
Predicting Highway Accident Severity in Brazil:
Environmental Factors and Vehicle Features
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Abstract—This work supports the problematization of the high
rate of traffic accidents due to the increased use of automobiles
for utility or transport in Brazil. Every year, the lives of approxi-
mately 1.3 million people are interrupted due to traffic accidents
worldwide. In this regard, this study proposes the use of data
mining as an approach to analyze and explore datasets of traffic
accidents that occurred on Brazilian highways between the years
2017 and 2022, as provided by the Federal Highway Police. Ad-
ditionally, vehicle price data were included, allowing for a more
comprehensive analysis that also considers the financial value of
the vehicles. The goal is to assess the predictive capability of
classification models regarding the severity of accidents, focusing
on vehicle characteristics and environmental factors. By applying
classification algorithms and machine learning explainability
techniques, we acquired relevant knowledge regarding the studied
data, contributing to understanding and preventing accidents. As
a result, the attributes related to vehicle characteristics had a
more positive impact on the predictive capability of the models
when compared to the attributes describing the environment and
other variables.

Index Terms—road accidents, data mining, classification, ex-
plicability, Shapley values

I. INTRODUCTION

The adoption of automobiles as technical means and modes
of transportation significantly impacts the organization of
society, as automobiles play a significant role in shaping the
structure of urban environments [1]. A substantial part of
industrial development and urban planning has been directed
towards establishing the automotive system. Thus, having be-
come a social necessity, automobiles constitute a foundational
part of contemporary life, entailing various consequences.

The intensive incorporation of automobiles into daily life
brings significant benefits such as agility in human and cargo
transportation, comfort, and a reduction in travel time, for
example. However, there is also a harmful side to this reality.
Regarding the drawbacks, it is possible to highlight noise,
environmental pollution, and a more severe problem: deaths
caused by traffic accidents.

It is public knowledge that traffic accidents are a frequent
problem in society. Every year, the lives of approximately 1.3
million people are terminated abruptly as a result of a traffic
accident. Between 20 and 50 million people suffer non-fatal
injuries, with many incurring disabilities as a result of their
injuries [2]. The World Health Organization classifies traffic

accidents as the leading cause of death for children and young
people between 5 and 29 years old. According to the National
Registry of Traffic Accidents and Statistics (RENAEST) [3]
2022, there were approximately 1 million accidents in Brazil,
involving just over 1.5 million people, resulting in 20,856
deaths.

Being a global problem, the United Nations General Assem-
bly has determined to achieve a 50% reduction in the world-
wide number of deaths and injuries due to traffic accidents [2].
Brazil is one of the signatories of this global effort and has
proposed adopting a series of policies and measures, such as
preventive campaigns, reduction of speed limits, infrastructure
improvements, etc. [4]. However, few efforts have been made
to reach this goal. According to the Institute of Applied
Economic Research1 (IPEA), traffic accidents in the country
are estimated to cost an average of R$ 130 billion, thus
revealing that the high number of traffic accidents remains
a reality.

Therefore, initiatives to reduce and prevent traffic accidents
are more necessary than ever. In this sense, Urban Computing
[5] could play an important role, as suggested by a vast
collection of studies addressing analysis and data mining
of accidents in recent years [6]–[10]. This type of study
is essential to help understand the risk factors and predict
characteristics of serious accidents, which could enable the
development and implementation of highly effective preventive
measures.

In Brazil, the Federal Highway Police (PRF) has been col-
lecting accident data since 2007 and makes this data available
through the open data section on the government’s website
regarding accidents that occurred on federal highways in all
states. This dataset includes occurrences recorded from 2007
to the present day. During this period, it is possible to observe
that there was no significant reduction in the number of deaths
and an insufficient reduction in the number of injured, even
with a decrease in the number of people involved in accidents.

This study enhances the PRF dataset by adding attributes
related to vehicle specifications. Then, data classification algo-
rithms are applied to measure the impact of external factors,
the environment, and attributes related to the vehicle on the

1https://repositorio.ipea.gov.br/handle/11058/10611



severity of accidents. Evidence was found, for instance, that
vehicle attributes should not be neglected in models predicting
accident severity. The findings of this study also offer valuable
insights into the causes of accidents so that public and private
entities can use this information to help reduce the severity
and number of accidents on Brazilian highways.

