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A Video-Based System for Vehicle Speed
Measurement in Urban Roadways

Diogo C. Luvizon, Bogdan T. Nassu and Rodrigo Minetto

Abstract—In this paper, we propose a non-intrusive, video-
based system for vehicle speed measurement in urban roadways.
Our system uses an optimized motion detector and a novel
text detector to efficiently locate vehicle license plates in image
regions containing motion. Distinctive features are then selected
on the license plate regions, tracked across multiple frames, and
rectified for perspective distortion. Vehicle speed is measured
by comparing the trajectories of the tracked features to known
real world measures. The proposed system was tested on a data
set containing approximately five hours of videos recorded in
different weather conditions by a single low-cost camera, with
associated ground truth speeds obtained by an inductive loop
detector. Our data set is freely available for research purposes.
The measured speeds have an average error of -0.5 km/h, staying
inside the [-3,+2] km/h limit determined by regulatory authorities
in several countries in over 96.0% of the cases. To the authors’
knowledge, there are no other video-based systems able to achieve
results comparable to those produced by an inductive loop
detector. We also show that our license plate detector outperforms
other two published state-of-the-art text detectors, as well as a
well-known license plate detector, achieving a precision of 0.93
and a recall of 0.87.

Index Terms—vehicle speed measurement; license plate detec-
tion; feature tracking; vehicle motion detection.

I. INTRODUCTION

Systems for vehicle detection and speed measurement play
an important role in enforcing speed limits. They also provide
relevant data for traffic control. Those systems are divided in
intrusive and non-intrusive [1]. Intrusive sensors, usually based
on inductive loop detectors, are widely used, but have complex
installation and maintenance, accelerate asphalt deterioration,
and can be damaged by wear and tear. Non-intrusive sensors,
which include laser meters and Doppler radars, avoid these
problems, but are usually more expensive and require frequent
maintenance. As digital cameras become cheaper and able
to produce images with higher quality, video-based systems
can become a lower cost alternative for non-intrusive speed
measurement. In fact, existing systems are often connected to
video cameras [2] that record the license plates of vehicles
that exceed the speed limit — thus, the infrastructure for such
systems is already available in most cases.

In this paper we describe the pipeline for a non-intrusive
video-based system for vehicle speed measurement in urban
roadways. Our goal is measuring vehicle speeds with accuracy
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comparable to that obtained by a system based on inductive
loop detectors. The input video is captured by a single fixed
overhead camera, positioned so that the rear license plate of
vehicles in three adjacent lanes are clearly visible, as shown
in Fig. 1. A sample image from this setup is shown in Fig. 2.
This setup allows the same images to be used for both speed
measurement and license plate identification (e.g. for locating
stolen vehicles, or in the case of a speed limit violation).

Video camera

Lane 3 Lane 2 Lane 1

Ground truth aquisition by inductive loop detectors

5.5 m

Fig. 1. System setup.

Fig. 2. Sample image captured by our system.

We make some assumptions about the scene and the prob-
lem domain: video frames are equally spaced in time; each
lane lies on a plane; the vehicles move at a constant speed
and with a straight trajectory from the lower to the upper part
of the image; and the license plates are at approximately the
same distance from the ground. These assumptions allow us
to measure vehicle speeds without modeling the 3-D space, or
requiring precise camera calibration or positioning.

The proposed system works by tracking sets of distinctive
features extracted from image regions around each vehicle’s
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license plate, and is divided into five main parts, as shown
in Fig. 3. Initially, an optimized motion detection algorithm
identifies image regions containing moving vehicles. These
regions are fed to a novel license plate detector, which returns a
set of axis-aligned rectangular sub-images around the vehicles’
license plates. Features are then extracted from each sub-
image [3], and tracked using the Kanade-Lucas-Tomasi (KLT)
algorithm [4]. To cope with large displacements, from vehicles
moving at high speeds, an initial motion estimation is per-
formed by matching features extracted by the Scale-Invariant
Feature Transform [5]. Finally, vehicle speeds are measured
by comparing the trajectories of the tracked features to known
real world measures.

Video

Motion detection

License place detection

Motion prediction (SIFT)

Feature tracking (KLT)

Speed estimation

Fig. 3. Overview of the proposed system.

A proof-of-concept of our system was evaluated on ap-
proximately five hours of videos in different weather and
recording conditions. The videos have an associated ground
truth dataset containing vehicle speeds measured by a high
precision system based on inductive loop detectors, properly
calibrated and approved by the Brazilian national metrology
agency (Inmetro). This data set is itself a contribution of our
work, and can be freely obtained for research purposes1. Our
system was able to measure speeds with an average error of
-0.5 km/h, staying inside the [-3,+2] km/h limit determined by
regulatory authorities in several countries, in over 96.0% of the
cases. We also show that our license plate detector outperforms
other two published state-of-the-art text detectors, as well as
a well-known license plate detector.

A preliminary version of the system described here was
published at the 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) [6]. The
system described in the present paper differs from that version
in several aspects, such as the inclusion of an initial motion
detection step, a new algorithm for license plate detection, and
refined computations for the final measured speed. The new
system was evaluated on a broader and deeper manner.

The rest of this paper is divided as follows. In Section II, we
discuss related work. In Sections III, IV, V and VI we present
our motion detection, license plate detection, vehicle tracking
and speed measurement methods, respectively. Experimental
evaluation and results are reported in Section VII. Finally, in
Section VIII we state the conclusions.

