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Abstract—Some location-based social networks (LBSNs) pro-
vide, besides other spatiotemporal data, the category of venues
where the data was shared from. This information allows a wide
range of semantic analyses which are very useful to understand
city dynamics and urban social behavior. Despite being strategic
to the study of cities and societies, some LBSNs do not offer
the category of venues by default. In this study, we propose an
approach to identify the category of venues of unlabeled check-ins
according to their geographic locations. This new classification
approach is inspired by the classic k-nearest neighbor algorithm
improved by mobility pattern information captured through
the user’s transition information observed in LBSN data. The
performance evaluation of the proposed approach is performed
with real-world data from different cities: London, New York
City, and Tokyo. Experiments show that, for all cities, we can
achieve better performances when users’ mobility is taken into
account. Besides, we have an indication that transfer learning
regarding mobility patterns could be feasible between similar
cities.

Index Terms—Location-based social networks, Social Sensing,
Urban Computing, Category Identification

I. INTRODUCTION

Location-based social networks (LBSNs), a class of social
media, allow users to share data containing spatiotemporal
information. While some data sources do not scale easily,
such as GPS traces, LBSNs present widespread and global
scalability as some of their main advantages [1], [2]. As an
important data source for social sensing, LBSNs have been
increasingly used to study several issues of urban societies
[3].

Among the information provided by LBSNs, the venue
category visited by the user (e.g., school, and coffee shop)
may be present in some LBSNs like Foursquare-Swarm1. This
information allows a wide range of semantic analyses of users’
patterns, leveraging the understanding of city dynamics and
urban social behavior [1], [4]–[6].

One common way to obtain data from Foursquare-Swarm
is by collecting posts shared on Twitter [3]. In spite of
its advantage of offering public LBSN data, Twitter does
not automatically provide the venue category. To obtain this
crucial information for several urban computing studies, an
additional collection may be required, reducing the scalability
of the process, or even turning it prohibitive due to the huge
number of data typically obtained.

1https://www.swarmapp.com.

In this paper, we propose an approach to identify, based
on the geographic location, the venue category of unlabeled
check-ins2, like ones coming from Twitter or any other LBSN
information with missing venue category data. This new
classification approach is inspired by the classic k-nearest
neighbor algorithm (k-NN), and improved by information
regarding mobility patterns. The main idea is to decide the
new label considering among the nearest venues from the un-
labeled geolocated check-in, which one is preferable. Instead
of looking only for the destine, as it is usually performed by
popularity-based approaches, in this work the classification is
made based on the origin-destine information available in the
city’s mobility pattern database.

In a similar work, the authors in [7] used classic machine
learning algorithms to classify venue category of unlabeled
check-ins, obtaining the best results considering only some
categories of venues individually. Previous related efforts that
explored mobility patterns use traditional mobility features to
conclude their experiments, such as volume and number of
check-ins at venues, which are explored in [8] and [9]. Inspired
by [10], in this paper we use the idea of transition graphs, yet,
here, we extend the original idea by considering subcategories
of places to favor a more comprehensive mobility view.
Mobility features such as the number of check-ins at venues
are also used in [9] but the information about users transition
has not been previously explored. Therefore, innovatively, our
study explores users’ transition information in the problem
under study. In addition, differently from all previous effort,
we propose a new classifier that is based on the k-NN, and
this approach explores the mobility patterns of users observed
in a specific city to help the classification decision. Besides,
our approach is not dependent on historical activities of users
in venues, i.e., our model does not use specific patterns of
individual venues in the classification process. Our approach
is simple and suitable to deal with large data-sets; also it is
easy to incorporate new correctly labeled information.

Our main contributions are summarized as follows:
• A new classification approach to identify the venue

categories from unlabeled geolocated check-ins. This new
approach is inspired by k-NN, which is modified to
deal with the particular characteristics of the problem.

2Check-ins with GPS location without venue category information.



The decision of using a k-NN as an inspiration has
been supported by previously performed comparisons,
in which a k-NN based approach was competitive with
random forest and outperformed neural network and
support vector machine-based models. Simplicity and
straightforward update processes are some of the main
advantages of the proposed approach when compared
with traditional training-based classification approaches.

