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Abstract

The popularization of portable devices such as smartphones and the world-
wide adoption of social media services make it increasingly possible to be
connected and share data anywhere, anytime. Data from this process rep-
resent a new source of sensing, which is called participatory sensor network
(PSN). In this scenario, people participate as social sensors voluntarily pro-
viding data that capture their experiences of daily life. This large amount
of social data can provide new valuable forms to obtain information that is
currently not available within the same global reach and be used to improve
decision-making processes of different entities (e.g., people, groups, services,
and applications). The objective of this chapter is to discuss participatory
sensor networks, presenting an overview of the area, challenges, and opportu-
nities. We aim to show that PSNs (e.g., Instagram, Foursquare, and Waze)
can act as valuable sources of large scale sensing, providing access to im-
portant characteristics of city dynamics and urban social behavior, more
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quickly and comprehensively. This chapter start studying the properties of
PSN. Next, it discusses how to work with PSN, showing its applicability in
the development of more sophisticated applications. In addition, it discusses
several research challenges and opportunities in this area.

Keywords: Urban computing, location-based social networks, participatory
sensor networks, city dynamics, urban social behavior, social media,
challenges, opportunities
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1. Introduction

The study of urban data provided by users in Participatory Sensor Net-
works (PSNs) is a recent research area. PSNs allow large scale observation of
people’s actions in (almost) real time during long periods of the time. With
that, PSNs have the potential to become a fundamental tool to better under-
stand urban human interaction in the future. Data from PSNs can increase
our knowledge over different aspects of our life in urban scenarios, which can
be useful in the development of more sophisticated applications in several
segments, such as, in the urban computing area [82].

Furthermore, PSNs have the potential to complement traditional Wireless
Sensor Networks (WSNs) [2] in several aspects. While WSNs are designed to
sense limited size areas, such as forests and volcanoes, PSNs can reach areas
of varying size and scale, such as large cities, countries, or even the planet.
Additionally, a WSN is more subject to failure, since its operation depends
on proper coordination of actions of its sensor nodes that have severe power,
processing, and memory constraints. On the other hand, PSNs are formed by
autonomous and independent entities, i.e., humans with their mobile devices.
This makes the sensing task highly resilient to individual failures.

The objective of this chapter is to discuss the concept of participatory sen-
sor networks, presenting an overview of the area, research trends and the main
challenges. We aim to show that the PSNs (e.g., Instagram1, Foursquare2,
and Waze3) can act as valuable sources for large scale sensing, providing ac-
cess to important features of city dynamics and urban social behavior quickly
and comprehensively. First, we analyze the properties of PSN data studied
on various systems. Next, we discuss how to work with PSN data, showing
its applicability in the development of more sophisticated applications. Fur-
thermore, we discuss several challenges and research opportunities related to
participatory sensor networks.

The remainder of this chapter is organized as follows. Section 2 discusses
the emerging concept of participatory sensor networks. Section 3 presents
the properties of PSN. Section 4 discusses how to work with PSN data, in-
cluding how to obtain them. Section 5 presents challenges and opportunities
about current research topics related to PSNs. Finally, Section 6 presents

1http://www.instagram.com.
2http://www.foursquare.com.
3http://www.waze.com.
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the conclusions.

2. Participatory Sensor Networks

There are several ways to get urban data, among them we can mention the
emerging participatory sensor networks (PSNs) [12, 82]. Section 2.1 presents
the definition of PSN; Section 2.2 discusses the functioning of PSN, while
Section 2.3 illustrates examples of PSNs.

2.1. What is Participatory Sensor Network?

Participatory sensor network rely on the idea of participatory sensing [12],
and can be defined as a system that supports a distributed process of gath-
ering data about personal daily experiences and various aspects of the city.
Such a process requires the active participation of people using portable de-
vices to voluntarily share contextual information and/or make their sensed
data available, i.e., the users manually determine how, when, what, and
where to share the sensed data. Thus, through PSNs we can monitor differ-
ent conditions of cities, as well as the collective behavior of people connected
to the Internet in (almost) real time [82].

PSNs have become popular thanks to the increasing use of portable de-
vices, such as smartphones and tablets, as well as the global adoption of
social media services. Therefore, a central element of a participatory sensor
network is a user with a portable computing device. In this scenario, people
participate as social sensors, voluntarily providing data on a particular as-
pect of a place that implicitly capture their experiences of daily life. These
data can be obtained with the aid of sensing apparatus, for example, sensors
embedded in smartphones (e.g., GPS, accelerometer, microphone, and so on)
or by human sensors (e.g., vision). In the latter case, data are subjective
observations produced by the users [82].

PSNs provide unprecedented opportunities to access sensing data on a
global scale. This large amount of data ease the gathering of information
that is not promptly available with the same global reach, and can be used to
improve the processes of decision making of different entities (e.g., individuals,
groups, services, and applications).

It is worth mentioning that several terms defined recently, for example,
Humans as Data Sources and Ubiquitous Crowdsourcing reflect basically the
idea of participatory sensor networks [91, 67, 34]. It is also important to
mention that the term opportunist sensing [54], which is a type of sensing
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that users also uses portable computing devices in the sensing process, can
lead to confusion with the term participatory sensing. Participatory sensing
differs from opportunistic sensing mainly by the user participation, where in
the latter case the data collection stage is automated without user participa-
tion [55, 54]. Opportunistic sensing supports the sensing process of an ap-
plication without requiring user efforts, determining automatically when the
devices should be used to meet specific demands of the applications. Thus,
applications can take advantage of the sensing capabilities of all devices of
users of the system without the need of human intervention in this process
[55].

2.2. The Functioning of PSN

Similarly to traditional wireless sensor networks, data sensed in a PSN
is sent to the server, or “sink node”, where the data can be accessed (using,
for example, APIs, such as the API of Instagram4). But unlike WSNs, PSNs
have the following characteristics: (a) sensor nodes are autonomous mobile
entities, i.e. a person with a mobile device; (b) the cost of the network
is distributed among the sensors, providing a global scale; (c) the sensing
depends on the willingness of people to participate in this process; and (d)
sensor nodes do not have severe limitations of energy.

PSNs have the potential to complement WSNs in several aspects. Tra-
ditional wireless sensor networks are designed to sense areas of limited size,
such as forests and volcanoes. In contrast, PSNs can reach areas of different
sizes and scale, such as large cities, countries or even the planet [82]. Addi-
tionally, a WSN is subject to failure, since its operation depends on proper
coordination of actions of its sensor nodes that have severe power, process-
ing, and memory constraints. Since PSNs are formed by autonomous and
independent entities, human beings, the sensing task becomes more robust
to individual failures. Obviously, PSN also bring several new challenges, for
example, its success is directly linked to the popularity of smartphones and
social media services.

Figure 1 illustrates the idea of PSN consisting of users with their mobile
devices sending sensed data about their locations for systems in the Internet.
The figure shows sharing activities (represented by dots in the cloud) of four
users in three different moments in time, labeled as “Time 1”, “Time 2”, and

4http://instagram.com/developer.
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Figure 1: Ilustration of participatory sensor network (image from [82]).

“Time 3”. Note that a user does not participate necessarily in the system at all
times. After a certain time, this data can be analyzed in different ways. For
example, the bottom rightmost part of the figure shows, by an aggregate view,
a directed graph in which nodes/vertices represent the locations where the
data has been shared, with edges connecting locations that were shared by the
same user. Using this graph we can extract, for instance, mobility patterns of
users that can be used to perform load management more efficiently in urban
infrastructure of mobile networks. In fact, knowledge discovery in PSNs goes
together with the use of graph/networks theory [29, 71, 70].

2.3. Examples of PSNs

Location-based social networks, which are a special kind of social media
that combine online social networks5 features and the possibility of share
data with spatial and temporal information6 can be considered the most
popular examples of PSNs. It is possible to find several examples of such
systems already deployed on the Internet, such as Waze, which serves to
report traffic conditions in real time; Foursquare to share where the user is
visiting; and Instagram, to send real time images to the system. In particular,
Instagram can be seen as one of the most popular PSN, with 200 million

5Virtual platform that built and reflects social relations of real life among people.
6Data type that allows, for example, building location-based services.
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users [44]. When considering this network, the sensed data is a picture of a
specific place. We can extract information of such data in various ways. One
possibility is to visualize in real time how is the situation in a certain area
of the city.

Note that all described systems above are composed of an online social
network. However, there are several examples of PSNs that do not contain
online social networks. For example, Weddar7 to report weather conditions,
NoiseTube8 to share noise level in a given region of the city, or Colab9 for
sharing various problems of cities.

Some other types of social media, such as Twitter10, which allows its users
to share personal updates in texts up to 140 characters, known as “tweets”,
may also be examples of PSNs. Twitter is considered an example of PSN
because the content shared on it may also enable the monitoring of various
aspects of cities, as well as the collective behavior of people in near real
time. For example, people could use their portable devices to share tweets
containing real time information about demonstrations or accidents in the
city. Beyond these examples, we can also mention GarbageWatch [15] to
monitor garbage aspects of a city. This example is particularly interesting
because it illustrates that the use of the Web is not mandatory in a PSN.
Sensed data can be sent to a specific application running on the Internet but
outside the Web.

3. Properties of PSN

Many questions arise from the concept of participatory sensor networks
(PSNs). Among them, one key question is: what are the properties of PSN?
Answering this question helps us to understand, for instance, what are the
limitations of PSNs and what type of applications we can use data from
PSNs.

As data provided by PSNs can be complex, a key step in any investigation
is to characterize the data collected in order to understand their challenges
and usefulness. Thus, in this section we study the properties of three par-
ticipatory sensor networks for location sharing, namely, Foursquare, Gowalla

7http://www.weddar.com.
8http://noisetube.net.
9http://www.colab.re.

10http://www.twitter.com.
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Table 1: Description of used datasets.
Location sharing services

System # check-ins Interval
Foursquare1 ≈5 milion April 2012 (1 week)
Foursquare2 ≈12 milion Feb2010-Jan2011
Foursquare3 ≈4 milion May 2013 (2 weeks)
Gowalla ≈6 milion Feb2009-Oct2010
Brightkite ≈4 milion Apr2008-Oct2010

Photo sharing services

System # of Photos Interval
Instagram1 ≈2 milion Jun2012-Jul2012
Instagram2 ≈2 milion May 2013 (2 weeks)

Traffic alert services

System # of alerts Interval
Waze +212 thousands Dec2012-Jun2013

and Brightkite11. In addition, we also study a PSN for photo sharing, partic-
ularly Instagram, as well as a PSN for traffic alert sharing (Waze).

