, Angela Crocker, Kenny Jones, Ilia Fortunov,
Shantanu Sarkar, Rossen Blagoev, the Think Tank, Bijan Javidi, Bob Jarvis, Aaron
Margosis, Maurice Magnier, Doug Orange, Eugenio Pace, Carlos Billy Reynoso,
Anthony Menio, Karl Schulmeisters, Ingo Ramner, Bernard Chen (Sapient),
Dimitris Georgakopoulos (Sapient), Michael Monteiro (Sapient), Roger Sessions
(ObjectWatch), Andrew Roubin, Diego Gonzalez (Lagash), Adrie Geelhoed (CMG),
Gerke Geurts (CMG), Sasha Siddhartha, and Franco Ceruti (VBNext).

Prescriptive Architecture Guidance and content team:

Technical Writers: Graeme Malcolm (Content Master Ltd) and Lin Joyner (Content
Master Ltd)

Filiberto Selvas Patiño, Michael Kropp, Per Vonge Nielsen, Shaun Hayes, J.D. Meier,
Rick Maguire, Philip Teale, Ken Perilman, David Trowbridge, Mohammad Al-Sabt,
Lars Laakes, Sharon Smith, Chris Sfanos, Claudia Iebbiano (Wadeware) and the
architecture review board from Satyam Computer Services Ltd.

	Front Cover
	Contents
	Chapter 1: Introduction
	Contents Roadmap
	Chapter Contents
	Goals of Distributed Application Design
	Services and Service Integration
	Components and Tiers in Applications and Services
	A Sample Scenario
	What's Next?

	Chapter 2: Designing the Components of an Application or Service
	Chapter Contents
	Component Types
	General Design Recommendations for Applications and Services
	Designing Presentation Layers
	Designing User Interface Components
	Designing User Process Components

	Designing Business Layers
	Business Components and Workflows
	Designing a Service Interface
	Representing Data and Passing It Through Tiers
	Recommendations for Business Entity Design

	Designing Data Layers
	Data Stores
	Data Access Logic Components
	Designing Data Access Helper Components
	Integrating with Services

	What's Next?

	Chapter 3: Security, Operational Management, and Communications Policies
	Chapter Contents
	Designing the Security Policy
	General Security Principles
	Authentication
	Authorization
	Secure Communication
	Profile Management
	Auditing

	Designing the Operational Management Policy
	Exception Management
	Monitoring
	Configuration
	Metadata
	Service Location

	Designing the Communications Policy
	Choosing the Correct Communication Model
	Synchronicity
	Recommendations for Communications
	Communication Format, Schema, and Protocol
	A Look Ahead

	What's Next?

	Chapter 4: Physical Deployment and Operational Requirements
	Chapter Contents
	Deploying Application Components
	Physical Deployment Environments
	Planning the Physical Location of Application Components
	Distribution Boundaries Between Components
	Partitioning Your Application or Service into Assemblies
	Packaging and Distributing Application Components

	Common Deployment Patterns
	Web-Based User Interface Scenarios
	Rich Client User Interface Scenarios
	Service Integration Scenarios
	Production, Test, and Staging Environments

	Operational Requirements
	Scalability
	Availability
	Maintainability
	Security
	Manageability
	Performance

	Chapter 5: Appendices
	Appendix 1: Product Map
	Appendix 2: Glossary
	Appendix 3: Layered Architectures
	Feedback and Support

	Collaborators and Contributors