• Identification of population mobility patterns of the ad-
dressed cities using a large scale dataset of Foursquare-
Swarm and the idea of transition graphs.

• Results from experiments considering the proposed ap-
proach applied to real-world data of different cities in dif-
ferent countries. Satisfactory results have been obtained
for the investigated problem, particularly those in which
we observe a performance increase when users’ mobility
is taken into account. The achieved results are reliable
because they reflect the mobility patterns of real users.

Therefore, our main contributions rely on: (i) the classifi-
cation method based on an unexplored feature (probability of
transition) which has shown in some preliminary experiments,
to perform better than the venue number of check-ins, i.e.,
the popularity of places; (ii) the simplicity of the proposed
approach, what, differently from training-based approaches,
turns it interesting for our problem since straightforward
update processes could take place whenever we need to
incorporate new correctly labeled information (ie. retraining
is not necessary); (iii) experiments considering a large scale
real-world dataset.

The rest of the work is organized as follows. Section II
presents the related works. Section III describes the explored
dataset. Section IV describes the considered problem. The
proposed approach is detailed in Section V. Section VI shows
results and discussions. Finnaly, conclusion and future work
are presented in Section VII.

II. RELATED WORK

Several urban computing studies explore LBSN data in
different aspects. For instance, [5] and [10] provide better
understanding of city dynamics, while [11] studies features of
groups with the same interest. Also [12] and [13] present an
approach for detecting features associated with socioeconomic
issues in different areas of a city, and [3], [14] and [15]
aim to understand cultural boundaries and similarities between
societies. More related to challenges derived from urban
concentration, [16], [17], [18], [19] present an approach for
detecting indicators of pollution, noise, and traffic for regions
in a city, whereas [20] proposes mechanisms for updating
control systems on traffic accidents and disasters.

Kounev [21] proposes two simple predictors to model future
geo-contextual user behavior. The model is constructed to
predict the future location of users by suggesting the most
likely category of place and the expected time frame a visit
may occur in. Silva et al. [10] propose a technique, based
on transitions graphs, that summarizes people’s movements
between location categories of venues. The results confirm the

capability of the proposed approach in finding similarities and
differences in human dynamics across the different addressed
cities. Gu et al. [18] present a home location identification
method based on a proposed model, and evaluate it on a
large real-world LBSNs dataset. Mart et al. [22] propose
a methodology to identify successful public spaces through
LBSNs data from Foursquare and to analyze user’s urban
position using morphological and historical cartographies.

In the context of unsupervised learning and more related
to physical-social dependencies of information embedded in
location-based social networks (LBSN), Huang et al. [12],
[23] exploit the physical and social dependence between users
under a maximum likelihood estimation framework. In [12],
the authors’ primary goal was to discover which places attract
the interest of users most. In [23], the authors developed a
scheme to infer if a user is a resident in a city and a venue’s
attractiveness by information provided in LBSNs.

Regarding supervised learning, several approaches have
been presented in the literature considering different machine
learning approaches such as SVM, Naive Bayes, Random
Forest, and others [7]–[9], [24], [25]. Torabi et al. [24],
for example, apply Decision Trees, SVM, Naive Bayes, and
Random Forest to predict, based on nodes’ position, the
future connections in LBSNs. Every learning algorithm has
its parameters configuration fine-tuned to improve its perfor-
mance. The final approach is obtained from an ensemble of
classifiers divided into distinct groups (partitions). Mourchi et
al. [8] build a set of features that capture spatial, temporal
and similarity characteristics of user mobility and combine
these features for future location prediction. Wang et al. [25]
use LBSN data to construct a prediction model for points of
interest (POIs), such as popular attractions, and hotels.