1The full dataset will be made available at the time of publication, a sample
is available at www.dainf.ct.utfpr.edu.br/%7erminetto/projects/vehicle-speed.

II. RELATED WORK

A. Vehicle speed estimation and measurement

Several video-based approaches were proposed for esti-
mating or measuring the speed of vehicles in roadways.
Most methods include a background/foreground segmentation
step to detect image regions containing motion. Common
approaches for this task include simple frame differences [7],
[8], [9], [10], as well as statistic models based on medians [11],
[12], [13], gaussian distributions [14] or other measures [15].
Vehicle speeds are estimated by tracking image features or
regions, including blobs [12], image patches [14], edges [7],
[11], corners [8], [9], the license plate region [16], [17],
[18], or a combination of such features [13]. Rectification for
perspective distortion is also a step found in most methods,
and may occur before or after feature tracking.

Although the cited methods have some steps in common,
they also have fundamental differences, not only on the way
they measure vehicle speeds, but also on the type of scenario
they can be used.

Methods based on direct blob analysis [7], [8], [10], [12],
[14], [15] are sensitive to conditions such as shadows, per-
spective, and illumination variations. Moreover, these methods
produce satisfactory results only when the camera is positioned
high above the roadway, with the blobs being tracked for many
frames. The same issues affect methods which use other types
of features, but still compute them from blobs, such as those
proposed by Zhiwei et al. [11], which detects edges near the
limits of each blob, or Palaio et al. [13], which extracts from
each blob features such as derivatives, Laplacian and color. As
discussed in Section VII, we have compared our system with
a blob tracking approach based on a particle filter, similar in
concept to the one proposed by Maduro et al. [12].

The method from Dogan et al. [9] avoids the problems
associated with blob analysis by directly tracking distinctive
features using the Lucas-Kanade optical flow algorithm [4].
However, their method assumes that all the tracked features
belong to the same vehicle — thus it can handle only a single
vehicle at a time. Moreover, they do not take perspective into
account, and require a side view of the vehicles.

The work from Garibotto et al. [16] relies on how characters
detected by an optical character recognition (OCR) algorithm
vary in size and position. Their method demands a very
robust OCR, and did not produce acceptable results even in a
controlled environment — average errors for a single-camera
setup ranged from 3% to 13%. A similar issue was observed in
the work from Czajewski and Iwanowski [17], which is also
based on license plate recognition. Note that, although our
system has a license plate detection step, it does not require
the characters to be precisely segmented or recognized.

B. License plate detection

Although license plate detection is not our primary con-
cern in this work, it is a necessary step for the proposed
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speed measurement system. The surveys from Anagnostopou-
los et al. [19] and Du et al. [20] review state-of-the-art license
plate detection algorithms up to 2013. Those algorithms rely
on attributes such as edges, texture, color, shape, and geometry
— extracted using techniques such as the Sobel operator [18],
[21], the Canny detector [22], conditional random field [23],
template-matching [24], wavelets [25], or the Scale Invariant
Feature Transform (SIFT) [26]. The faced challenges include
poor maintenance, occlusion, variations in position and il-
lumination, complex backgrounds, low contrast, low image
resolution, and motion blur.

As detailed in Section VII, the specialized license plate
detector employed by our system was compared with three
other alternatives. The Zheng et al. algorithm [21] uses a
rectangular sliding window to identify image regions with high
gradient density, which probably contain license plates. The
Stroke Width Transform (SWT), by Epshtein et al. [22], is a
text detector based on the orientations of the gradients over
edge pixels, which are used to determine a local stroke width
for candidate characters. SnooperText, by Minetto et al. [27],
is a multi-scale text detector that uses morphological image
segmentation and character/non-character classification based
on shape descriptors. SnooperText validates candidate text
regions using the T-HOG classifier [28], a specialized gradient-
based descriptor tuned for single-line text regions. All these
algorithms include steps of pre-processing and tests for filter-
ing out incorrect results, based on size and geometry.

III. MOTION DETECTION

The first step in our system’s pipeline is detecting moving
vehicles, limiting further processing to a set of regions of
interest. Ideally, each region of interest must contain the entire
license plate from a single vehicle. An overview of the motion
detection approach that we develop is shown in Fig. 4.

Fig. 4. Motion detection: regions of interest are delimited based on a
foreground image mask and a vertical projection profile.

Motion detection begins with a rough foreground / back-
ground segmentation. We use the Motion History Image (MHI)

concept from Bobick and Davis [29]. The MHI H for time t
is given by

H(x, y, t) =

{
τ if D(x, y, t) = 1,
max(0, H(x, y, t− 1)− 1) otherwise. (1)

where D are the binary images obtained from thresholded
frame differences, and the τ parameter represents the duration
of the expected motion in frame units. In our tests, we used
τ = 5. The binary segmentation mask M is obtained by

M(x, y, t) =

{
1 if H(x, y, t) > 0,
0 otherwise. (2)

An example is shown in Fig. 4. Note that we do not have to
identify vehicle boundaries in a precise manner, as our system
does not rely on blob analysis.

To reduce the processing time when generating image M
and in subsequent steps, the images are subsampled — i.e. the
values of x and y in (1) are restricted to a regular sparse grid,
with pixels outside the grid being skipped. The segmentation
may become less precise, but this is acceptable as long as the
vehicle license plate remains entirely within its corresponding
region. In tests involving the complete system, we observed
that a subsampling factor of 4 in both axes (i.e. processing 1
of each 16 pixels) reduced the processing time to 16.47% of
the original time, without any loss in detection performance.