The rest of this section is organized as follows. Section 3.1 describes the
datasets of the PSNs used in this chapter. Next, Section 3.2 analyzes the cov-
erage of these PSNs in different spatial granularity. Section 3.3 discusses the
frequency that nodes share data on individual regions of our dataset. Sec-
tion 3.4 discusses the seasonality in the sensing process. Finally, Section 3.5
studies the behavior of the nodes of the PSNs.

3.1. Data Description

Table 1 displays all datasets considered in the analysis performed in this
section. The data were collected through Twitter because in addition to
plain text users can also share other types of contents, for instance, photos,
check-ins, or traffic alerts, from an integration with Instagram, Foursquare,
or Waze. In this case, Instagram photos, Foursquare check-ins, or Waze alerts
announced on Twitter become available publicly, which by default does not
happen when the data is published solely in the analyzed systems. As we can
see in Table 1, the data reflect different periods. Furthermore, the datasets
include a significant amount of data: Over 30 million records considering all
sources.

Each sensed data (photo, check-in, or alert) consists of GPS coordinates
(latitude and longitude), the data sharing time, and the id of the user who

11Gowalla and Brightkite are not in operation currently.
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Figure 2: Coverage of PSNs. Number of data n per pixel indicated by the value of φ
shown in the figure, where n = 2φ − 1 (images from [84, 87]).

shared the data. Foursquare1 dataset has extra information about the type
of place: category (e.g., food) and a local unique identifier. More information
about these specific datasets and how they were obtained can be found in [17,
83, 85, 86, 87]. Section 4.1, however, discuss how to obtain data from PSNs.

3.2. Network Coverage

In this section, we study the coverage of PSN at different spatial gran-
ularity, starting from the all globe, then cities and, finally, specific areas
of a city. Figure 2 shows the global coverage in different PSNs: Foursquare
(Foursquare1 dataset, Figure 2a); Gowalla (Figure 2b); Brightkite (Figure 2c);
Instagram (Instagram1 dataset, Figure 2d); andWaze (Figure 2e). Data from
these figures represent a heatmap of user participation: darker colors repre-
sents a larger number of shared data in a given area. As we can see, the
coverage is very comprehensive and has a planetary scale.

Now we evaluate the participation of users in several large cities located
in different regions, but we show the results only for some of them: New York,

11



(a) New York - Foursquare (b) Cairo - Foursquare (c) Rio de Janeiro -
Foursquare

(d) New York - Instagram (e) Cairo - Instagram (f) Rio de Janeiro - Insta-
gram

Figure 3: Spatial coverage of Foursquare and Instagram in 3 populous cities around the
world (images from [84, 85]).

Rio de Janeiro and Cairo. Figure 3 shows a heatmap of sensing activity for
each of these cities. Again, darker colors represent larger numbers of data
in a given area. We observe a high coverage for some cities, as shown in
Figure 3a and 3d (New York). However, as we can see in Figure 3b and
3e, the sensing in Cairo, city that also has a high number of inhabitants, is
significantly lower. Such difference in coverage can be explained by several
factors. Besides economic aspects, cultural differences can have a significant
impact on the adoption and use of these considered systems in Cairo [6].

In addition, we can observe that the coverage in some cities, as in Rio
de Janeiro (Figures 3c and 3f), is far more heterogeneous when compared
with New York coverage. This is probably because of particular geographical
aspects, i.e., large green areas and large portions of water. Rio de Janeiro
has the largest urban forest in the world, located in the middle of the city,
and many hills of difficult access for humans. These geographical aspects
limit the sensing coverage. In addition, the points of public interest, such as
tourist spots and shopping centers, are unevenly distributed around the city.

12



Figure 4: Spatial coverage of PSN for traffic alerts sharing in Rio de Janeiro (image
from [87]).

There are large residential areas with few points of this type, while other
areas have high concentrations of these points.

The spatial coverage of data of PSN for traffic alerts is not as comprehen-
sive as PSNs for location and photo sharing. This can be seen in Figure 4,
which shows the number of alerts in different regions of Rio de Janeiro by
a heatmap. One factor that may help to explain this result is the popula-
tion of users of the dataset of traffic alerts, which is smaller than the others
studied. Another factor is that users may have fewer opportunities to share
traffic alerts compared to opportunities to share photos or check-ins.

As the activity of participation can be quite heterogeneous within a city,
we analyze the coverage of PSN in specific areas of a city. To have an id of
a specific area of the city for datasets of Instagram and Waze, we propose
to divide the area of the cities into smaller rectangular spaces, as in a grid12.
We call each rectangular area of a specific area within a city. We consider
that a specific area has the following definition: 1·10−4◦ (latitude) × 1·10−4◦

(longitude). This represents an area of approximately 8×11 meters in New
York and 10×11 meters in Rio de Janeiro. For other cities, the areas can
also vary slightly, but not enough to significantly affect the analysis.

Figure 5 shows the Complementary Cumulative Distribution Function
(CCDF) of the number of shared data (check-ins, photos, or alerts) by specific
area of all locations in our datasets. First, note that, in both cases, a power
law13 describes well this distribution. This implies that in most of the specific

12Note that in selected areas borders are not considered.
13Mathematically, a quantity x follows a power law if it can be obtained from a prob-
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Figure 5: Distribution of number of data in specific areas in log-log scale (images from [84,
84, 87]).

areas there are few shared data, while there are a few areas with hundreds of
shared data. These results are consistent with the results presented in [73],
work that studied the participation of users in location sharing systems. In
the analyzed systems, it is natural that some areas have more activity than
others. For example, in tourist areas the number of photos shared tends to be
higher than in a supermarket, although a supermarket is usually a popular
site. If a particular application requires a more comprehensive coverage, it
is necessary to encourage users to participate in places they normally would
not. Micro-payments or scoring systems are examples of alternatives that
could work in this case. We discuss these opportunities in Section 5.3.

We show that a PSN may have a global scale coverage. However, this
coverage can be quite uneven, where large areas are practically uncovered.
With that in mind, Figure 6 shows the percentage of different locations where
users shared data in a given time interval in Instagram and Foursquare14,
which have 598,397 and 725,419 unique places, respectively. The maximum
percentage of distinct places that have data shared on it per hour is less than
3% for all systems. This indicates that the instant coverage of these PSNs
is very limited when we consider all locations that could be sensed on the
planet (considering all the locations already sensed at least once). In other
words, the probability of a random specific area be sensed at a random time
is very low.

ability distribution p(x) ∝ x−α, where α is a constant parameter known as exponent or
scale parameter, and it is a value typically between 2 < α < 3 [19].

14We consider the datasets Instagram2 and Foursquare3 because they represent the
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Figure 6: Percentage of specific areas sensed over time (image from [82]).

3.3. Sensing Interval

PSNs are very scalable because their nodes are autonomous, that is, users
are responsible for their own operation and functioning. As the cost of in-
frastructure is distributed among the participants, this huge scalability and
coverage is achieved more easily. The success of this type of network is to
have sustainable and high quality participation. In other words, the sensing
is efficient since users are kept motivated to often share their resources and
sensed data.

This motivates the study of frequency that users perform data sharing in
PSNs. In [85, 87, 84] the authors show that there are times when a lot of
data are shared in interval of few minutes and times when there is no sharing
for hours. This may indicate that the majority of data sharing occurs at
specific intervals, probably related to the routine of people. For example,
photo sharing in restaurants tends to happen more in the lunch and dinner
hours. Applications based on this type of sensing should consider that user
involvement can vary significantly over time.

Figure 7 shows the Cumulative Distribution Function (CDF) of the inter-
val between photos shared by the same user on a popular specific area. We
can see that a significant portion of users perform consecutive photos sharing
in a short time interval. For example, about 20% of all observed photo shar-
ing occurs within 10 minutes. This suggests that users tend to share more
than one photo in the same area. Noulas et al. [73] also noted that a signif-
icant number of check-ins on Foursquare are performed within a short time.
For example, more than 10% of check-ins occur within 10 minutes.

same time interval.
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(a) Instagram

Figure 7: Cumulative distribution of the time interval between photos shared in a popular
specific area (image from [85]).

3.4. Routines and Data Sharing

We analyze now how the routine of humans affect data sharing. Figure 8
shows the weekly data sharing pattern in all types of PSNs analyzed15. As
expected, data shared in PSNs have a diurnal pattern, which implies that
during the night the sensing activity is quite low.

Considering weekdays, we can see a slight increase in activity throughout
the week, with few exceptions when there is a peak of activity. The study of
Cheng et al. [17], who analyzed systems for location sharing, also observed
this same behavior without any day as an exception.

We can also note that some activity peaks vary throughout the day ac-
cording to the purpose of the PSN. As we can see in Figure 8, in PSN for
location sharing (Figures 8a–c) there are three peaks evident around the
breakfast, lunch, and dinner time. This was also noted by Cheng et al. [17].
In PSN for photo sharing (Figure 8d) there are only two obvious peaks occur-
ring around lunch and dinner time. And in the case of PSN for traffic alerts
sharing (Figure 8e) there are also two obvious peaks, one around 7:00am and
8:00am, and another around 6:00pm, coinciding with typical times of highest
traffic intensity.

Figure 9 shows the temporal sharing pattern for Instagram and Foursquare
considering all datasets. This figure shows the average number of data shared
per hour during weekdays (Monday to Friday) and during weekend (Satur-
day and Sunday). Analyzing different patterns of behavior for weekdays and

15The sharing time was normalized according to the location where the data was shared,
making use of geographic information of the location.
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Figure 8: Data sharing pattern during weekdays (images from [84, 85, 87]).

weekend we can see that the pattern is significantly different. Note that
the peaks observed on weekdays are not evident on weekends. The lack of
well defined routine on weekends is one of the possible explanations for that.
Moreover, differences between the results for weekdays and weekends are re-
lated to the type of the analyzed system. For example, as on weekends many
people do not need to drive, it is natural to expect a lower volume of data in
Waze.

Surprisingly, we see that each sharing pattern is very similar, despite the
huge gap between the samples (approximately one year). This happens for
weekdays and weekends, suggesting that user behavior in both systems tends
to remain consistent over time. This is an interesting and important result
because it indicates that we can use different datasets of similar purposes.

We now show how the routines impact on the sharing behavior during the
week. For this analysis, we consider the datasets of Instagram and Foursquare
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Figure 9: Temporal sharing pattern on Instagram and Foursquare (images from [86]).

for New York, Sao Paulo, and Tokyo. The results are shown in Figure 1016.
In all figures we display data from datasets of the same period (Instagram2
and Foursquare3) for two cities in the same country, and data from a dataset
referring to a previous period (Instagram1 and Foursquare1) to one of these
cities, as a comparison reference.