The rest of the study is organized as follows. Section II
presents the related work. Section III introduces data and
methods explored in this work. Section IV presents the results
followed by the conclusions (Section V).

II. RELATED WORK

Urban computing is an interdisciplinary area that studies
urban issues using state-of-the-art technologies and digital
data [5], including, for instance, social media data [11]–[13]
and open data [14]–[16]. Specifically related to traffic issues,
applying data mining techniques to complex urban traffic
accident data facilitates the discovery of non-trivial patterns
and relationships [6]. Thus, urban computing in traffic safety
research is helping to generate new ideas and hypotheses [17].

In this direction, Yap et al. [6] aimed to identify and catego-
rize aspects of traffic accidents based on the characteristics of
risk factors and classify them depending on the level of injury
severity from an accident. The database explored consists of
accident records from a state in the United States from 2004 to
2018. The authors explored a Decision Tree classifier method
to predict the injury severity level (i.e., no injuries, minor
injuries, serious injuries, and death). The primary variable that
predicts injury severity in an accident is whether motorcycle-
type vehicles were involved, resulting in the possibility of
accidents with more serious injuries. It was also discovered
that the involvement of a pedestrian in an accident significantly
increases the probability of injury. However, geographic and
environmental factors were shown to be less significant in
the model’s prediction. The model obtained an accuracy of
65.78%.

Labib et al. [7] classify the severity degree of the nearly
43,000 traffic accidents in Bangladesh from 2001 to 2015.
First, they explored different classifiers to predict the severity
of accidents (i.e., Fatal, Serious, Minor Injury, and Motor
Collision). Naive Bayes classifier and adaptive stimulus algo-
rithms showed the highest accuracy, about 80% of accuracy.
In a second experiment, only the Fatal and Serious accident
classes were used for classification. The vehicle type variables
and the time of accidents were the most important in the
predictive capacity of the models.

Kwon et al. [8] propose using a Naive Bayes classifier and
a Decision Tree to identify the relative importance of accident
risk factors concerning the injury severity level. The database
used consists of accident data collected by the California
Highway Patrol, focusing on accident reports that occurred on
California highways during the period from 2004 to 2010, as
only in 2004 did they begin to record attributes related to the
characteristics of the vehicles involved, the type of highway,
the date and time of the accident, weather conditions, and the
type of accident. As a result, it was discovered that in the

dataset under study, when dependency is taken into account,
the most important factors are: type of collision, fault, local
population, state highway, and movement before the collision.

In the study by Zhang et al. [9], four different machine
learning models and two statistical models were compared in
correctly categorizing the severity level of injuries in accidents.
They explored a dataset composed of accidents that occurred
on divergent highways in Florida, USA. They found that the
model generated by the Random Forest method achieved the
highest overall prediction accuracy in the test set (53.9%), and
all other machine learning models were more accurate than the
statistical methods (Ordered Probit Model and Multinomial
Logit Model). The models have a lower capacity to accurately
predict more severe accidents.

Ahmed et al. [10] evaluated different machine learning
models to predict the severity of road accidents based on
a dataset of road accidents in New Zealand from 2016 to
2020. Furthermore, the predicted results were analyzed, and an
explainable machine learning (XML) technique was applied to
assess the importance of factors contributing to accidents. To
predict road accidents with different injury severities, different
algorithms were considered, such as Random Forest (RF),
Decision Jungle (DJ), Adaptive Boosting (AdaBoost), Ex-
treme Gradient Boosting (XGBoost), Light Gradient Boosting
Machine (LGBM), and Categorical Boosting (CatBoost). The
comparison results showed that the RF model achieved the
best classification, with 81.45% accuracy and 81.04% F1-
Score. The results showed that the road category and the
number of vehicles involved in an accident significantly impact
the severity of injuries. The characteristics identified as most
relevant through SHAP analysis were used to retrain the ML
models and measure their performance. The results showed an
increase of 6%, 5%, and 8%, respectively, in the performance
of the DJ, AdaBoost, and CatBoost models.