After the sub-sampled binary segmentation mask M is
obtained, we perform a vertical projection profile analysis [30]
to separate vehicles horizontally. We take the lower part of
image M, which shows the region closer to the camera, and
count the foreground pixels in each column, generating a
histogram with n bins (for n image columns). This histogram
is smoothed, to reduce noise, and interpreted as an array Ψ.

Figure 4 shows an example of vertical projection profile. It
can be seen that the interval containing a vehicle is delimited
by an ascending and a descending slope, corresponding respec-
tively to the left and right boundaries of the vehicle. The FIND-
HILLS routine (Fig. 5) is used to determine these boundaries
for each vehicle. It receives as parameters the projection profile
array Ψ, and a threshold ρ (0.1, in our tests) that defines the
minimum angle of inclination for a boundary. It returns a pair
of lists {A,D}, such that each list element represents a hill’s
ascending and descending border, respectively.

In step 2 of FIND-HILLS, we call the FIND-INCLINATION
routine, outlined as Fig. 6. The purpose of this routine is to
determine the rising and falling phases of Ψ (see Fig. 8(a)),
given as arrays R and F , respectively. The threshold 0 ≤ ρ ≤
1 is used to discard false phases: since vehicle regions are
represented by high values in the projection profile, it prevents
against incorrectly dividing a vehicle in two regions.

In steps 3 and 4 of FIND-HILLS, we call the PHASES
routine, outlined as Fig. 7. This function scans the R and F
arrays, with the order depending on whether we are looking
for ascending or descending regions. In Fig. 8(b), we show the
values for these functions over a sample projection profile.

By pairing the ascending and descending boundaries pro-
duced by FIND-HILLS in arrays A and D, we can determine
the left and right boudaries of each region of interest, as
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1: function FIND-HILLS(Ψ[1, . . . , n], ρ)
2: {R,F} ← FIND-INCLINATION(Ψ, ρ);
3: Sa ← PHASES(R[1 . . . n], F [1 . . . n], n); . Ascending
4: Sd ← PHASES(R[n . . . 1], F [n . . . 1], n); . Descending
5: A← {}; D ← {}; . set initialization
6: for each x ∈ {1, . . . , n− 1} do
7: if (Sa[x] = 0) and (Sa[x+ 1] = 1) then
8: A← A ∪ {x}; . slope ascending
9: end if

10: if (Sd[x] = 1) and (Sd[x+ 1] = 0) then
11: D ← D ∪ {x}; . slope descending
12: end if
13: end for
14: return {A,D};
15: end function

Fig. 5. Routine to find hills in Ψ.

1: function FIND-INCLINATION(Ψ[1, . . . , n], ρ)
2: for each x ∈ {1, . . . , n} do
3: R[x]← F [x]← 0; . array initialization
4: end for
5: for each x ∈ {1, . . . , n− 1} do
6: δ ← (1− (Ψ[x]/Ψ[x+ 1]));
7: if δ > ρ then
8: R[x]← 1; . rising phase
9: end if

10: if δ < −ρ then
11: F [x]← 1; . falling phase
12: end if
13: end for
14: return {R,F};
15: end function

Fig. 6. Routine to find rising and falling phases in Ψ.

1: function PHASES(R[. . . ], F [. . . ], n)
2: for each x ∈ {1, . . . , n} do
3: S[x]← 0; . array initialization
4: end for
5: for each x ∈ {2, . . . , n− 1} do
6: if (R[x] = 0) and (R[x+ 1] = 1) then
7: S[x]← 1;
8: else if (F [x] = 0) and (F [x+ 1] = 1) then
9: S[x]← 0;

10: else
11: S[x]← S[x− 1];
12: end if
13: end for
14: return S;
15: end function

Fig. 7. Routine to compute the array of ascending slopes.

exemplified in Fig. 8(c). We assume each region of interest
corresponds to a vehicle in the image. Upper and lower
boundaries for each region are obtained directly from the
binary segmentation mask M. To guarantee a vehicle’s license
plate is inside its corresponding region of interest, we discard
regions with lower boundaries close to the image bottom —

these cases may correspond to a vehicle that is entering the
frame, so its license plate is not visible yet.

(a)

(b)

(c)

Fig. 8. Internal steps of the FIND-HILLS routine: rising and falling phases
according to a given threshold ρ (a), ascending and descending slopes (b),
and three slope regions delimited by the rising edge of ascending slopes and
the falling edge of descending slopes (c).

IV. LICENSE PLATE DETECTION

The motion detector produces one region of interest for
each moving vehicle present in the scene at a given time. The
license plate detector finds, for each region of interest, an axis-
aligned rectangle, which is an approximate bounding box of
the vehicle’s license plate region. This procedure is performed
for each region of interest only until a license plate is detected
— afterwards, features extracted from the license plate region
are tracked across frames, as explained in Section V.

Our detector follows the hypothesis generation and vali-
dation paradigm [27]. Namely, in the hypothesis generation
phase (outlined in Fig. 9) we use edge extraction, edge
filtering, and region grouping modules to provide coarse
candidate regions based on the edge attribute that makes up the
license plate. At this phase, we aim to isolate the license plate
region and prevent false negatives, even at the cost of several
false positives. In the hypothesis validation phase, we use a
region classification module to refine the candidates. For this
classification we use the Text HOG (T-HOG) descriptor [28],
which is based on the observation that the license plate textual
information can often be characterized by the distribution of
the directions of the image gradients.