First, note the distinction between the curves of each city in the same
system (e.g., in Instagram Figures 10a, 10c, and 10e) and in different systems
(e.g., Figures 10a and 10b for New York). Then note that the sharing pattern
for each city in the same country is quite similar, which may be a consequence
of the cultural patterns of inhabitants of those countries. That is, in some
way, a signature of cultural aspects, illustrating once again the potential of
this type of data for the study of city dynamics and urban social behavior.

3.5. Node Behavior

In this section we analyze the performance of PSN nodes (i.e., users)
regarding data sharing. Figure 11 shows the distribution of the number of
data (photos and alerts) shared by each user in our database. As we can
see, the distribution has a heavy tail, meaning that the participation of users
can be very uneven. For example, about 40% of users contributed with only
a picture during the period considered, while that 17 % and 0.1 % of users
contributed with more than 10 and 100 pictures, respectively. It is natural
that this variability occurs for several reasons. For instance, some users may
give more importance to privacy questions than others. A heavy tail is also
observed in the distribution of the number of check-ins, as shown by Noulas

16Each curve is normalized by the maximum number of shared content in a specific
region representing the city.
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Figure 10: Temporal sharing pattern for Instagram and Foursquare to New York, Sao
Paulo, and Tokyo during weekdays (images from [86]).

et al [73]. About 20% of users performed only one check-in, 40% above 10,
while about 10 % performed more than 100 check-ins.
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Figure 11: Distribution of the number of data shared by users (images from [85, 87]).

3.6. Discussion

In this section we studied the properties of PSNs for location sharing,
photo sharing, and traffic alert sharing. These PSNs have several properties
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in common: (i) global scale; (ii) highly unequal frequency of data sharing,
both spatially and temporally, which is highly correlated with the typical
routine of people; (iii) user participation in the number of shared data and
where such data are shared can vary significantly; and (iv) temporal sharing
pattern for the same type of system do not vary considerably over time.

The properties identified here show the potential of PSNs to conduct
several studies on city dynamics and the urban social behavior, as discussed
in the next section. Moreover, the understanding of the user behavior is the
first step to model it. With models that explain user behavior we might
predict actions and develop better systems for load capacity planning.

It is important to point out some possible limitations of our datasets.
First, they reflect the behavior of a fraction of the citizens of the city. Some
of our datasets are based on data shared by users of Foursquare, Instagram
and Waze on Twitter. Therefore, data is skewed to the citizens that use
these systems. Second, our datasets are based on a limited sample of data.
This means we have just a sample of activities. External factors, such as
bad weather may have affected the total number of data we collect for some
places, especially in outdoor locations. Therefore, before drawing conclusions
with PSN data, it is highly recommended comparing the results with data
obtained in a traditional way (offline), as done, for example, in [89].

4. Working with PSN Data

In this section we discuss how to work with PSN data. In Section 4.1
we present how to obtain data from PSN. Next, we discuss some approaches
to extract and generate contextual information from data of participatory
sensor networks. These studies are grouped into two classes: Understanding
city dynamics (Section 4.2); and Social, Economic, and Cultural patterns
(Section 4.3).

4.1. Data Collection

In this section we introduce three main ways to collect data in PSNs:
APIs, Web crawler, and applications.

4.1.1. APIs

The web is full of sources of data, among them PSN, representing a huge
opportunity to researchers in several areas to collect large-scale data and
extract knowledge from them.
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Some PSNs provide APIs that could be used to collect data. Through
this process is possible to obtain data from PSNs that can be used in other
applications or in specific analysis. Several popular PSNs, such as Twit-
ter, Instagram, and Foursquare, have APIs to access data shared by users.
However, it is common to have different rules for their use.

Basically, there are two main ways of working with APIs: (1) Based on
streaming; (2) Based on requests. The API based on streaming allows the
collection of data in (almost) real time that they are published in a PSN.
Twitter Streaming API, for instance, allows collecting in almost real time
public tweets. On the other hand, an API based on requests make data
available upon request, which typically includes specifics demands, such as all
the last 10 tweets from a user. Both methods can suffer limitations about the
amount of data that can be provided. For example, Flickr API allows 5,000
requests per hour, and the Twitter API might make available approximately
1% from all the total public tweets. This might prevent some kind of analysis
that needs a large number of samples, for instance, in one hour period.

In fact, the use of APIs is a popular way to obtain data. Data collected
from APIs, such as Twitter API, was used in many ways, ranging from the
measurement of users influence in an network [16] to predict earthquakes
[79].

An example of the use of Twitter Streaming API, written in (pseudo)
Python and using TwitterAPI library17, is showed in Algorithm 1. This
algorithm accesses tweets searching by keyword “foursquare”. As we can
see, in few lines of code is possible to collect data from Twitter. Figure 12
illustrates this result with two tweets: tweet1 and tweet2.

Some PSNs offer APIs, but with restrict access. This is the case for
Foursquare, where few data is possible to be collected without user agreement.
Most data available through this API are related to places, such as: tips,
location, and pictures.

These limitations encourage the collection of data using alternative ways.
For instance, in [89] the authors collected data about Foursquare check-
ins through public messages shared at Twitter. This is possible because
Foursquare allows users to share check-ins in Twitter. This procedure is
shown in Figure 12. This picture shows a tweet that came from Foursquare

17https://github.com/geduldig/TwitterAPI.

21



Algorithm 1 Example of Twitter data collection
1: from TwitterAPI import TwitterAPI ⊲ Library that ease the interaction with the Twitter API
2:
3: twitter api = TwitterAPI(consumer key = ‘XX’,
4: consumer secret = ‘XX’,
5: access token key = ‘XX’,
6: access token secret = ‘XX’) ⊲ A registration in the API website provides the credentials needed
7:
8: filters = {‘track’: [‘4sq’]} ⊲ Searching tweets with the keyword “foursquare”
9: stream = twitter api.request(‘statuses/filter’, filters)
10:
11: for item in stream.get iterator() do

12: print item[‘text’] ⊲ Display the tweet text
13: end for

and has an URL that represents a web page with more information about
the check-in announced. In the example, the page represents a check-in per-
formed at a cafe. To obtain more data about the check-in in this page it
is used another data collection technique called Web Crawler, introduced in
the next section.

Figure 12: Steps for Foursquare data collection through tweets.

4.1.2. Web Crawler

Not all data sources available on the Internet provides direct access to
their data through APIs. For this reason, it is necessary to use other strate-
gies to obtain data. One of them is called Web Crawler, which are programs
that analyzes Web pages searching for relevant data [3]. A Web crawler
access some predefined Web pages and retrieve data from them.

Data collection throughWeb crawler depends on the data source structure
that we desire to obtain data, and the approach chosen. The data source
structure contains the data that we want in the Web page. For instance,
the content of some HTML tags. With this, the construction of a Web
crawler demands typically text mining to the extraction of the desired data.
However, other non conventional ways of data extraction is possible as well.
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For example, in [94] the authors built a Web crawler to collect information
about traffic by taking screenshots of maps, such as Bing Maps18, containing
this information. More details about this procedure are provided in [94].

4.1.3. Applications

Another way to collect data is creating applications in existing platforms.
Some popular websites, such as Facebook19 and Instagram allow the creation
of applications inside their platforms. In this way, developers can offer ser-
vices using data that are shared in those apps.

Facebook, for instance, does not allow the collection of data about their
users directly by APIs or Web Crawlers. However, it is possible to create
applications in the Facebook platform for this purpose. When a Facebook
user install an application and authorizes it to manipulate his/her data, the
application can obtain diverse information, such as the shared content with
his/her friends. Next we illustrate some initiatives in this direction.

In [69] the authors used this approach for data collection. They created
an application for Facebook specifically to collect data that allows the study
of behavior of people using this type of application. Another example was the
application used in [102]. The authors created an application for Facebook
that obtain the last likes20 given by the user to draw a personality profile.

It is also possible to create applications that do not depend on platforms.
This is the case of the PSN NoiseTube [65]. The authors created an applica-
tion that enable users to report noises levels in the city. These data allow the
identification, for instance, of areas in the city with level of noise above of
the limits of the law. Another example is Colab, cited before. Besides that,
there is a platform called ohmage21 that ease the construction of applications
to obtain data of participatory sensing.

With data from PSNs, that could be obtained using one of the approaches
mentioned, we can extract knowledge using different strategies, as is discussed
in the following sections.

18http://www.bing.com/maps.
19http://www.facebook.com.
20A like is a user interaction with Facebook in which he demonstrates that enjoyed a

shared item.
21http://ohmage.org.
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Figure 13: “Livehoods” found in New York (image from [22]).

4.2. Understanding City Dynamics

Information obtained from PSNs have the power to change our perceived
physical limits, as well as help to better understand the city dynamics. This
section focuses on the presentation of studies in this direction.

Cranshaw et al. [22] proposed a model to identify different areas of a city
that reflect current patterns of collective activities, introducing new limits for
neighborhoods. The idea is to expose the dynamic nature of local urban areas,
considering the spatial proximity (derived from geographical coordinates) and
social proximity (derived from the distribution of check-ins) locations.

For this, the authors used data from Foursquare and developed a model
that groups similar places considering social and spatial characteristics. Each
cluster represents different geographic boundaries of neighborhoods. The
grouping method is a variation of spectral clustering proposed in [72].

Figure 13 shows two clusters (or “livehoods”, name used by the authors),
found in New York, represented by the numbers 1 and 2. In this figure black
lines indicate the official city limits. Note that the limits of the clusters are
quite different from the original limits. To try to validate these results the
authors used results of interviews with residents of the city. According to
the collected answers these and other clusters were expected.

In [90] the authors proposed a technique called City Image, which provides
a visual summary of the city dynamics based on the movements of people.
This technique explores urban transition graphs to map the movements of
users between city locations. An urban transition graph is a directed weighted
graph G(V,E), where a node vi ∈ V is the category of a specific location (for
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example, food) and a directed edge (i, j) ∈ E marks a transition between
two categories. That is, there is an edge from node vi to the node vj if at
least one user shared data at a given place categorized by vj after sharing
data at a given place categorized by vi. The weight w(i, j) of an edge is the
total number of transitions that occurred from vi to vj. Only consecutive
data shared by the same user within 24 hours starting at 5:00 are considered
in calculating a transition.