Our research distinguishes itself from prior studies by
adopting an incremental approach divided into three scenarios.
In each scenario, new characteristics are incorporated, and
the performance of the models is evaluated and compared.
This strategy allows us to monitor the evolution and impact
of each attribute in detail across the scenarios. In this way,
we enrich the model with a broader range of variables related
to vehicles, thereby providing a deeper insight into how these
specific characteristics can influence the outcomes of traffic
accident severity predictions.

To better understand the impact of each attribute on the final
scenario, we applied the Shapley values technique. By integrat-
ing Shapley values into our analysis, we better understood how
different attributes weigh on the prediction outcomes. This
reinforces the comprehensiveness of our study and enhances
the precision of our insights into the dynamics influencing
traffic accident severity predictions.

III. DATA AND METHODS

A. Data studied

The dataset utilized in this paper comprises records of road
accidents reported by the police on federal highways in Brazil



from 2017 to 2022. We call this dataset PRF dataset. These
data are publicly available through the Federal Highway Police
portal2. This dataset includes a wide range of information
regarding each accident, such as the date, time, location,
severity, and contributing factors. Additionally, the dataset
contains detailed information such as the type of road, road
layout, whether the accident occurred in an urban or rural
environment, weather conditions, and the type of individual
involved in the accident (driver, passenger, or pedestrian).
It also includes details about the brand, model, and year of
manufacture of the vehicles involved and the type of vehicle
(motorcycle, truck, car, etc.).

In order to enhance the analysis of vehicle attributes and
provide a more comprehensive understanding of accident char-
acteristics, we sought to acquire additional data from the FIPE
Table3. The FIPE Table, an acronym for Fundação Instituto
de Pesquisas Econômicas (Foundation Institute of Economic
Research), is a crucial resource for evaluating average vehicle
prices in the Brazilian automotive market. By incorporating
this supplementary data in the PRF dataset, we aim to enrich
our analysis and gain deeper insights into the relationships
between vehicle characteristics and accident outcomes.

B. Preprocessing
Initially, the PRF dataset comprised 985,220 records. A

data preprocessing stage was initiated to conduct the desired
analysis, focusing on removing irrelevant records. Exclusions
were made for entries lacking information on the victim’s
physical state and those categorizing individuals involved
in the accident as ”Witness” or ”Horse Rider” (individuals
using animals for transport). The discovery of null values in
attributes such as age, gender, brand, and model of vehicles
led to the removal of these data instances, culminating in a
refined dataset of 862,465 records.

The preprocessing revealed that the brand and model vari-
ables frequently suffered from typing errors and incomplete
information, primarily because these details were merged
into a single ”brand/model” column in the PRF dataset. The
absence or incorrect placement of separator characters was
a common issue, though many records could be corrected.
For extreme cases, the solution was to categorize the brand
and model as ”Others.” Typographical errors were another
prevalent problem, with common mistakes being addressed for
ease of identification.

Following the brand and model data cleanup, the next
phase involved integrating vehicle price data from the FIPE
table. This effort enabled assigning prices to 557,429 records,
leveraging the brand, model, and year of manufacture for each
entry. The remaining 305,036 records, lacking direct price
information, had their values estimated by grouping them by
vehicle type and year of manufacture to calculate an average
price, which was then used to infer the missing prices.

Data encoding emerged as a critical step in the preprocess-
ing of categorical data, essential for subsequent analysis and

2https://www.gov.br/prf/pt-br/acesso-a-informacao/dados-abertos.
3https://veiculos.fipe.org.br.

machine learning modeling. Label Encoding, which assigns
sequential integer numbers to each category, introduces a risk
of artificial ordering and potential bias, as models might mis-
construe the categories as having inherent order or magnitude.
To counteract this, creating dummy variables transforms each
category into a binary variable, representing the presence or
absence of categories and thus mitigating artificial ordering
issues at the cost of increased data dimensionality. For cyclical
variables like time of day, sine-cosine transformations are
applied to preserve their cyclical nature continuously, enabling
more accurate modeling of cyclical patterns without distortion.