For edge extraction, we follow the observation from
Zheng et al. [21] that background areas around the license
plate region often have large horizontal edges or small random
noise. Thus, we extract only the vertical image gradients Gx

by convolving the input image with a 3× 3 horizontal Sobel
operator. The gradients are then stored in a binary edge image



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, MONTH 2016 5

(a) (b)

(c) (d)

Fig. 9. Hypothesis generation for license plate detection: (a) input image; (b)
vertical edges; (c) filtered and dilated edges; (d) candidate regions.

E by comparing each gradient magnitude with the average
magnitude µ of Gx multiplied by some threshold τ (τ = 2 in
our tests), that is

E(x, y) =

{
1 if |Gx(x, y)| > µτ
0 otherwise (3)

An example of edge extraction is exemplified in Fig. 9 (b). As
the sign of the gradients is not taken into account, this scheme
is invariant to distinctive license plate color schemes.

Edge filtering is performed to remove from E edges that
are too small (below 4 pixels) or too large (above 120
pixels). This is done using a standard connected component
labeling algorithm and direct comparisons with given mini-
mum and maximum values for each component’s width and
height. Neighboring vertical edges that remain after filtering
are merged by performing a morphological dilation using a
centered 1 × 7 structuring element. Figure 9 (c) shows an
image example containing filtered and dilated edges.

In order to avoid super-segmenting the license plate, we
group candidate regions according to the geometric criteria
defined by Retornaz and Marcotegui [31]. These criteria take
into account the heights h1, h2 and widths w1, w2 of two
bounding boxes b1 and b2, as well as the coordinates (x1, y1)
and (x2, y2) of their centers. Specifically, let h = min(h1, h2),
dx = |x1 − x2| − (w1 + w2)/2, and dy = |y1 − y2|. Then b1
and b2 are said to be compatible — that is, assumed to belong
to the same object — if and only if

|h1 − h2| < t1 h

dx < t2 h (4)
dy < t3 h

where t1, t2 and t3 are fixed parameters (respectively, 0.7, 1.1
and 0.4 in our tests).

The above criteria are applied to each isolated region by
using the union-find data structure, which was adapted from
Cormen [32] as shown in Fig. 10. Specifically, at the beginning
each region b is a disjoint set created by the MAKE-SET
algorithm, as shown in Fig. 11 (a,b). The UNION routine
then tries to group two compatible candidate regions b1, b2,
as shown in Fig. 11 (c). These regions are then filtered using
simple geometric tests that remove regions with dimensions
not compatible with license plates. In our tests we filtered
regions with dimensions below 32 × 10 pixels. Figure 9 (d)
shows the grouped and filtered regions for a sample image.

1: function MAKE-SET (b)
2: father[b] = b;

1: function FIND-SET (b)
2: if father[b] = b then
3: return b;
4: else
5: return FIND-SET (father[b]);

1: function UNION (b1, b2)
2: f1 ← FIND-SET (b1); . f1 is the father of b1
3: f2 ← FIND-SET (b2); . f2 is the father of b2
4: if (f1 6= f2) then
5: if COMPATIBLE (b1, b2) (see equation 4) then
6: father[f2] = f1;

Fig. 10. MAKE-SET, FIND-SET and UNION routines, adapted from Cor-
men et al. [32].

(a) (b)

(c)

Fig. 11. Region grouping: (a) region bounding boxes of a sample image; (b)
MAKE-SET routine applied to all regions, the arrows indicate the node parent;
(c) result of UNION(w, 7). Adapted from Cormen et al. [32].

The last stage of our license plate detector is a region
classification step, which discards regions that do not seem
to contain any textual information. We use for this task
the T-HOG text descriptor [28] which is a texture classifier
specialized for capturing the gradient distribution characteristic
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of character strokes in occidental-like scripts. We first estimate
a center line for each candidate image region, by taking, at
each column, the center point between the uppermost and
the bottommost pixels from the filtered and dilated edge
image, as shown in Fig. 12 (a,b). Fixed-size windows are then
centered at regularly spaced points along the center line, as
shown in Fig. 12 (c). This sub-sampling is done to reduce
the computational effort, as well as to avoid very similar
classifications in neighboring positions. For each window, we
compute the T-HOG descriptor and use it as an input for a
SVM classifier. For the SVM classifier we used a Gaussian χ2

kernel, whose standard deviation parameter was optimizied by
cross-validation on a training set of text and non-text samples
as described by Minetto et al. [28] 2. The classifier output is
thresholded to give a binary text/non-text region classification.
Figure 12 (d) shows the windows classified as text for a sample
image.

(a) (b) (c)

(d) (e) (f)

Fig. 12. T-HOG/SVM classification: (a) the candidate region; (b) the region
center line in white color; (c) sampled points to guide the classification in
white color (step of 4 pixels); (d,e) regions classified as text; (f) the text
region bounding box.

The final license plate detection is performed by taking
regions containing a large number of windows classified as
text (Fig. 12 (e)). Note that vehicles displaying textual labels
and advertisements may have multiple regions satisfying this
condition. In those cases, we select the region closest to the
image bottom, which corresponds to the license plate in most
cases. The license plate is approximated by a single axis-
aligned rectangle that encloses all the text windows from the
selected region, as shown in Fig. 12 (f). Note that this rectangle
does not have to be accurately adjusted to the license plate
— our system will work as expected as long as the feature
tracking module, explained in Section V, can detect enough
distinctive features inside the rectangle.