City Image is a promising technique that allows a better understanding
of city dynamics, helping the visualization of common routines of its citizens.
Each cell in the City Image represents how favorable is a transition from a cer-
tain category in a certain place (vertical axis) to another category (horizontal
axis). Red colors represent rejection, blue colors represent favorability, and
white color is indifference. We exemplify the City Image technique for two
cities 22: Sao Paulo (Figures 14a and 14b); and Kuwait (Figures 14c e 14d).
In both cases, we consider weekday during daytime, which is the typical pe-
riod of routines, and weekend during the night, which is a representative
period of leisure activities (out of routine).
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Figure 14: Images produced with the City Image technique to Sao Paulo (SP) and
Kuwait (KU) at different times. Abbreviations of category of places (names used by
Foursquare): Arts & Entertainment (A&E); College & Education (Edu); Great Outdoors
(Outd); Nightlife Spot (NL); Shop & Service (Shop); and Travel Spot (Trvl) (images from
[82]).

First, note that transitions to office (workplaces) are more likely to occur
on weekdays and during the day for both cities, as expected. However, note
that the images of the city of Sao Paulo and Kuwait also have significant
differences that reflect cultural differences between the two cities. Note, for

22Using data from the dataset Foursquare1.
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example, the image representing transitions on weekend during the night
(Figure 14d) shows the lack of favorable transitions to nightlife category in
Kuwait. This is not the case for Sao Paulo (Figure 14b), where the food →
nightlife transition is highly favorable to happen. This suggests that in
Sao Paulo people like to go to places related to food (food) before going
to nightclubs (nightlife). In Kuwait, instead, people are probably more
favorable to perform the transitions shop → food and food → home in the
evenings of the weekend.

Techniques to provide easy to interpret visualizations of routines of in-
habitants of a city, such as those mentioned here, are valuable tools to help
urban planners to better understand the city dynamics and, therefore, make
more effective decisions.

4.3. Social, Economic, and Cultural Patterns

PSN data can also be used to study social, economic, and cultural pat-
terns of inhabitants of cities. In order to better understand social patterns
from data of PSN, Quercia et al. [75] studied how virtual communities, ob-
served in the analyzed systems, resemble real-life communities. The authors
tested whether sociological theories established in social networks of real life
are valid in these virtual communities. They found, for example, that social
brokers on Twitter are opinion leaders who venture “tweeting” on different
topics. They also found that most users have geographically local networks,
and the influential ones express not only positive emotions, but also negative.

To carry out this work, the authors applied network metrics that the lit-
erature has found to be related to social relations, such as reciprocity and
network constraint [75]. The reciprocity r is the proportion of edges in a
network that are bidirectional L<−> relative to the total number of edges L:
r = L<−>

L
. Considering a social network focused on a specific node (“ego”)

and vertices and edges to whom the ego is directly connected, low reciprocity
values could indicate, for example, a social network of a celebrity. Network
constraint measures the opportunities to become influential (brokerage op-
portunities). A high network constraint value means fewer opportunities.
The authors used Burt formulation [13] in that case.

In addition, by studying the social behavior of specific areas, one of the
first questions that arise is: how different a culture is from other? We
know that eating and drinking habits can describe strong cultural differences.
Based on this, in [89] the authors propose a new methodology for identify-
ing cultural boundaries and similarities between societies, considering eating
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Figure 15: Groups found using the methodology for culture separation. Each symbol
reflects a group (images from [89]).

and drinking habits. For this, they used check-ins from Foursquare to repre-
sent the user’s preferences regarding to what he/she eats and drinks locally,
for example, in a particular city.

This analysis surprisingly says a lot about the differences and similarities
between cultures. For this, the authors study the correlation between check-
ins data in different types of restaurants for various cities around the world.
They observed that cities of the same country, where the inhabitants often
have similar culture, have the strongest correlations with respect to restau-
rant preferences. In addition to preferences for food and drink categories, it
is also possible to see differences in the times when people go to restaurants
and share data. These analyzes allowed the proposition of a methodology
for identifying similar cultures, which can be applied in regions of varying
sizes, such as countries, cities, or even neighborhoods [89]. This methodol-
ogy uses a partitioning-based clustering algorithm (k−means [39]), and the
principal component analysis technique [47]. The results for countries and
cities are illustrated in Figures 15a and 15b, showing how similar cultures
are well separated. These figures use the first and second Principal Compo-
nent (P.C.) to show the results. However, to obtain the results we considered
all components.

The investigation of the cultural differences between different cities and
countries is valuable in many areas and can assist various applications. For
example, as culture is an important aspect for economic reasons, the identi-
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fication of similarities between places that are geographically separated may
be required for companies with business in a country that want to assess the
compatibility of preferences between different markets.

Related to the economics of the cities, in [49] the authors studied the prob-
lem of optimal allocation of retail stores in the city. They used Foursquare
data to understand how the popularity of three retail chain stores in New
York is defined in terms of number of check-ins.

The authors evaluated a diverse set of features, modeling spatial and
semantic information about the places and patterns of user movement in the
area around the analyzed site. They observed that the presence of places
that attract many users naturally, such as a train station or airport, as well
as retail stores of the same type, defining a local commercial competition
area, are the strongest indicators of popularity.

4.4. Final Considerations

PSNs provide updated information on places, as well as opinions and
preferences of its members. Moreover, they have the potential of access the
above data in (almost) real time, reaching a large number of regions of the
globe. This section discussed several studies that serve as examples of how
to work with PSN data. The information obtained by these studies can
be useful for the development of more intelligent services and applications
related to the study of city dynamics and urban social behavior.

For example, understanding the pattern of behavior in certain places in
the city, as well as the identification of behaviors outside the expected pattern,
can be useful for load capacity planning of an urban mobile network. Studies
that aim to provide solutions to ease mobile data offloading can have great
benefits by using this information as a tool to reduce surprises at current
demands, as well as new demands that may arise as the city is in constant
changes. Other research opportunities (and challenges) are discussed in the
next section.

5. Challenges and Opportunities

This section presents current research topics related to participatory sen-
sor networks. For each of them we also be discuss the challenges associated
and opportunities for research.
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Figure 16: Data sharing illustration in three PSNs over time, resulting in sensing layers
(image from [88]).

5.1. Sensing Layers

5.1.1. Preliminaries

A sensing layer consists of data describing specific aspects of a geographic
location. The concept of sensing layer is quite broad: it represents data, with
its attributes, from a particular data source, for example, a particular PSN.
Each PSN provides access to data related to a certain aspect of a predefined
geographic region (for instance, traffic conditions, pictures of places, etc.),
and thus each single PSN can be represented as a sensing layer [88].

In addition to PSNs, other examples of data sources are: data available on
the web not generated by users, for example, weather conditions provided by
the company The Weather Channel23 or data from traditional wireless sensor
networks. We discuss here the concept of sensing layers to PSNs. However,
all concepts discussed can be used for other data sources associated with
predefined geographical regions, with necessary adaptations.

Figure 16 illustrates the concept of sensing layers. This figure shows data
shared in three different PSNs (p1, p2 and p3) by four different users in dif-
ferent time instants. As discussed in Section 2, these data should be collected
(for example, using an API) and processed, step that includes analysis and
data standardization. Each plane in the figure represents a sensing layer of a
specific region, for example, Manhattan in New York, with data from three
different sources. Thus, the illustrated sensing layers are: check-ins (r1),
from, for instance, Foursquare; traffic alerts (r2) from, for example, Waze;
and picture of places (r3), from Instagram, for example.

In one layer each data has the following attributes: instant t when the

23http://www.weather.com.
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Attributes (m)
Timestamp (t) Area (a) User (u) Specialty data (s)

T1 a1 1 “Times square”
T1 a1 2 “Times square”
T2 a2 1 “Fifth Av.”
T3 a4 1 “Statue of Liberty”

(a) Foursquare PSN

Attributes (m)
Timestamp (t) Area (a) User (u) Specialty data (s)

T1 a1 3 “Traffic Jam”
T2 a2 2 “Accident”
T2 a3 3 “Police control”

(b) Waze PSN

Attributes (m)
Timestamp (t) Area (a) User (u) Specialty data (s)

T1 a1 3 “photo data”
T3 a4 1 “photo data”

(c) Instagram PSN

Table 2: Data stream describing users activity in three different PSNs: Foursquare, Waze,
and Instagram [88].

data was shared; location a where the data was shared; specialty s of the
layer (e.g., a picture or a alert about traffic); and the id u of user who shared
the data.

5.1.2. Framework for the Integration of Multiple Layers

In this section we present the general idea of a framework to work with
multiple sensing layers defined in [88]. Each user u can share unlimited
data in any PSN p. Each j-th data dj shared in a PSN pk has the form
d
pk
j =< t,m >, where t refers to the moment when the user u shared data in

pk and m is a tuple containing the attributes of this data, i.e., m = (a, u, s),
as described above.

Data shared in a PSN can be seen as a data stream B. The authors
defined that a data stream Bpk consists of all data shared by users in a PSN
pk in a given time interval. Thus, Bpk is used to represent a sensing layer
rpk . Table 2 shows the data of the sensing layers that have been shared in
the three PSNs considered in Figure 16.

To work with layers we need to represent them in a work plan, which
contains one or more layers. This work plan is a combination of data from
the layers that we want to work with. Making this combination of data
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depends on the layer functionality, what it captures. Various structures can
be used for this task, in [88] the authors used a data dictionary, chosen for
its simplicity which facilitates the understanding of the concepts.

5.1.3. Challenges and Opportunities

There are several challenges to handle data from multiple layers simulta-
neously, some of the main ones are described below.

1. Data Combination: In order to combine data we have to ensure that
they are consistent across all layers. This is a mandatory condition for
the correct extraction of information. For example, to combine data
shared by the same user on different layers can be a problem in PSNs,
because the same user may participate in different layers with different
IDs. Let’s assume we want to combine data from a single user that
contributed in the check-ins layer and in the picture of places layer.
Since the data of these layers are from independent systems, users have
different IDs. One way to try to get around this problem is to check
other systems in order to map the user ID of a layer in another. We
know, for example, that users of Foursquare and Instagram tend to
be also Twitter users. Thus, the combination process could use the
identification used on Twitter. Without data management techniques
that allow developers to combine data from multiple heterogeneous
sensing layers, it becomes very hard to meet important requirements of
urban computing applications, such as quickly respond to user queries
about real time traffic conditions.