The study established three distinct scenarios for training
and testing to compare factors influencing the severity of
accidents. This approach allows for exploring various vari-
ables and characteristics pertinent to accidents, facilitating a
thorough analysis and the identification of potential patterns
or correlations. This multifaceted methodology provides a
comprehensive understanding of the factors contributing to
accident severity.

The first scenario, Scenario 1 - Base, focuses on variables
unrelated to vehicles or the environment, providing a gen-
eral overview of highway accidents in Brazil. The insights
gained from models trained on these characteristics serve as
a benchmark for evaluating the impact of additional variables
introduced in subsequent scenarios.

The second scenario, Scenario 2 - Environment, expands
upon the first by incorporating environmental variables related
to the accident site, such as geographical data, track features,
and weather conditions. This allows for an assessment of how
these additional factors influence model predictability.

The third scenario, Scenario 3 - Vehicles, builds on the
second by including variables related to the vehicles involved
in the accidents. This comprehensive analysis considers both
environmental characteristics and specific vehicle attributes,
offering deeper insights into the myriad factors affecting
accident severity and their interrelations.

C. Models and Performance Evaluation

In this study, we utilized a diverse set of five classification
algorithms:

• Tree-based models: Decision Tree (DT) and Random
Forest (RF)

• A proximity-based algorithm: K-Nearest Neighbors
(KNN).

• A Statistics-based approach: Naive Bayes (NB)
• And a Neural network architecture: Multilayer Perceptron

(MLP)
In each scenario, the five machine learning algorithms

mentioned were evaluated based on their ability to accurately
predict whether an accident would be severe or not. As the
dataset under analysis is imbalanced – meaning some classes
have a significantly larger number of examples than others,
in this case, 85.68% of the records are of minor accidents,
and only 14.31% are of severe accidents – relying solely
on accuracy as an evaluation metric is inadequate. This is
because machine learning models may become biased toward



the dominant class, resulting in a decreased ability to correctly
predict the minority class.

To assess and compare the classification models, the fol-
lowing metrics were used:

• Accuracy: Measures the proportion of examples correctly
classified relative to the total number of examples. It
represents the overall precision of the model in correctly
classifying the data.

• Average F1-Score: Computes the arithmetic mean of
the F1-score values for each class individually. The F1-
score combines precision and recall, providing a balanced
measure of the model’s performance for all classes.

• Geometric Mean (G-mean): Captures the model’s overall
performance by considering the true positive rate of all
classes in a balanced manner. This metric provides a
more balanced evaluation of the model, especially in
imbalanced datasets.

We used the k-fold technique to train and test the algorithms
with k = 5. This approach is used to evaluate the performance
of machine learning models. This technique divides the dataset
into k equal parts, called folds. The model is trained k times,
where in each iteration, one of the folds is used as the test set,
and the remaining folds are used as the training set. At the end,
we obtain k performance measures, usually the mean, which
can be used to evaluate the model’s performance. The k-fold
technique allows for a more robust and realistic evaluation
of the model, as it uses all the data for training and testing,
helping to reduce the variance of the results and providing a
more accurate estimate of the model’s performance on unseen
data.

The Randomized Search in Hyperparameters technique se-
lected the ideal parameters for each classifier. This is an
efficient and automated approach for finding the ideal hy-
perparameters in machine learning models. Unlike an ex-
haustive search that examines all possible combinations of
hyperparameters, Randomized SearchCV performs a random
search within a predefined space of hyperparameters. The
Randomized SearchCV technique helps to find a suitable set
of hyperparameters to maximize the model’s performance,
resulting in better prediction and fitting results.

IV. RESULTS

A. Scenario 1 - Base

Table I displays the performance of the classification models
in Scenario 1 - Base. It is observed that the data is imbalanced,
as the average accuracy is high (84.6%), while the average
F1-score and geometric mean are low in comparison (51.6%).
Tree-based models showed better performance according to
the F1-score and G-mean. Other algorithms yielded similar
results among themselves.