A final observation about our detector is that, in our data set,
the license plates from motorcycles have different dimensions
than other vehicles. Moreover, they contain two text lines
instead of one, and smaller letters and digits, which are more
frequently merged to each other. Our detector still works for
those cases, requiring only adjustments to some thresholds,
as well windows spread over the entire region for the T-
HOG/SVM classification, instead of following the center line.

V. FEATURE SELECTION AND TRACKING

2We used the source code and training dataset available at
www.dainf.ct.utfpr.edu.br/%7erminetto/projects/thog.html.

Once a license plate region is detected, our system selects
a set of distinctive features and tracks it across multiple video
frames. Our aim is producing a list containing the trajectories
of the tracked features. The structure of our tracking scheme
is outlined in Fig. 13.

Frame i Frame i + 1 f

. . .

Frame i + f − 1

License plate

Feature
selection

SIFT
prediction

Outlier
rejection

KLT
tracking

Outlier
rejection

Motion vectors

Fig. 13. Overview of the proposed feature tracking method.

Feature selection is performed only once for each vehicle,
immediately after its license plate is detected. Following the
approach from Shi and Tomasi [3], a “good feature” is a
region with high intensity variation in more than one direction,
such as textured regions or corners. Let [Ix Iy] be the image
derivatives in the x and y directions of image I, and let

Z =
∑
Ω

[
Ix2 IxIy
IxIy Iy2

]
(5)

be the 2×2 gradient matrix in a given window Ω. The region
covered by the window is selected if both eigenvalues of Z are
above a given threshold. In our system, we used a threshold
of 1, which leads to a large number of features, but track only
the 10 features with the highest eigenvalues.

The selected features are tracked with subpixel accuracy us-
ing the pyramidal Kanade-Lucas-Tomasi (KLT) [4] algorithm.
Let I and J be two video frames such that J appears after
I in the video sequence. The KLT algorithm takes a small
window Ω around each feature extracted from I, and looks
for its corresponding window in J. For a feature centered at
position u = (xu, yu), the corresponding window is the one
that minimizes the sum of the squared errors, that is

E =
∑
Ω

[
I(u)− J(u+ ~d)

]2
(6)

where ~d is the displacement vector that describes the motion
of the feature between frames I and J. To obtain ~d, the KLT
algorithm takes a current estimate ~e and iteratively solves for
increments ~∆d, namely
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E =
∑
Ω

[
I(u)− J(u+ (~e+ ~∆d))

]2
(7)

updating ~e at each iteration until it converges. As we are
tracking features, the initial estimate for each frame may be
the displacement ~d obtained for the previous frame.

The traditional Lucas-Kanade algorithm only works for
small displacements (in the order of one pixel). To overcome
this limitation, we consider the pyramidal version of KLT,
described by Bouguet [33]. The algorithm builds, for each
frame, a multi-scale image pyramid by using the original
image at the pyramid base, and putting at each subsequent
level a version of the image in the previous level with width
and height reduced by half. The pyramidal KLT algorithm
starts by finding the displacement vector ~d at the last pyramid
level, using the result as the initial estimate for ~d in the next
level, repeating the process until the pyramid base (i.e. the
original image) is reached.

The number of levels ` in the pyramid determines the
maximum allowed displacement for a feature in pixels, given
by 2`+1−1 (e.g. for ` = 3, the maximum displacement is of 15
pixels). Larger values of ` may allow for larger displacements,
but they may also produce very small images at the upper
pyramid levels, which may lead to confusion and large errors
in the initial estimates. Another limitation of the algorithm
is that for the first frame in a sequence (i.e. the moment a
license plate is detected), there is no known motion. In these
cases, it is common to start with ~e = (0, 0) in Equation 7.
If there are large feature displacements, e.g. from a vehicle
moving at a high speed, this initial estimate will be too far
from the correct displacement, preventing the feature from
being properly tracked.

To overcome the limitations described above, an initial value
for ~d is estimated by using a different method for matching
features extracted from I and J. We have used the SIFT (Scale-
Invariant Feature Transform) features proposed by Lowe [5].
SIFT is a popular method for detecting and describing image
keypoints, being robust to illumination variations and a num-
ber of geometric distortions. Using the standard parameters
proposed by Lowe [5], SIFT features are extracted from an
expanded window around the license plate region from image
I, and matched to other features extracted from image J,
using the nearest neighbor distance ratio matching strategy
described by Mikolajczyk [34]. The obtained matches can
be used to compute the displacement of each SIFT feature
between frames I and J. The average feature displacement is
then used as the initial value for ~d in Equation 7. Note that
this process occurs only once for each detected license plate
— after the motion is roughly predicted, the system relies on
the KLT algorithm, which allows for faster and more accurate
estimates.

The feature selection and tracking module produces, for
each frame, a list of displacement vectors. Since we suppose
all the features belong to the same license plate, we expect all
the vectors computed for a frame will be similar. Outliers are
rejected using an iterative method: for each set of displacement
vectors, we compute the mean and standard deviation, and

remove from the set those vectors outside the three-sigma
deviation, with the process being repeated until the standard
deviation is smaller than 0.5 pixel. The outlier rejection routine
is used independently for the x and y directions, and applied
both to the vectors computed by the KLT algorithm and the
initial estimates obtained from matching SIFT features.

VI. SPEED MEASUREMENT

Our system measures vehicle speeds based on the motion
vectors obtained by the feature selection and tracking method.
Each motion vector ~di can be associated with a measurement
of a vehicle’s instantaneous speed at a particular time, given
in pixels per frame, in the image plane. The purpose of the
speed measurement module is converting these measurements
to kilometers per hour (km/h) in the real world.