2. Validity of the data: Different layers can refer to data valid for
different time intervals. This is natural because some data sources
provide data in (almost) real time, while others do not. For example,
an alert shared in Waze may refers to a traffic situation that can not
exist five minutes later. However, census data are generally valid for
a long time, months or years, until the next census be published. We
have to be aware of all these issues when designing new applications.

3. Modeling: There are also opportunities regarding the modeling of
sensing layers because in the same layer the entities can have different
relationships between them. To illustrate this opportunity, consider the
check-ins layer. As illustrated above, this layer may be used to represent
urban mobility considering the relationship between places and people,
being useful for understanding, for example, the frequency of transition
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between different places. Another possibility is to modify the problem
modeling, for example, to study the preferences of individuals. In this
case, the entity to be analyzed becomes the user. Note that data from
the same layer can be modeled in different ways to answer different
questions. The framework presented briefly here (discussed in more
details in [88]), provides basic support for this issue. However, there
are several opportunities for extending that framework to offer more
sophisticated services.

5.2. Temporal Dynamics of PSNs

5.2.1. Preliminaries

The study of PSN data emerge as a powerful resource for understanding
city dynamics [82]. Most of the studies found in the literature represent data
shared in PSNs as static structures, disregarding the temporal dynamics.
Despite being an acceptable strategy this procedure may result, in many
cases, in loss of important information in some scenarios.

To better illustrate this problem, consider the graph presented in Fig-
ure 17. This figure represents a static graph resulting of aggregated data
from a certain day, where each vertex represents a Point of Interest (PoI)
and the weighted edges represent the number of times people moved from
one PoI to another (in any order). From this, note that the top 3 most
popular transitions are A − C, D − E, and A − B. However, this observed
information might present differences when a temporal perspective is consid-
ered.

When we partition the same dataset in three different intervals, as shown
by Figure 18, we can see that the graph topology, as well as the weights of
the edges change considerably throughout the time. Note first that in the
second time interval we observe a disconnect graph, i.e., transitions B −D,
C − D and C − F do not occur. This information could not be obtained
using the static graph (Figure 17). Furthermore, note also that the weights
of the edges change over time in the dynamic model. Observe in the first
time interval that the top 3 most popular transitions are D−E, D−F , and
E−F , while in the third time interval the top 3 most transitions are A−B,
A−C, and B −C, information significantly different from the one obtained
with a static model. This type of analysis can be useful to extract a more
precise human behavior in the cities [41]. In this regard, the following are

32



Figure 17: Example of static graph representation.

some efforts that try to exploit the temporal dimension in data analysis from
PSNs.

Figure 18: Example of graphs in different periods of time.

Bannur and Alonso [5] have analyzed data from Facebook check-ins to
understand the temporal user participation in various categories of places
(e.g., restaurants, cinemas, and get-away). The authors have defined a met-
ric, called polarity, which represents the relationship between the number
of check-ins of a category in a given region and season, and the total num-
ber of check-ins in the same region during all year. Figure 19 shows the
change in polarity of the category get-away among USA states throughout
the four seasons. The polarity is represented by a heat map. The intensity
ranges from low (light color) to high polarity (dark color). As we can see,
during winter and spring, states with high temperatures have a much higher

33



polarity compared to those with low temperature. On the other hand, dur-
ing the summer, states with low temperature such as Alaska and Montana
appear as states with high polarity. This type of analysis is interesting to ex-
plain certain human behaviors based on seasonal phenomena. For example,
in the fall, Nebraska has a high polarity. Nebraska is subject to tornadoes
and thunderstorms during the summer and spring, whereas in winter suf-
fer from ice storms, thereby influencing human behavior in the category of
places get-away.

Figure 19: Visualization of check-ins for get-away category in every USA state over the
four seasons (image from [5]).

Zhang et al [105] have analyzed urban activities from Foursquare data
considering temporal dynamics. For this, they studied activities of groups of
users with similar characteristics, considering the categories of places visited
by them. Considering first the whole dataset without any separation of peri-
ods of the day, i.e., aggregated data, activities on the category of places Food
are prevailing. However, analyzing the same dataset partitioned in different
periods of the day (morning, afternoon, and evening), there is a greater dis-
tinction between the prevailing activities. For instance, activities on Food
places in the afternoon are not as popular as in the morning and evening. In
the aggregated view they do not notice this difference. This approach is inter-
esting to show that certain activities may be performed significantly only at
a certain time of day, but when they are analyzed disregarding the temporal
aspect, important insights about users’ behavior may be missed.

The City Image technique, presented in Section 4.2, is another initiative
that exploit the temporal dimension. This dimension is applied for parti-
tioning the data on weekdays/weekend during different periods of the day,
from that the authors performed analysis on the partitioned data. With the
help of this technique it is possible to see that there is significant variation
of popular types of activities during different periods of the day. Moreover,
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the results of when applying this technique without considering the time
dimension is quite different from those when considering it [83].

5.2.2. Challenges and Opportunities

The related work described above provide evidences about the advantages
of using temporal information of data obtained from PSNs. However, if on
one hand the investigation of temporal dynamics of PSNs is an opportunity
to obtain information closer to the real network behavior, on the other hand,
new challenges arise when we consider temporal dimension to the study, as
described below:

1. Temporal information: An initial issue is how to represent and store
temporal information. Since data can be from many sources, we face
problems related to inconsistency, redundancy, and granularity to ex-
tract relevant temporal information. In addition, there are open ques-
tions about the validity of the information obtained. For instance, how
long this information will be useful? or how often should the informa-
tion be updated?;

2. Time windows: Studies that analyze the temporal aspect often par-
tition the data in time intervals, e.g., morning, afternoon, and evening,
called time windows. However, the proper definition of the time win-
dow size is a problem, it is necessary to define a window size that
captures relevant dynamics. In this case, there are many opportuni-
ties for new approaches that consider time windows with flexible and
dynamic sizes;

3. Dynamic participation: Since the structure of a PSN is composed
of autonomous nodes (people), it is sensitive to the participation of
these nodes over time. This brings a range of challenges related to
the evolution of user participation in these networks, some examples
are: identification of periodic behavior, detection of outliers, and activ-
ity tracking. In this direction there are several opportunities for the
development of new techniques/approaches;

4. Modeling: Typically, data from PSNs are represented as a set of en-
tities, for example, users or points of interest, and their relationships,
e.g., transitions or communication. As the contribution of these data
can vary greatly over time a model based on static graphs may not be
enough to capture this dynamism. For example, data from Foursquare
have spatiotemporal information, such as positioning of users and the
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moments of interaction. Therefore, a challenge is to model spatiotem-
poral dynamics in order to better understand, for example, user partic-
ipation. In this direction, temporal graphs [52] appears as a promising
alternative that can be used to understand spatiotemporal dynamics.
In a temporal graph, relations between entities can be modeled as edges
that can be created and destroyed over time. This is useful, for instance,
to understand temporal aspects of interactions between users with cer-
tain places in the city.

5. Data visualization: The use of visualization techniques that helps the
understanding of network behavior is fundamental to assist in decision
making. Thus, visualizations that explore temporal dynamics of PSNs
are of paramount importance. For example, a proper visualization
of the transitions of users in the city over time is useful to planners
and other professionals who need to make decisions related to urban
planning.

5.3. Incentive Mechanism for PSN

5.3.1. Preliminaries

Selfish, altruistic, and cooperative behavior of human beings were exten-
sively studied in philosophy, psychology, economics, and, recently, in the
context of computer science [68]. Selfishness can be defined as the act of ben-
efiting oneself instead of another. On the other hand, altruism favors others
instead of oneself [61]. Incentive mechanisms aim to engage users to coop-
erate with others. Cooperation occurs when an individual devotes an effort
that implies a cost in some collective activity expecting some benefit. Un-
like altruism, in cooperation the individual expects some benefit greater than
costs [8].

Cooperation is a key point for PSN since it relies on users’ willingness to
collect, process, and transmit the sensed data [57]. The cooperation among
PSN participants reflects directly on the quality and quantity of the sensed
data, and hence in improving services offered by PSNs.

However, as PSNs consume resources of users’ devices, they may be reluc-
tant to contribute to the network. There are several reasons that can make
a user benefit, but not collaborate with PSNs, such as to save battery power,
data transmission costs, or even privacy issues [57].

Thus, incentive mechanisms aim to increase the engagement for users co-
operate with the PSN. In recent years, academy and industry have been pro-
posed dozens of incentive mechanisms [35]. The motivation for cooperation
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can be extrinsic, in which participants receive a direct reward for participat-
ing, or intrinsic, in which participants must be satisfied psychologically [50].

As extrinsic mechanisms reward participants through payments, real or
virtual, we will refer to these mechanisms as Reward-based. Intrinsic mech-
anisms are based on transforming the sensing task in a more enjoyable and
challenging task for the user by adding common game elements, such as con-
test among users, badges, and trophies. Therefore, we will address these
mechanisms as Gamification-based24.

5.3.2. User Cooperation

Cooperation in the context of PSNs depends on the relationship between
the cost and benefit to participate on them. Fitzek et al. [32] claim that
cooperation will occur whenever a participant of the network has the feeling
that the benefit is higher than the cost of collaborating. This benefit could
be many things, for example, the quality of the information that a PSN can
offer.

Figure 20 illustrates important aspects about user cooperation in a PSN.
A user request information of a PSN using a mobile network (e.g., 3G), while
obtaining its location using a GPS network and collects new information
using sensors from a portable device. Next, the user transmits the sensed data
to the PSN. To accomplish this task, we can list as costs: power consumption;
data transmission over the mobile network; and the effort to perform the
sensing task. Meanwhile, the user obtains as benefits: updated real-time
information; and the feeling of helping other participants in the network (for
altruistic users). Note that, a user with resource constraints or a selfish user
could obtain information from the PSN without collaborating with new data
to it.

There are also situations in which the benefit for cooperative behavior is
unclear. For instance, PSNs that aim to gather information about pollution
or the health of the individual [12]. In these examples, participants may not
have access to real-time information and the beneficiaries of the information
gathered would be public authorities and health centers, respectively. In
these situations, incentive mechanisms act as a “driving force” to encourage
user cooperation.

24The use of game features as incentive mechanisms to perform tasks is known in the
literature as gamification.
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Figure 20: Important aspects about user cooperation in an PSN.

5.3.3. Reward-Based Incentive Mechanisms

Reward-based incentive mechanisms rely on the assumption that partic-
ipants will not contribute or will contribute only for a short period to the
PSN if the benefits are less than their expectations [57].

In some mechanisms, users negotiate with the PSN platforms how much
they will receive for the sensed data before sending them, in others the plat-
form decides how much is going to be paid for data sent by users. In any case,
these mechanisms aim to improve the quality of data and minimize sensing
costs.