The importance of permutation variables for Scenario 1 is
represented in Figure 1. It can be observed that the time of
day was the most important variable for predicting whether an
accident would be severe or not. It is important to note that
the sine-cosine transformation applied to the time variable is

TABLE I
PERFORMANCE OF CLASSIFICATION MODELS IN SCENARIO 1-BASE

Models Accuracy F1-score G-mean

DT 82% 52% 31%
RF 83% 52% 30%
NB 86% 52% 25%
MLP 86% 51% 24%
KNN 86% 51% 23%

not ideal for tree-based models because they make splits based
on one attribute at a time, and sine/cosine attributes should be
considered simultaneously to correctly identify points in time
within a period. Since one piece of information is represented
in two features, mathematically, more weight will be attributed
to it from the algorithm’s point of view.

However, the importance of the time variable is much
higher than all other variables, indicating that there may be a
relationship between accident severity and the time it occurs.
The second most important variable is the age of the injured
person, and the variable that had the most negligible impact
on the model’s performance indicates whether the accident
occurred on a holiday.

B. Scenario 2 - Environment

When analyzing the performance metrics contained in Table
II, which refer to Scenario2-Environment, it is noticeable that
the Decision Tree differs from the other models. Specifically,
its accuracy experienced a reduction of approximately 7.3%
compared to Scenario 1; however, metrics considering the
imbalance of the target variables increased, mainly the geomet-
ric mean. This suggests a slight improvement in the decision
tree’s ability to identify severe accidents compared to the same
model in the previous scenario.

TABLE II
PERFORMANCE OF CLASSIFICATION MODELS IN SCENARIO 2 -

ENVIRONMENT

Models Accuracy F1-score G-mean

DT 76% 54% 44%
RF 85% 54% 32%
NB 86% 52% 26%
MLP 86% 51% 23%
KNN 85% 52% 26%

On the other hand, the other models did not achieve sig-
nificant results, especially considering the average F1-score,
which only increased by 2% for the Random Forest and
Decision Tree models, and for the NB, MLP, and KNN
classification algorithms, there was no noticeable difference,
indicating a difficulty for these models in capturing possible
relationships in the dataset.

Figure 2 shows the same pattern presented in Scenario
1-Base, where the variables ”time,” ”age,” and ”day of the
week” occupy the top positions in importance, was repeated
in this second scenario; however, the six new features related



Fig. 1. Permutation Importance for the Decision Tree in Scenario 1-Base

to the environment occupied the next six most important
positions. Especially the region and road type were the ones
that contributed the most to the predictive capacity of the
model; in contrast, the variable added in this scenario, which
obtained the lowest importance value, was the ”time of day.”

C. Scenario 3 - Vehicles

Table III presents the results of the classification models
for this scenario, demonstrating consistent improvements in
the average F1-Score and Geometric Mean across all models.
The Random Forest and Decision Tree models showed a
considerable increase in predictive capacity, while regarding
the average F1-score, the Naive Bayes model yielded the
best result: 61%, indicating a percentage increase (relative
variation) of 17.31% compared to scenarios 1 and 2. Figure
3 suggests that this increase may be attributed, in part, to the
influence of attributes related to vehicles, with vehicle type
being the most influential.

TABLE III
PERFORMANCE OF CLASSIFICATION MODELS IN SCENARIO 3-VEHICLES

Models Accuracy F1-score G-mean

DT 79% 59% 52%
RF 86% 59% 41%
NB 84% 61% 49%
MLP 86% 55% 31%
KNN 85% 57% 37%

Broeck et al. [18] stated that calculating Shapley values for
probabilistic models like Naive Bayes is impractical due to
its complexity. Shapley values assess individual contributions
of features in cooperative game theory scenarios. Since Naive
Bayes calculates probabilities independently for each feature,
the concept of Shapley values does not directly apply to it.
Therefore, the focus here is to analyze the Decision Tree,
the second-best model regarding the F1-score and G-mean
metrics.