An important assumption of our system is that each street
lane lies on a plane. That assumption makes it possible for
us to map the motion vectors ~di, which are given in pixels in
the image plane, to displacements ~vi, given in meters in the
ground plane (see Fig. 14).

Image plane

Road plane

~di

~vi

Fig. 14. Vehicle speed measurement scheme.

Assuming the pinhole camera model, this mapping can
be made based on a single view of the scene, through a
homography [35] — a plane-to-plane projective transformation
— in a process that is sometimes referred to as inverse
perspective mapping [36].

Given a 3× 3 homography matrix H , an image point pi =
(xi, yi) can be mapped to the point p̂w = (xw, yw) in the
world plane by xw

yw
1

 =

 zxw
zyw
z

 = H

 xi
yi
1

 (8)

The homography matrix H may be obtained by associating
four points in the image to known coordinates in the world
plane. For our tests, we have used as references the markings
left on the asphalt by the inductive loop detectors, which form
a rectangle with 4.8m × 2.0m (but note that any large enough
planar object could be used to this purpose). We assume that
the top-left corner of the rectangle is the origin of the world
coordinate system, and use a traditional technique to obtain
H [37]. Different homography matrices were obtained for each
road lane, i.e. instead of a single ground plane, we assume each
lane lies on a different plane.

The output of the feature selection and tracking method,
for each vehicle and each pair of frames, is a set of motion
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vectors ~di = ui(t) − ui(t − ∆t), where ui(t) is the feature
position in the current video frame, ui(t−∆t) is the feature
position in the previous video frame, ∆t is the frame interval,
and i = {1, 2, . . . , n} is a sequence of tracked features. We
compute the feature displacements in the real world, denoted
by ~vi, from Equation 8, namely

~vi = Hui(t)−Hui(t−∆t) (9)

The displacement in meters between frames t − ∆t and t
for a motion vector ~ui can be obtained by ‖~vi‖, the Euclidean
norm of ~vi. Each displacement vector can be associated with
a measurement of the vehicle’s instantaneous speed, given by

si =
‖~vi‖
∆t

(10)

where ∆t is the time, in seconds, between two frames. This
time is supposed to be constant, and is the inverse of the
frame rate — e.g. for a frame rate of 30 frames per second,
∆t = 1/30. The instantaneous vehicle speed s is estimated by
averaging the values of si for a set of tracked features.

The assumption that all the motion vectors for a vehicle lie
on the same plane is a simplification, used so that the actual 3D
position of the tracked features does not have to be discovered.
As the actual license plates are always above the road level,
the computed speeds will be higher than the actual speeds.
To mitigate the effects of these erroneous measurements we
multiply each vehicle’s measured speed by a constant factor
S, which we set to 0.9 in our experiments. As shown in
Section VII, the use of the S factor is simple but effective,
as long as the tracked features are at approximately the same
distance from the ground.

The final speed for a vehicle is obtained by averaging the
instantaneous speed across multiple frames, while the vehicle
is located at a certain image region. In our experiments, we
considered a speed measurement region close to the ground
truth loop detectors, to allow a direct comparison between the
measured speeds and the ground truth speeds.

VII. EXPERIMENTS

A proof-of-concept system was built for evaluating the
proposed approach. Besides the cameras and physical infras-
tructure, we used a 2.2 GHz Intel Core i7 machine with 12 GB
of RAM running Linux, with the algorithms implemented in
C++. In the next sections we describe our dataset, and evaluate
our system’s performance regarding motion detection, license
plate detection, and speed measurement.

A. Dataset

Our dataset, summarized in Table I, contains 20 videos
captured by a low-cost 5-megapixel CMOS image sensor, with
frame resolution of 1920 × 1080 pixels, at 30.15 frames per
second. The videos are divided in 5 sets according to weather
and recording conditions. Each video has an associated ground
truth file, in a simple XML format, containing bounding boxes
for the first license plate occurrence of each vehicle, as well as

each vehicle’s actual speed. The ground truth for the license
plates was obtained by human inspection. The ground truth
speeds were obtained from a high precision speed meter based
on inductive loop detector, properly calibrated and approved
by the Brazilian national metrology agency (Inmetro). Note
that the videos contain some vehicles with no visible license
plate, and that the ground truth speed meter sometimes fails to
properly assign a speed to a vehicle. The “No. valid” column
in Table I indicates the number of vehicles which have both
a visible license plate and an assigned speed.

TABLE I
DATASET INFORMATION: TIME (MINUTES); NUMBER OF VIDEOS; NUMBER

OF VEHICLES WITH PLATES AND SPEED INFORMATION. THE QUALITY
OPTIONS ARE: [H] HIGH-QUALITY, [N] FRAMES AFFECTED BY NATURAL

OR ARTIFICIAL NOISE, [L] FRAMES AFFECTED BY SEVERE LIGHTING
CONDITIONS, [B] MOTION BLUR, AND [R] RAIN.

Set Time No. videos No. vehicles No. plates No. speed No. valid Notes
01 34 4 1,146 1,128 1,033 1,019 [H]
02 169 11 4,829 4,713 4,345 4,241 [L]
03 26 2 960 936 876 855 [N]
04 41 2 1,045 1,034 928 917 [N,R]
05 20 1 869 800 795 734 [L,B]

Tot. 291 20 8,849 8,611 7,977 7,766

Figure 15 shows how the vehicle speeds are distributed (the
speed limit in this particular roadway is 60 km/h).
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Fig. 15. Vehicles speed distribution.