Yang et al. [101] proposed two incentive mechanisms: MSensing Platform-
Centric and MSensing Auction. In the MSensing Platform-Centric, PSNs
has a limited budget to spend with sensing tasks. The PSN announces the
reward for a certain task and each participant receives a reward proportional
to the time dedicated to the task. One problem with this model is that if
the number of active participants increases the reward for each participant
decreases.

In the MSensing Auction, the PSN platform announces a set of tasks
and each user chooses a subset. For each task chosen, users must submit
a tuple, task-bid, to the platform, where the “bid” is the value of reward
he/she wants to receive to perform the task. After receiving the offerings
from users, the PSN platform selects a set of users as the winners of the
auction, and these users will perform the tasks. A problem encountered in
this type of mechanism is the explosion of the incentive costs [57]. This
problem can derail the mechanism due the high cost that might be expended
by the platform. In addition, if the winner is always the user that offer
the lowest price, this user may be discouraged to continue sensing data for
the PSN, due to the low values received. Incentive mechanisms based on
game theory attempt to overcome the issues above by aiming to achieve
the equilibrium of the system, i.e., maximize the gain for the user, while
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minimizing the costs for the platform [100, 57, 101].
Reddy et al. performed small scale experiments to evaluate the effect

of payments for cooperation in participatory sensing [76]. The authors con-
cluded that incentives work better when micro payments are combined with
other factors such as user altruism and competition. In addition, they showed
that a fair payment for all participants kept them motivated for longer time
than low payments.

Indeed, payments can be counterproductive in some cases, as shown by
Kamenica in [48]. After reviewing several studies in psychology and eco-
nomics on the effect of payment as incentive mechanism, the author con-
cluded that, in many cases, paying a high or too low value proved to be
counterproductive to induce participants into collaborative behavior.

5.3.4. Gamification-Based Incentive Mechanism

Gamification can be defined as the use of elements (and design) of games
in non-related game contexts [26]. Examples of such elements are: score ta-
bles; trophies or medals to reward users who perform a given task; challenges;
avatars; difficulty levels; and social networks to check how is the performance
of “friends” in the task development, with that, who performed more tasks,
for instance, have higher ranking.

Unlike traditional games, gamification uses game elements with the pur-
pose to perform tasks non related to a game [96]. These tasks may be, for
instance, to improve a skill, encourage fitness, or, in the context of PSNs,
engage users to contribute sensed data for a longer period.

As an example of participatory sensor network that uses gamification-
based mechanism, we can mention Waze. In order to keep information up
to date, Waze requires active participation of users, i.e., participants must
manually report situations observed, such as car accidents. In Waze, game
elements are represented by the use of avatars and a score system. In this
case, more cooperative users achieve special avatar or badges. As a result,
Waze help to raise the total number of shared data, and the quality of traffic
information for all users. The reasons that lead a user to cooperate with
Waze can range from simple altruistic motivation to social rewards (score
and badges) given by gamification.

5.3.5. Challenges and Opportunities

An incentive mechanism is efficient if it recruits more participants to a
PSN and keeps them active in the network. In order to encourage users to be-

39



come active participants a PSN also faces social and psychological challenges.
In this section, we present some of the main challenges for the proposition of
incentive mechanisms for PSNs:

1. Costs of incentive mechanisms based on monetary reward: For
the success of monetary incentive mechanisms, it must be considered
the costs for PSN platforms, as well as the earnings for participants.
PSN platforms can limit these costs by defining a maximum value to be
paid to the active network participants. However, finding and deciding
a value that minimizes the cost to the platform and, at the same time,
motivates the users requires further investigation [35].

2. Combination of different strategies: The majority of the proposals
to encourage cooperation in PSNs focuses on only one strategy. How-
ever, as observed by Reddy et al., combine more than one incentive
mechanism simultaneously may achieve better results [76].

3. Proposal validation: Authors commonly validate their proposals of
incentive mechanisms using a theoretical approach or small controlled
experiments. However, these strategies may not be able to predict
with high accuracy the participation of users over time on the platform.
Although there are already successfully PSNs on the market using gam-
ification as incentive mechanism, there is no guarantee that would work
on other PSNs. Investigate which elements work (or not work) for cer-
tain types of PSNs requires also further investigation.

5.4. Quality of Data from PSN

5.4.1. Preliminaries

Quality of data is a widely studied topic by the scientific community,
and the topics range from the definitions of metrics to qualitatively assess a
given data to solutions that ensure the generation and recovery of data with
quality.

According to dictionaries, the term quality, by itself, can be used to ex-
press both a characteristic possessed by someone or something, or a degree
of excellence in a given subject. Adapting this to our context, we need to
think of quality as a property that a given data, originated from a PSN, has
or has not, and also as a way to evaluate the degree of confidence we can
have on this data.

This means that we need to represent quality in a more technical way.
From a computer perspective, quality refers to the correct comply of some
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requirements for a system. Therefore, to evaluate if these requirements are
met, some metrics that summarize the main characteristics of such system
have to be defined.

Generally, data collected from the PSNs, after processed, are used to
extract contextual information, which are essential to the context aware sys-
tems [27]. Thus, one way to evaluate quality of data from a PSN is by the
expected quality of contextual information they provide, which can be de-
fined by the concept of Quality of Context (QoC) [11].

Buchholz e Schiffers [11] define QoC as any information that describes
the quality of the inferred context, which is consistent with our needs. The
authors also argue about the differences between QoC and Quality of Service
(QoS) and Quality of Device (QoD) concepts. QoS refers to any information
that describes how well a service operates, and QoD is related to any informa-
tion about the technical properties and capabilities of a given device. Thus,
the authors propose the following QoC metrics to measure quality: precision,
probability of correctness, trust-worthiness, resolution, and up-to-dateness.

Contextualizing these metrics to a PSN scenario, precision of the data
is related to how well it reflects the current state of a specific phenomenon
or locality. Probability of correctness denotes the probability that a given
data is correct, this metric can be seen as a statistic that reflects an a priori
knowledge of the data or the user that generated it. Trust-worthiness is
similar to the probability of correctness, but it is used to classify the quality
of the user that generated the data. Resolution denotes the granularity of
the information, that, as discussed in Section 3, may represent the details
of coverage of a particular region. Finally, up-to-dateness describes the age
of the data, being essential to assess its validity when there are real time
requirements.

In the same direction, Li et al. [62] extended this QoC definition to eval-
uate the quality of the data from pervasive environments. By investigating
the challenges of providing data with quality in such environments, they pro-
posed three additional metrics to assess the source of these data: currency,
availability, and validity. Currency is related to the previously discussed up-
to-dateness, it represents the temporal utility of the data, from the moment
it is created until it becomes worthless. Availability measures the capability
of an entity to provide data when the information about a region is needed.
In the context of PSNs, this can be expressed as the expectation that the
data is generated by a user. Validity is defined as a set of rules that can
be used to validate the generated data, according to a previous knowledge

41



about the type of the data and the behavioral pattern of the users.
With the computational representation of quality, we can describe some

challenges and opportunities when dealing with the quality of data from
PSNs.

5.4.2. Challenges

Following the aforementioned discussion, we can summarize the main
expected requirements for data generated by PSNs in two aspects: (i) data
reliability; and (ii) users credibility. Data reliability means the confidence
we can assign on data we have. The credibility of the users generating these
data is another important aspect of quality of data. Thus, some of the main
challenges that may affect quality of data in PSNs, impacting on the metrics
previously presented, are:

1. Sample representativeness: This challenge is related to how repre-
sentative a sample is about a specific phenomenon, based on the amount
of collected data. Due to its high relevance, this is a widely discussed
aspect in several studies that deal with data sampling. From the PSN
point of view, as discussed in Section 3, the collected data may repre-
sent a portion of the population of a city and the extracted information
is based on this sample. Depending on the sampling, it is possible that
the inferred information do not represent correctly the analyzed phe-
nomenon. Then, as previously mentioned, before inferring conclusions
by the data sampled from PSNs, it is necessary to compare them with
other sources, for instance with data collected in offline mode;

2. Sensing Errors: Another challenge that might affect the precision
of PSN data is the occurrence of possible sensing errors in the user’s
portable device. For instance, a Global Positioning System (GPS)
might be poorly calibrated, generating data whose accuracy is beyond
the acceptable range for this type of data. Although some errors may
seem totally tolerable, depending on the application it is possible that
it demands a high precision for its correct functioning;

3. Subjectivity of interpretation: This challenge concerns different
meanings that may exist about the data, one for the user that gener-
ated it and another for whom will use it. For example, it is possible to
find data that was misclassified and shared in a PSN. Foursquare, for
instance, allows the definition of a category to a new added place, even
if this definition is not the most appropriated, and the system must cor-
rect it subsequently. Another example is the case of Weddar, a system
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that allows its users to share their interpretations of current weather
conditions. While a user may interpret a shared temperature as the
temperature inside his house, another user may interpret it as the tem-
perature in a park in the same region. In this case, the interpretation
of these two users may be quite different;

4. Absence of structure: Data shared in PSNs, in some cases, are com-
posed by free text, without a semantic structure or encoding. This free-
dom given to users allows them to post whatever they want, even wrong
information, and in different formats. For instance, a user could de-
scribe a traffic accident in a foreign language or by using slang through
a microblogging like Twitter. Thus, the processing of these data is
complex and prone to errors, since there is the possibility, for exam-
ple, of data duplicity, i.e., the same data being identified as distinct, or
distinct data interpreted as the same due to differences in filled fields;

5. Pollution of data: Pollution of data is related to the possibility of
data to be incorrect due to the users malicious behavior [20, 67]. We
can find this malicious behavior in several social activities, and the
same can also occur in PSNs. As an example, users in PSN for traffic
alerts sharing like Waze, can generate false alerts of traffic jams or
accidents in order to discourage other users to use certain streets of
his/her route. Malicious behavior may result in false positives on the
detection of social patterns or events.

5.4.3. Opportunities

An important research topic that is affected by the quality of data in PSNs
is the one related to techniques of processing and knowledge extraction from
these data. One possible approach to handle this problem is to model the
data as a time series and extract knowledge by signal processing techniques
[56]. However, in some cases, data from PSNs may not follow a constant
pattern in order to ease this processing. As previously mentioned, data from
PSNs are subject to problems of subjectivity of interpretation and absence
of structure, and may result in errors during the learning of the pattern and
other properties of a certain phenomenon.