More closely related to our work, Falcone et al. [7] pre-
sented a learning model to infer the category of a venue. Their
model explores tweets spatiotemporal features and determines
dynamics observed by the activities of the users, such as the
duration of the stay, the time of day of the typical visit,
among others. The authors use some classical classifiers to
discriminate the categories of places based on those features.
Ye et al. [9] proposed an approach to identify the category
of places from LBSN data. They explore patterns observed at
particular venues and also implicit relatedness among similar
venues. For that, they use users’ check-in activities to extract
descriptive features for venues. They develop a semantic
annotation technique for LBSNs to annotate all places with a
category automatically. Their work considers feature selection
and supervised learning phases to train and build the prediction
model. The extracted features are used as inputs for the seman-
tic annotation phase to learn a binary SVM for each tag. All
places are used for each binary SVM training, i.e., an instance
labeled with the specific semantic tag under examination is
considered as a positive example, while places without this
label serve as negative examples. Some gaps in these previous
works are explored in this study, as pointed out in Section I.



III. DATASET DESCRIPTION

In this study, we explore a dataset from Foursquare concern-
ing the year of 2014. Foursquare is an online social media3 that
uses the geographic location (a venue - building or business),
in a way that users can log in to the app on their mobile phones
to check-in to various locations they visit; these checkpoints
can be shared with users’ friends between multiple social
media sites, including Facebook and Twitter.

Each venue in Foursquare has fields for category and sub-
category. For instance, a given venue in Foursquare may have
Food as category and Burger Place as subcategory, or Food
and Sushi Place for category and subcategory, respectively.
A complete list of venue categories and subcategories in
Foursquare is available in the corresponding website4. For the
sake of simplicity, we refer to the category or subcategory of
Foursquare as simply category in this work.

Our Foursquare data collection was compiled from Twitter
because check-ins from Foursquare are not public by de-
fault. This dataset represents approximately 4.7 million tweets
containing check-ins. Data from Twitter (a tweet) contains:
a location (l) where data has been shared from, composed
by a tuple l=(latitude,longitude) of geographic coordinates; a
timestamp (t) representing the time when the data was shared.

Each tweet provides a URL to the Foursquare website
with information about venue category. This dataset has been
previously explored in [6]. Each check-in is composed of 6
fields: user ID (iduser); date and time of the check-in (date);
latitude (latitude); longitude (longitude); venue ID (idvenue);
venue category (categorievenue).

There is no specific information about the city and country
in each post of the original data. Thus, we use filters on
latitude and longitude to identify city and country information.
In this study, we explore popular cities in different continents
according to check-ins from Tokyo (27, 541 check-ins), New
York City (20, 998 check-ins), and London (2, 968 check-ins).

IV. PROBLEM DEFINITION

Due to its relevance, the problem of inferring venue cate-
gories from unlabeled geolocated check-ins is getting attention
over the past years [7], [9]. Predicting venue categories visited
by the users enables, for example, a better understanding
about user preferences, and better explanations concerning
user mobility, which ultimately lead to new services and
applications that might improve life in urban settings.

In this study, we present the problem assuming a specific
LBSN (Twitter), but the idea can be generalized to other
LBSNs as well. Given a check-in containing only GPS co-
ordinates representing a particular venue in a city, our goal is
to identify the venue category based on an existing semantic
mapping SM and user mobility patterns MP observed in the
city.

The city’s SM can be obtained in several ways. One example
is using open data about establishments of the city. LBSNs do

3https://socialmedia.colostate.edu/using-foursquare/
4https://developer.foursquare.com/docs/resources/categories.

not offer data for venue categories by default. In this work, we
use the venue categories provided by a Foursquare dataset to
construct SM and MP data, both necessary for our classifier
to infer venue categories from unlabeled data.

SM can be understood as follows. In a particular city,
each unique venue is represented by a category, whereas,
each category has a central coordinate. In our case, the SM
for a particular city is composed of all unique venues in
our Foursquare-Swarm dataset, and for every unique venue
location, we have a category representing the venue. In the
illustrative scenario of Figure 1, the SM for this partial view
of the city is composed of two unique venues: Supermarket
and Bakery. Each of them has a central coordinate representing
the venue (red dot).

A labeled check-in at a specific supermarket unit, for
example, always has the same coordinate associated with the
category Supermarket, independently of which part of the
establishment the user is located at. Figure 1 illustrates this
scenario. Let’s suppose that there are three different users in a
specific supermarket unit. One of them is located at position
number 10 in Apparel department, the second user is situated
at position 18 in Electronics and the third user is located
at position 13 in Home. Although all of them are in very
distant departments inside the supermarket, the coordinate of
their check-ins will be the same (the central coordinate of that
supermarket unit).