In our manual ground truth annotation, we also include a
flag for motorcycles and non-motorcycles (ordinary vehicles).
We noted that motorcycles pose a challenge for the ground
truth speed meter, which was able to measure the speed in only
43% of the cases (compared to 92% for ordinary vehicles). For
that reason, motorcycles represent 4.5% of the total number
of vehicles, but only 2.1% of the “No. valid” vehicles.

The whole dataset used in our experiments will be made
available for research purposes, and can be itself considered
one of the major contributions of our work.

B. Motion detection evaluation

To evaluate the results from the motion detector, we com-
pare the obtained regions of interest (ROIs) with the license
plates in the ground truth. Ideally, all the detected ROIs will
contain a license plate, and all license plates will be fully
contained within a detected ROI. Objectively, we compute
precision and recall metrics as described by Wolf et al. [38],
with the precision p being given by the proportion of ROIs
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which contain at least one license plate, and the recall r being
given by the proportion of license plates that were inside a
ROI. Namely, we compute

p =

|D|∑
i=1

m(di, G)

|D|
r =

|G|∑
i=1

m(gi, D)

|G|
(11)

where G = {g1, g2, . . . , g|G|} is the set of ground truth license
plate regions, and D = {d1, d2, . . . , d|D|} is the set of detected
ROIs. Function m is defined by

m(a, S) = max
i={0,...,|S|}

m′(a, si) (12)

where m′ is a function that compares two rectangular regions
a and b — more specifically, a ROI with a license plate region:

m′(a, b) =

{
1 if area(a ∩ b)

min(area(a), area(b))
> λ

0 otherwise
(13)

with the λ threshold indicating how much of the license plate
region must be contained within the ROI. We performed tests
using two different values for λ: 1.0 (i.e. the entire license
plate is contained within the ROI) and 0.5.

Table II shows the precision and recall, as well as the
average processing time, obtained by our motion detector.
The different columns show the results obtained with different
amounts of subsampling — more sparse grids will reduce the
processing time, but can also lead to incorrect results.

TABLE II
MOTION DETECTION PERFORMANCE: THE PRECISION p, RECALL r, AND

AVERAGE TIME (IN MS, FOR EACH FRAME) FOR FIVE SUBSAMPLING
CONFIGURATIONS AND TWO OVERLAPPING THRESHOLDS.

Subsampling 1 × 1 2 × 2 4 × 4 8 × 8 32 × 32

p r p r p r p r p r

λ = 1.0 0.86 0.99 0.86 0.99 0.86 0.99 0.81 0.99 0.58 0.99

λ = 0.5 0.87 0.99 0.88 0.99 0.87 1.00 0.84 1.00 0.65 1.00

Avg. time (ms) 21.50 7.97 3.54 1.36 0.20

C. License plate detection evaluation

To evaluate the performance of the license plate detector, we
compare the detected license plates with those in the ground
truth. The comparison is based on the same precision and
recall metrics used for evaluating the motion detector (see
Section VII-B), with some differences. First, set D refers to the
set of detected license plates. Second, function m′ is defined
as in the PASCAL Visual Object Detection Challenge [39]:

m′(a, b) =

{
1 if area(a ∩ b)

area(a ∪ b) > 0.5

0 otherwise
(14)

For ranking purposes, we also consider the F -measure,
which is the harmonic mean of precision and recall: F =
2 · p · r/(p+ r).

We compared our license plate detector with three text
and license plate detectors described in the literature (see
Section II-B): SnooperText [27], the Zheng et al. [21] al-
gorithm, and the Stroke Width Transform (SWT) [22]. The
parameters for these detectors were obtained by running the
system on 25% of the videos from the dataset, and selecting
the parameter combinations that produced the highest F-
measures. The results obtained for the entire data set are shown
in Table III, divided in 5 subsets according to weather and
recording conditions. Our detector significantly outperformed
the other approaches in these tests. The average time to process
each region of interest was 58 ms for SnooperText; 918 ms for
Zheng et al.; 402 ms for SWT; and 195 ms for our detector.

TABLE III
LICENSE PLATE DETECTION PERFORMANCE EVALUATION, BASED ON
PRECISION (p), RECALL (r), AND THE F -MEASURE. THE BOLDFACE

VALUES ARE THE MAXIMA OBTAINED FOR EACH CASE.

PROPOSED SNOOPERTEXT ZHENG et al. SWT

Set p r F p r F p r F p r F

01 0.96 0.94 0.95 0.81 0.88 0.84 0.92 0.88 0.90 0.76 0.61 0.68

02 0.92 0.84 0.88 0.86 0.81 0.83 0.45 0.29 0.35 0.28 0.23 0.25

03 0.94 0.94 0.94 0.56 0.79 0.66 0.87 0.90 0.88 0.66 0.62 0.64

04 0.94 0.92 0.93 0.44 0.71 0.54 0.91 0.88 0.89 0.79 0.58 0.67

05 0.88 0.82 0.85 0.76 0.72 0.74 0.48 0.48 0.48 0.15 0.15 0.15

Tot. 0.93 0.87 0.90 0.73 0.80 0.76 0.65 0.52 0.58 0.44 0.37 0.40

Examples of license plates detected by the proposed method
are shown in Fig. 16. Our detector worked as expected even
in some situations with severe image noise or motion blur.
Detection errors occurred mainly in the hypothesis generation
phase, with true license plate regions being eliminated by
some filtering criteria when they became connected with a
background region. Samples of license plates not detected by
our system are shown in Fig. 17.