An interesting approach to solve these conflicts of interpretation is given
by [36]. The authors improved some data classification algorithms by using
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Mechanical Turk (Mturk)25. In this service users are financially rewarded
for completed tasks, e.g., solving doubts raised by classification algorithms.
The combination of computational processing and human intelligence offer
important research opportunities to the participatory sensing scenarios.

Another opportunity is to evaluate the reliability of a given user in a
PSN, since data generated by reliable users will be probably more reliable
as well. One possible direction in this sense is related to the identification
of behavioral patterns of users in the PSN. As shown in Figure 8, when a
sufficient amount of data is aggregated, it is clearly possible to identify these
patterns in the shared data for different week days. Assuming this previous
knowledge as a reference of the expected pattern by users in a given PSN,
one possibility would be compare the behavior of a suspected user with this
reference pattern. For instance, users with a sharing pattern quite different
from the majority may represent an unreliable user (e.g., a malicious robot).

That approach can be characterized as a kind of collaborative filtering
technique [1]. This is a strategy used by recommending systems when there
is no previous knowledge about the user in which it should recommend an
item. For instance, by using the preferences of other similar users, assuming
that their preferences are also similar.

Other alternatives to assess the quality of data in PSNs are based on the
analysis of the reputation of the users generating it, aiming to increase the
credibility with their good behavior. Huang et al. [43] propose the computa-
tion of a user reputation score, which is related to the trustworthiness of his
contributed data. They compute this score for each user based on an outlier
detection algorithm, that uses a consensus-based technique to identify the
users that deviates most from the consensus data of all users.

Mashhadi and Capra [67] propose an extension to the previous work of
[43] to estimate the quality of users contributions considering their credibil-
ity. They consider the contribution of points of interest by users and define
regularity functions with respect to the mobility pattern of these users, and
a reputation function considering their reliability based on previous contri-
butions with the system. The feasibility of this proposal is based on studies
demonstrating that urban users exhibit a high level of regularity in their
daily activities. This regularity, represented as the frequency of repetitions
of locations, is the pattern that helps in the identification of the credibility

25http://www.mturk.com.
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of a user.
Several strategies discussed here point towards solutions to the two men-

tioned requirements of PSNs, i.e., reliability of data and credibility of the
users. However, an important point emphasized by [33] is that such aspects
are less related to the precision of the data itself and more about which in-
formation, or perspective, their users have about those data. In other words,
there is still a lot of subjectivity about the notion of the quality of data
shared in PSNs. Thus, a strategy that focuses on dealing with the quality of
this data must consider the needs of each application and try to attend their
requirements specifically.

5.5. PSNs and Vehicular Networks

5.5.1. Preliminaries

Vehicular Networks (VANETs) offer a range of opportunities for urban
monitoring and data sharing on various aspects of the traffic. Vehicular
networks do not have common constraints of wireless sensor networks, such
as energy, bandwidth, and memory constraints, which allows a more accurate
sensing and a larger amount of data collected. Furthermore, vehicles can
contain sensors that are not commonly available in portable devices used in
PSNs.

Another important aspect of VANETs is the coverage. Vehicles move
through the whole city using streets and avenues. Because of this spread mo-
bility, vehicular networks can capture several city details. All these features
make VANETs an important data source that can complement data from
PSNs, in order to better understand the urban phenomena.

Vehicular applications can be used in numerous scenarios. For instance,
in VANETs there are diverse events to be monitored, such as potholes, traffic
jam, car accidents, and presence of animals on the road. Thus, in this section,
we present studies that focus on three main issues: monitoring general traffic
events; the use of data of VANETs to study routines of people; and the
study of traffic jams. We also discuss various challenges associated with
these issues.

5.5.2. Monitoring Events

In VANETs vehicles can cooperate among themselves to collect data,
which enables the identification of events, and propagate them to interested
parties. Thus, these data can directly influence vehicle route, making drivers,
in many cases, redefine their trajectories. Cunha et al. [23] presented a
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service for event monitoring and data dissemination, which considers vehicles
mobility patterns. Thus, when a vehicle detect an event in the region where
it is located, it propagates this information to other vehicles, warning of
dangers ahead. In addition, this broadcast takes into account the interactions
between vehicles, selecting those that guarantee greater coverage in the data
dissemination.

Another possible solution used to sense events with vehicular networks is
presented by Lee et al. [60], solution known as MobEyes. The goal of this so-
lution is to use of vehicles equipped with sensors to collect data about roads
and other vehicles nearby them. However, due to the amount of data gen-
erated, we can associate some data filters, and, thus, only the most relevant
data will be stored and forwarded to the sink. In this scenario, algorithms
that control collection and data delivery to the sink should be aware of pe-
culiarities and restrictions of VANETs.

With different goals, Lee et al. [59] presented FleaNet, a platform for
submitting queries in vehicular networks. Vehicles receive and submit queries
about various traffic issues. For example, a mobile user detects an accident
and shares a picture to the next vehicle. Differently, a market or a store
can disseminate alerts offering promotions to nearby users in vehicles. In
addition, a user can submit queries in the network, looking for neaby type
places or attractions.

5.5.3. Routines and Behaviors

Considering the mobility of vehicles and their daily routes, it is possible
to extract several cultural features of the users routine, such as their interests
and the most popular places in the city. Based on this, the study proposed
by Cunha et al. [24] presents an analysis of GPS traces describing mobility
of vehicles in the city. From the traces, it is possible to identify similar
behavioral patterns on the network and better understand routines performed
in the cities. The greater the number of records about vehicles, the better
will also be the quality of the characterized data. However, obtain these data
is not trivial because users must allow the monitoring of their vehicles.

Similarly, Fiore et al. [31] present an analysis of vehicle mobility in order
to characterize the traffic in a city through the understanding of flows and
places visited. Based on the analysis of a trace of mobility, the authors
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demonstrate how the use of a real information about the mobility of vehicles26

can help in the evaluation of the performance of protocols for VANETs. From
the analysis, they showed that it is possible to improve the performance of
protocols and better understand the traffic distribution in the city.

5.5.4. Traffic Management

The literature presents several models that deal with traffic jam. Some
of them only make traffic jam detection (e.g., [46, 97]), others make traffic
jam prediction (e.g., [51, 53]), and others that make both taks (e.g., [42, 66]).
They are different mainly due to the following aspects: (i) time horizon to
predict future jams; (ii) techniques used in the model; (iii) data sources that
have been used.

Regarding to the time horizon, we have the following two categories: (i)
models for Short-term traffic flow forecasting (STFF), which predict the traf-
fic behavior for the next 5 min untill 1 hour [92]; (ii) jam prediction for the
next 1 hour (at least) are named Long-term traffic flow forecasting (LTFF).
Models that predict traffic jam for the next 15 min or 30 min ahead are much
more interesting and useful than others, since this is a reasonable time inter-
val that can be used to make a decision. Despite having several STFF and
LTFF prediction models, the usage of PSN can improve the models’ accuracy
depending on which social variables have been used. Since PSN data are as-
sociated with habits and routines of users, the challenge is how to obtain and
how to use such data in real time, mainly for STFF.

The most used techniques for traffic jam prediction are: Seasonal Au-
toRegressive Integrated Moving Average (SARIMA), multi-variate AutoRe-
gressive Integrated Moving Average (ARIMA), Bayesian networks, fuzzy clus-
tering, identification of traffic patterns, genetic algorithms, neural networks,
Support Vector Machines (SVM), historical average, non-parametric regres-
sion, Kalman filter, and ant colony.

Such approaches differ in terms of the data source used to detect or to
predict future jams, such as: GPS traces, tracking smartphones movements,
online maps, data from sensors on roads, weather, seasons, traffic incidents,
and social sensing. Sensed data on roads are the most used information
by these models, followed by information regarding GPS traces, weather,
and seasons. For instance, the Clearflow project from Microsoft Research,

26The authors use the Cologne trace: http://kolntrace.project.citi-lab.fr.

47



described in [42], uses practically all the mentioned sources. In the product
offered by Intellione company27, they use only data about smartphones move-
ments in mobile networks to detect traffic jam (no prediction is done). In
order to make traffic prediction, Song et al. [103] use the combination of sev-
eral simple predictors through a genetic algorithm, achieving a forecast with
a higher accuracy.

5.5.5. Challenges and Opportunities

Vehicular networks and PSNs have several possibilities of integration,
which brings several challenges and opportunities that we describe next.

1. Event tracking: There are several initiatives that use PSN data to
detect events [80, 58, 7], and the area of event tracking in vehicular
networks may benefit from some of these initiatives. Furthermore, there
are events hard to be identified in a vehicular network that could be
reported in PSNs, as we discussed in Section 5.1. Note also that we
could suggest routes in order to avoid events in the city, or even to
promote the encounter of the most visited spots.

2. Data Availability: As we discussed above, particularly in Section 4,
PSNs data can be very useful for the study of habits and routines of city
inhabitants. This is an important information to vehicular networks, as
mentioned in Section 5.5.3. However, users in vehicular networks may
not provide the information of the visited places, a problem that can
also occurs in PSNs. We can minimize this problem by stimulating the
contribution of users. Another way to minimize this problem is to use
data available from PSNs and vehicle networks together, which serves
as a way to complement the information of movement of users.
Regarding to traffic jam problem, generally, the more data sources used
in a model the better the performance because more information will be
used to improve its inferences. The problem is that not all data sources
are correlated and relevant to the prediction of congestion. Thus, the
inclusion of a new data source requires a characterization with respect
to traffic performance.
Moreover, as mentioned in Section 3, the data input can be very un-
equal in different areas of a city. If we do not have enough data in all
regions, which regions will take benefit from this information?

27http://www.intellione.com.

48



3. Detection/Prediction of traffic jam: Generally, PSN data are un-
derexploited in traffic jam detection/forecasting models. Some of the
closest studies in this direction are: [87, 94]. Tostes et al. have analyzed
traffic conditions using two types of PSN data, from Foursquare and
Instagram. As we mentioned in Section 3, PSN data provide valuable
information to better understand city dynamics. For instance, a geolo-
cated message, whether on Foursquare, Instagram or, Twitter, can be
used to better understand traffic conditions. In fact, Tostes et al. [94]
observed that check-ins (from Foursquare) or photos (from Instagram)
are well correlated with intense traffic conditions and can be used to de-
sign more efficient traffic prediction models. Besides that, imagine that
a user share data at home and then commute to work and, for some
reason, he/she shares another piece of geolocated data. Regardless if
it was the same social network or not, there is an intrinsic information
in the time interval between these data that may be related with the
traffic behavior. If the traffic is more congested, this interval between
the shared data may be higher than the travel time without traffic jam,
which is easily calculated by the distance and maximum speed on roads.
When analyzing this aspect for many users, the results could be pow-
erful hints about the traffic. The authors have also raised up several
questions on this direction, such as: (i) how to collect data from online
maps in real time?; (ii) is it possible to use PSN data as a predictor
characteristic for intense traffic jam?