On the other hand, an unlabeled check-in requires additional
features to be classified into a particular venue category instead
of using only distance-based classification techniques. For
instance, an unlabeled check-in at position 17 in Lawn and
Garden can be closer to Bakery than to Lawn and Garden
itself by using distances to the unit central coordinates. As
previously pointed out, the classic k-NN approach will require
some adaptation to deal with this situation as detailed in
Section V.

The problem of labeling venues reaches a variety of rich ap-
plications such as recommendation, advertisement, and space
planning systems. Labeled data improve uses of social media
data. For example, by knowing that a place has a certain
category might help people to identify leisure places for
tourists.

V. CLASSIFICATION APPROACH

In this section, we present the basis of the proposed ap-
proach (Section V-A) as well as the characterization of the
necessary input sets (Section V-B).

A. The Proposed Classification Approach (k-FN)

The k-NN principles inspire the proposed classification
approach. Algorithm 1 presents the main steps of the proposed
approach. For each city c, it receives the set Uc of unlabeled
check-in coordinates, the semantic map SMc, the mobility
pattern MPc, and an integer value representing k neighbors
to be considered as inputs. At the end the algorithm outputs
the set Lc with the labeled check-ins.



Fig. 1. Illustration of a scenario regarding unlabeled check-ins.

It starts by measuring the distance between each unlabeled
check-in u ∈ Uc to each element sm ∈ SMc to find the k-
nearest neighbors using the Haversine distance (on a sphere).
After collecting the k nearest neighbors, the classic k-NN
algorithm would consider the venue label of the majority of
neighbors as the label of the query instance. However, in this
work, we typically do not have “a majority” of neighbors
with the same label as any k nearest neighbor commonly
has a different venue label. It would be possible in certain
situations, e.g., a business region containing most venues with
category Office. However, even in this case, it is not adequate
to consider that an unlabeled check-in is Office instead of other
any other category, unless we are considering a specific region
in the city that only has those type of places, which is rare on
practice.

This justifies the proposition of a novel approach k-FN (k-
Favorable Neighbor) by modifying the classic k-NN algorithm.
In the proposed approach, we also consider k to select nearest
neighbors candidates. The main difference relies on the fact
that k-FN explores the mobility pattern MP information to
predict each label instance, instead of using the majority
vote among the k competing venue labels. As previously
commented, this is due the fact that there is no majority among
the votes since they are all different from each other.

The approach selects label(query) = label(j∗), the label
of the neighbor j∗ with the highest score favorable among
j = 1, . . . , k neighbors as in (1).

j∗ = argmax
j
{favorablej = 1/dj + tpj}, (1)

This score takes into account the normalized distance dj
between GPS coordinates of the query and the neighbor j
as well as the transition probability tpj from MPc of the
neighbor venue j.

Therefore, the decision of our algorithm takes into account
both distances among k neighbors and information about user
movements in the city to select the most Favorable Neighbor,
which inspires the name of the proposed approach. Note that
if there is no information about the previous check-in in the

dataset, the transition probability is zero, and only distances
will be considered. At the end, all unlabeled check-ins will be
labeled.

Algorithm 1: Main steps of the proposed k-FN algorithm.
Data: Uc, SM c, MPc, k
Result: Lc

1 /* Copy the unlabeled set of check-ins*/
2 Lc ← Uc

3 for l ∈ Lc do
4 d← 0
5 /* Dictionary to store u, distance and an extra value*/
6 N ← empty dictionary of size k
7 for sm ∈ SMc do
8 /* Distance using Haversine*/
9 d← haversine(l, sm)