D. Vehicle speed measurement evaluation

Speed measurement performance was evaluated by compar-
ing the speeds measured by our system with the ground truth
speeds obtained by the inductive loop detectors. According to
the standards adopted in the USA, an acceptable measurement
must be within the [−3 km/h, +2 km/h] error interval.

The first row in Table IV shows the results obtained by
our system. Percentages are given regarding the valid vehicles
— those with both a license plate and an associated speed in
the ground truth — and are divided in 3 classes, depending
on whether the measured speed was below, inside, or above
the acceptable error interval. Figure 18 shows the distribution
of the measurement errors, with 96% of the measurements
being inside the acceptable limits. The maximum nominal
error values for the whole dataset were −4.68 km/h and
+6.00 km/h, with an average of −0.5 km/h a standard
deviation of 1.36 km/h. We observed that the assumption
that all the license plates have nearly the same distance
from the ground is the main cause of speed measurement
errors: when the license plates are very high above the ground
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Fig. 16. Examples of license plates detected by our system, for representative
samples of each set.

Fig. 17. Examples of license plates not detected by our system.

(e.g. in buses or trucks) the measured speed can be higher
than the actual speed, with the opposite occurring when the
license plates are unusually low. A total of 99.2% of the
vehicles were successfully tracked until they reached the speed
measurement region. On average, our tracking module spent
49.8 milliseconds per frame. Examples of measured speeds
are shown in Fig. 19.

TABLE IV
SPEED MEASUREMENT RESULTS OBTAINED BY OUR SYSTEM AND OTHER

APPROACHES: “LOWER”, “IDEAL”, AND “HIGHER” REPRESENT,
RESPECTIVELY, SPEED ERRORS BELOW, ABOVE AND WITHIN THE

ACCEPTABLE LIMITS, CONSIDERING THE USA STANDARD [−3/+2 KM/H].

Lower Ideal Higher
PROPOSED SYSTEM 1.1% 96.0% 2.8%
IDEAL DETECTOR 0.9% 96.1% 3.0%

FREE FEATURE SELECTION 11.3% 73.4% 15.3%
PARTICLE FILTER 20.3% 22.1% 57.6%

In order to verify if distinctive features from a license plate
region are a good choice for measuring a vehicle’s speed,
we performed tests using a version of our system which
takes features from the whole vehicle region (“free feature
selection”). The results are shown in Table IV. It can be seen
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Fig. 18. Speed measurement error distribution.

that the percentage of vehicles whose measured speed is inside
the allowed error interval decreased significantly. That happens
because in this case the features have a larger variance in their
heights from the ground — thus, motion vectors computed
from the same vehicle have very different lengths. Moreover,
these features are less distinctive, leading to tracking errors.

We also tested our system with an “ideal license plate
detector”, taking as references the manually annotated license
plates from the ground truth, instead of the detected license
plates. That includes some license plate regions that are hard
to identify even by a human observer. As shown in the third
row of Table IV, the performance in this case was not much
different from the performance obtained by our complete
system, indicating that the tracking can be done even with
poor license plate regions, hard to be identified even by an
human observer.

We also compared our system with a blob-based tracker. In
this experiment, we used a particle filter algorithm [40] to track
the regions of interest found by our motion detection module.
We tested several parameter combinations for this approach,
but we were unable to find a suitable configuration for our
application. We believe that the main reason for this is that
our camera is installed very close to the vehicles, in such a way
that a probabilistic search cannot precisely define the position
of the vehicle in all frames. Table IV shows the best results
we could obtain using the blob tracking approach.

VIII. CONCLUSIONS

This paper addressed the problem of measuring vehicle
speeds based on videos captured in an urban setting. We
proposed a system based on the selection and tracking of
distinctive features located within each vehicle’s license plate
region. The system was tested on almost five hours of videos
with full-HD quality, with more than 8,000 vehicles in three
different road lanes, with associated ground truth speeds
obtained by a high precision system based on inductive loop
detectors, as well as manually labeled ground truth license
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45.5 km/h (real 48.0 km/h) 43.5 km/h (real 44.6 km/h) 54.7 km/h (real 54.6 km/h)

43.1 km/h (real 43.0 km/h) 48.2 km/h (real 46.3 km/h) 39.9 km/h (real 41.2 km/h)

Fig. 19. Examples of vehicle speeds measured by our system and by a high precision meter based on inductive loops

plate regions. Our system uses a novel license plate detection
method, based on a texture classifier specialized to capture
the gradient distribution characteristics of character strokes
that make the license plate letters. This module achieved a
precision of 0.93 and a recall of 0.87, outperforming other
well-known approaches. We have also shown that extracting
distinctive features from the license plate region led to better
results than taking features spread over the whole vehicle,
as well as an approach which uses a particle filter for blob
tracking. In our experiments, the measured speeds had an
average error of -0.5 km/h, staying in over 96.0% of the
cases inside the +2/-3 km/h error interval determined by the
regulatory authorities in several countries.

As future work, we intend to verify if estimating the distance
of the license plates from the ground can improve the results.
We also aim to apply an OCR on the detected license plates in
order to create a traffic speed control system with integrated
surveillance tools, e.g. to compute the traffic flow, to identify
stolen vehicles, etc. Another topic for future work is the imple-
mentation on a compact platform that allows local processing,
including optimizations such as parallel processing on GPUs,

thus reducing communication bandwidth requirements.
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Université de Cergy-Pontoise since 2015. He re-
ceived the M.Sc. degree from Federal University of
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