5.6. Other Challenges and Opportunities Related to PSNs

5.6.1. Data Sampling

It is important to point out some challenges regarding to data sampling.
PSN data are biased towards citizens who use them. For example, the dataset
discussed on Section 3 are based on data shared by users of Foursquare,
Instagram, and Waze on Twitter. Therefore, biased towards the citizens who
use those systems, who are likely to be under 50 year-old, and especially those
between 18-29 year-old, owners of smartphones, and urban dwellers [9, 28].
Consequently, urban areas with older and poorer populations tend to have
fewer data.

There are some initiatives in the literature regarding methods and tech-
niques to identify and recruit suitable candidates in support for data collec-
tion, most of them focusing on the selection of participants to minimize a
certain cost. For instance, Reddy et al. [77] developed a framework to help to
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identify well-suited participants for data collections based on geographic and
temporal availability as well as participation habits. In a similar direction,
Hachem et al. [38] use a mobility model to predict users’ future locations.
Based on the predicted results they aim to select a minimal number of mobile
users, expecting to cover a certain percentage of the target area. However,
despite those efforts, there are still open challenges. For example, there is a
lack of mechanisms that consider users with specific characteristics, such as a
certain age, gender, or race. This type of selection is important, for instance,
to the study of urban social behavior.

Another challenge related to data sampling in PSNs is that users might
not share data at all of their destinations, for instance in love hotels and strip
clubs. Thus, datasets from PSNs might offer a partial view of citizens habits.
Besides that, external factors, such as bad weather conditions, might affect
the total number of data to be collected for some places, especially outdoor
locations. This means that we might only have access to a sample of data
that could be shared under regular conditions. New mechanisms to deal with
this type of situation have to be developed.

5.6.2. Large Volume of Data

Another important issue is to deal with a large volume of data that PSNs
can offer, imposing challenges for storage, processing, and indexing in real
time using tools of traditional database management and data processing
applications. Fortunately, research on the challenges imposed by this huge
amount of data (also known as big data) is very active, and recently, in
conjunction with cloud computing solutions, advanced considerably [45, 78].

PSNs may offer big data that grows quickly. For this reason, storage
platforms have to be distributed, scalable, secure, consistent, and fault-
tolerance [40]. Recently, some services were proposed to store and manage
large amounts of data covering some of these requirements. For instance,
Amazon Simple Storage and Service (Amazon S3)28 and Microsoft Azure
Storage29 provide solutions to store and retrieve large amount of data, where
files can be replicated across multiple geographical sites to improve redun-
dancy and availability. These services rely on available technologies, such as
Google File System (GFS) and Hadoop Distributed File System (HDFS), to

28http://aws.amazon.com/s3.
29https://azure.microsoft.com/en-us/services/storage.
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store a large volume of data across multiple machines.
Besides that, data from PSNs may have different formats (i.e., structured,

semi-structured, and unstructured). Consider an application for transit mon-
itoring, like Waze. In this type of PSN, users can share observations about
accidents or potholes. Since users use an application designed for a specific
purpose, the sensed data is structured. Instead, if a user uses a microblog
(e.g, Twitter), the sensed data would be unstructured (e.g., message sent by
user X: “traffic now is very slow near the main entrance of campus”). With
that, data modeling using traditional relational model may be hard. This
motivates the adoption of new alternatives, such as NoSQL databases, which
allow storing and retrieving large volume of distributed data [14]. NoSQL
databases are non-relational, highly distributable, and schema-free, making
them increasingly used in big data and real time web applications, such as
PSNs [4].

Another issue when working with PSN is the processing of a large volume
of data in real time. For this task, one important aspect is how to distribute
computation. MapReduce model is the first major contribution on data-
processing for a parallel, distributed algorithm on a cluster [25]. Currently,
this model in combination with HDFS form the Hadoop core. Hadoop30 is a
project that allows the distributed processing of large datasets across clusters
of computers. Alternatively, Apache Spark31 is a fast and general engine
for large-scale data processing, and it is appropriated to applications that
reuse a working dataset across multiple parallel operations, such as iterative
machine learning algorithms and interactive data analysis tools [104]. With
that, new algorithmic paradigms for processing, based, for example, on the
mentioned parallel platforms, should be designed and specific data mining
techniques should be created accordingly to manipulate, for instance, large
urban transition graphs (as those mentioned in Section 4.2), with millions or
billions of nodes/edges [37].

5.6.3. Privacy

Working with data from PSNs may impose threats to users’ privacy. For
instance, these data could be used to infer users’ personal behavior and
preferences, such as common visited locations, lifestyle, and health condition,

30https://hadoop.apache.org.
31http://spark.apache.org.
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thus, not assuring freedom from the intrusion of others in their private life
or affairs [64]. With that, an important challenge is guarantee user privacy
while working on potentially sensitive data from PSNs.

Data privacy has been discussed in several studies, ranging from meth-
ods that allow participants control their privacy preferences to anonymiza-
tion techniques for data privacy-preserving [10, 30, 63, 64, 74, 81, 93, 95,
99]. Particularly, these anonymization techniques aim to protect privacy by
anonymizing data fields such that sensitive information cannot be pinpointed
to an individual record [21]. Anonymization can be achieved through several
ways: creating alias that avoid user identification; aggregating data from sev-
eral users, thus making hard to identify an individual user; hiding sensitive
locations; and injecting randomness into the data to create data perturba-
tion [18]. A challenge related to this last approach has to design special data
mining methods to derive knowledge from anonymized data [98]. Further-
more, the development of anonymization mechanisms have to consider the
tradeoff between anonymity and data fidelity.

As mentioned previously, a dataset from a PSN might be used to create
an urban transition graph representing users’ trajectories in a given period of
time. Therefore, another example of challenge is to prevent leakage of private
information of individuals, while mining and releasing frequent patterns of
these graphs. There are some initiatives to deal with this sort of problem.
For example, Shen and Yu [81] propose an algorithm for privacy-preserving
mining of frequent graph patterns.

Another important aspect to protect data privacy in PSNs is to consider
security issues in the data transmission. Sensitive data have to be encrypted
before they are shared by users, preventing a malicious user to obtain this
sensitive data. Although data encryption helps to protect data privacy, it
also obsoletes the traditional data utilization service based on plain text
keyword search. A number of studies were proposed for privacy preserving
database encryption while enabling some traditional functions, for instance,
query using SQL [63, 99, 30, 95]. However, despite these efforts, this challenge
still open and further research is to be conducted to make the proposed
approaches more practically feasible. As an example, Li et al. [63] intend
to study how to provide some practical data publishing methods suitable
for their proposed framework to deal with privacy-preserving data queries.
Besides, another opportunity is to improve the performance of the proposed
approach for certain situations.
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6. Conclusion

In this chapter, we show that PSNs provide unprecedented opportunities
to access sensing data on a global scale. In this sense, we present a detailed
view of properties of these data, as well as their usefulness in developing
smarter services to meet people’s needs in several areas. In addition, we
discuss some of the key challenges related to PSNs, ranging from incentive
mechanisms for users of PSNs, to the use of PSN data for the development
of more sophisticated applications. We also highlighted several opportunities
related to the use of PSN data, for example, when considering the temporal
dynamics of the data.
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List of Terms and Acronyms

Glossary

A

altruism It is the act of favoring others instead of oneself. 36

Availability Measures the capability of an entity to provide data when the
information about a region is needed. 42

C

City Image Technique that provides a visual summary of the city dynamics
based on the movements of people. 25

Cooperation Occurs when an individual devotes an effort that implies a
cost in some collective activity expecting some benefit. 37

Currency Represents the temporal utility of the data, from the moment it
is created until it becomes worthless. 42

G

gamification The use of game features as incentive mechanisms to perform
tasks. 37

P

precision Defines how well certain data reflects the current state of a specific
phenomenon or locality. 42

Probability of correctness Denotes the probability that a given data is
correct. 42

PSN Participatory sensor network rely on the idea of participatory sensing,
and can be defined as a system that supports a distributed process of
gathering data about personal daily experiences and various aspects
of the city. Such a process requires the active participation of peo-
ple using portable devices to voluntarily share contextual information
and/or make their sensed data available, i.e., the users manually de-
termine how, when, what, and where to share the sensed data. Thus,
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through PSNs we can monitor different conditions of cities, as well as
the collective behavior of people connected to the Internet in (almost)
real time. 5, 70

Q

QoC Any information that describes the quality of the inferred context,
which is consistent with our needs. 41, 70

QoD Any information about the technical properties and capabilities of a
given device. 41, 70

QoS Any information that describes how well a service operates. 41, 70

R

Resolution Denotes the granularity of the information. 42

S

Selfishness It is the act of benefiting oneself instead of another. 36

sensing layer It represents data, with its attributes, from a particular data
source, for example, a particular PSN. 29

T

Trust-worthiness It is similar to the probability of correctness, but it is
used to classify the quality of the user thatgenerated the data. 42

tweets Personal updates in texts up to 140 characters shared on Twitter. 9

U

up-to-dateness Describes the age of the data. 42

V

Validity It is defined as a set of rules that can be used to validate the
generated data, according to a previous knowledge about the type of
the data and the behavioral pattern of the users. 42
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Acronyms

A

ARIMA AutoRegressive Integrated Moving Average. 48

C

CCDF Complementary Cumulative Distribution Function. 13

CDF Cumulative Distribution Function. 15

G

GFS Google File System. 52

GPS Global Positioning System. 43

H

HDFS Hadoop Distributed File System. 52

J

JSON JavaScript Object Notation. 21

L

LTFF Long-term traffic flow forecasting. 47

P

P.C. Principal Component. 27

PoI Point of Interest. 32

PSNs Participatory Sensor Networks. 5, Glossary: PSN

Q

QoC Quality of Context. 41, Glossary: QoC
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QoD Quality of Device. 41, Glossary: QoD

QoS Quality of Service. 41, Glossary: QoS

S

SARIMA Seasonal AutoRegressive Integrated Moving Average. 48

STFF Short-term traffic flow forecasting. 47

V

VANETs Vehicular Networks. 45

W

WSNs Wireless Sensor Networks. 5
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