In Figure 4, it is possible to verify the distribution of
importance based on SHAP values for the Decision Tree.
The higher the SHAP value (further to the right on the X-
axis), the more impactful it is in deciding whether an accident
will be severe, and conversely, negative values indicate if
an accident will be mild. The order of features on the Y-
axis corresponds to each variable’s average absolute value of
SHAP values. This order represents the average impact of each
variable in deciding the severity of an accident. In this case, the
”vehicle type” variable was the most impactful on the model’s
predictive capacity, while the variable indicating whether an
accident occurred on a holiday had the least impact.

Upon analyzing the variable ”type of involved party in
the accident,” it is observed that the model exhibits a high
tendency to classify the accident as severe when it involves
a pedestrian. Since the number of occurrences involving
pedestrians accounts for only 1.57% of the total number of
those involved in accidents, this explains why this variable
did not assume a position of higher importance in the analysis
of SHAP values.

Price and year of manufacture are the next variables in order
of importance and are related to vehicles. In the scatter plot
represented in Figure 11, it is possible to visualize the effect of
the ”year of manufacture” variable on the predictions made by
the model. It is common knowledge that newer vehicles usu-
ally have a higher monetary value, and this trend is evidenced
in Figure 5. It is also noted that as the year of manufacture of
vehicles decreases, there is a subtle reduction in SHAP values,
suggesting that newer vehicles have a lesser contribution to
predicting severe accidents and a more significant contribution
to mild accidents.

In Figure 5, it is also possible to observe a concentration of
data instances with a lower year of manufacture of the vehicle,
presenting SHAP values above 0.2. This suggests that older
vehicles play a significant role in predicting severe accidents.
On the other hand, recently manufactured vehicles are more
distributed in the SHAP value range between -0.2 and 0.2.



Fig. 2. Permutation Importance for the Decision Tree in Scenario 2-Environment

Fig. 3. Permutation Importance for the Decision Tree in Scenario 3-Vehicles

V. FINAL DISCUSSIONS, CONCLUSIONS AND FUTURE
WORK

The incremental approach of variables by different scenarios
evaluated in this study offered a deeper understanding of
the impact of added variables on the models, allowing the
identification of their relevance in prediction. Although this
strategy may limit the analysis of interactions between vari-
ables, the scenarios were built progressively, without excluding
variables.

Data imbalance was observed in all three evaluated scenar-
ios, with an average accuracy of 84.07%, while the average
F1-score and geometric mean were lower considering the
imbalance. Decision Trees and Random Forests showed better
performance in terms of F1-score and geometric mean. At the
same time, the other algorithms had similar results, except
for Naive Bayes, which stood out in Scenario 3-Vehicles
with an average F1-score of 61%. All models were evaluated

TABLE IV
STANDARD DEVIATION (SD) OF F1-SCORE ACROSS ALL SCENARIOS

Scenarios Models
DT RF NB MLP KNN

Scenario 1
F1-Score SD 0.19% 0.13% 0.45% 0.40% 0.39%

Scenario 2
F1-Score SD 0.056% 0.11% 0.48% 0.73% 0.21%

Scenario 3
F1-Score SD 0.06% 0.45% 0.28% 0.45% 0.22%

using k-fold and demonstrated consistency and stability across
different folds, with a standard deviation (SD) of the mean F1-
score of less than 0.5% in all scenarios, as indicated in Table
IV.

An analysis by scenarios conducted in this study, see a sum-
marization in Table V, indicates that variables related to the
environment (Scenario 2-Environment) contribute little to the



Fig. 4. Shapley Values for Decision Tree in Scenario 3-Vehicles

TABLE V
F1-SCORE OF THE CLASSIFICATION MODELS ACROSS ALL SCENARIOS

Models
F1-score

Scenario 1 Scenario 2 Scenario 3

DT 52% 54% 59%
RF 52% 54% 59%
NB 52% 52% 61%
MLP 51% 51% 55%
KNN 51% 52% 57%

predictive capacity when compared to vehicle characteristics
added in Scenario 3-Vehicles. In this third scenario, all models
showed better performance, indicating a relationship between
these attributes and the severity of accidents. The Naive Bayes
classifier achieved a significant increase in the F1-score, with
a percentage increment of 17.31% compared to Scenarios 1
and 2. At the same time, the Random Forest and Decision Tree
recorded a relative increase in F1-score of 13.46% compared
to Scenario 1 and 9.26% compared to Scenario 2.

Table V also demonstrates that the K-Nearest Neighbors
and Multilayer Perceptron classifiers failed to capture any
importance from the environment variables added in Scenario
2, as their predictive capacity remained basically unchanged
compared to the first scenario. Only with the addition of
vehicle factors was the improvement in classification results
achieved; however, KNN and MLP did not perform better

than tree-based models (DT and RF) and the Naive Bayes
probabilistic classifier.

By analyzing and comparing the results of the different
scenarios, it is possible to identify which factors are most
relevant for the prediction task. The ”vehicle type” variable
was identified as the primary one for classifying the severity of
an accident. The most important vehicle type for the predictive
capacity of the DT is ”Motorcycle,” a result not exclusive to
the dataset under study, as this pattern was also observed in
the analysis conducted in the work of Yap et al. [6], which
analyzed a dataset of accidents in the United States from 2004
to 2018.

It is evident from Figure 4 that the variables ”road type” and
”rural road” play a vital role in the classification capacity of
the Decision Tree in Scenario 3-Vehicles. However, analyzing
the metrics of Scenario 2-Environment and the importance
graph, they are not as impactful, and this increase occurred
only when vehicle-related attributes were added. Thus, such
attributes should not be neglected, as the predictive capacity
of the models increased considerably.

As evidenced earlier, for the ”rural road” factor, there is a
predictive trend to classify severe accidents if they occur in
a non-urban environment. This trend was also observed in a
study analyzing a dataset of accidents that occurred in New
Zealand [10]. In Brazil, considering that highways crossing
urban areas are subjected to more safety restrictions than non-
urban highways [19], such as speed limits and more frequent
signage, this may be one of the reasons explaining the trend
observed in the Decision Tree.

Initially, the improvement in metrics observed across sce-
narios may seem insignificant. However, it is important to
emphasize that this improvement occurred precisely in metrics
that take into account the imbalance present in the dataset.
In other words, as new variables were added, the models
were able to capture relevant patterns that contributed to the
increase in predicting severe accidents, which represent the
minority and most critical class. Although preventing accidents
as a whole is an important goal, directing resources and
efforts towards predicting and preventing severe accidents can
bring substantial benefits to society, including reducing deaths,
reducing both public and private costs, and overall improving
road safety.

The methodology used demonstrated that the analysis di-
vided into scenarios contributed to understanding each factor’s
impact on accidents. Creating new features was fundamental
in expanding the existing explanations of accident causes.
Thus, future work can continue the analysis of occurrences on
Brazilian highways, since there are numerous attributes related
to these occurrences that were not present in the PRF dataset
and can be collected and analyzed in the future. Considering
that the geographical location where the accident occurred
has some importance, an interesting possibility would be to
conduct a more specific analysis of the regions of Brazil and
use the Latitude and Longitude of the accident point, which
are attributes present in the PRF database. Another possibility
is to analyze the distribution of traffic signs and speed radars



Fig. 5. Dependency analysis on the year of manufacture of the vehicle using SHAP

to determine if there’s a correlation with accident sites, which
could offer valuable insights.

The SHAP values explainability technique is precious and
offers a visual explanation of the relationships in the model’s
predictive capacity. However, in this work, we restricted its
use only to the Decision Tree due to the high computational
cost and significant time required to perform the calculations.
Future work may expand the use of this technique to explain
other machine-learning models. Thus, it would be possible
to obtain comprehensive and interpretable insights into the
contribution of each variable in different prediction algorithms.
This would allow for a deeper and more robust understanding
of the factors influencing the predictive capacity of these
models. More advanced data mining techniques, such as
Deep Neural Networks, could be an interesting approach to
analyzing highway accidents.
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