10 for n ∈ N do
11 if d < n then
12 /* delete n neighbor*/
13 N ← delete(N,n)
14 /* Update N : new neighbor and d*/
15 N ← update1(N,n, d)
16 break
17 end
18 end
19 end
20 for n ∈ N do
21 /* Find the previous check-in of the user in the

day*/
22 source← source(n,Uc)
23 /* Find the transition probability for the n

neighbor*/
24 tp← transition(MP, source, n)
25 favorable← 1/d+ tp
26 /* Update N : score calculated for n*/
27 N ← update2(N,n, favorable)
28 end
29 /* Finds neighbor with the biggest score calculated*/
30 n← favorableNeighbor(N)
31 /* Update the category for l according to n*/
32 Lc ← update3(n, sm, l)
33 end

B. Building Sets SMc, Uc, and MPc

The semantic map SMc is the ground-truth view of a
particular city c. It is obtained from labeled check-ins of
Foursquare using latitude, longitude, and venue category.

In the experiments we considered that the set Uc of unla-
beled check-ins is a synthetic dataset generated by perturbing
the original venue coordinates of SMc. It simulates new data
coming from LBSN sources containing check-ins with only
GPS coordinates (without any venue category information)
as in Twitter. The synthetic dataset is created by considering
uniformly random generated noise added to the original co-
ordinates of SMc. This approach simulates perturbations that



might occur on latitude and longitude of the original venue
coordinates [26].

Besides, each city is characterized by an aggregated mobil-
ity pattern MP describing users’ transition patterns manifested
in Foursquare. The mobility pattern is a directed weighted
graph G = (V,E) with a set V of vertices corresponding to
venue categories, and a set E = V × V of arcs such that
(i, j) ∈ E represents two consecutive check-ins (a transition)
made by the same user from venues i to j. The weight of arc
(i, j) is the total number of transitions computed from i to
j in the whole dataset within a given time interval. This MP
is represented by an n-square matrix M whose entry (i,j) is
the probability of having category j as the consecutive check-
in from category i. Each entry (i,j) of M is computed as a
relative frequency between the number of transitions from i to
j and the total number of transitions having j as a destination
venue.

Despite testing different time intervals during the compu-
tation of the number of transitions between venues i and j,
we decided to use a ’social day’ which ranges from 5:00 am
to 4:59 am of the next day. By doing that, we increase the
chance of considering transitions that started before midnight
and ended late at night. Therefore, only check-ins (origin-
destine) performed in the same social day are considered when
computing every transition.

VI. EXPERIMENTS AND RESULTS

In this section, we present the main characteristics of the
data from studied cities (Section VI-A), detail the method
used to evaluate the accuracy of classification from synthetic
datasets (Section VI-B), and show the results of our approach
to classify unlabeled check-ins into venue categories (Section
VI-C).

A. City data characteristics and users’ mobility

The exploratory analysis performed to obtain the main sets
considered in the proposed approach (Uc, SM c, MPc) turned
possible a better understanding of important information about
the studied cities and their population. For instance, there are
more than 130 unique categories in each city, Tables I, II and
III, show the most popular venue categories chosen by the
users to perform their check-ins in Tokyo, New York City,
London, respectively.

As we can see, the top category of venues to perform check-
ins varies considerably among cities. It is also possible to
note that the popularity reflects, somehow, the cultural habits
associated with the users. “Ramen or Noodle House” in Tokyo
is very present in the Japanese culture. Pub is also a typical
place in the United Kingdom; similarly, Bar venues tend to
be more common among users from the United States. It is
also interesting to note that performing check-ins at “Home
(private)” venues are not as popular in Tokyo as in London
and New York. This might suggest that users in Japan are less
concerned with privacy then users from the UK or the USA.
These observations suggest significant differences regarding

TABLE I
TOP CATEGORIES IN TOKYO.

Category Number of Check-ins
Train Station 10023

Subway 1361
Ramen or Noodle House 1165

Japanese Restaurant 960
Park 844
Mall 732

Convenience Store 642
Electronics Store 618

Supermarket 611
Coffee Shop 517

TABLE II
TOP CATEGORIES IN NEW YORK CITY.

Category Number of Check-in
Bar 1153
Park 911

Home (private) 775
Coffee Shop 746

American Restaurant 705
Office 467
Airport 444

Train Station 438
Italian Restaurant 435

Gym 424

TABLE III
TOP CATEGORIES IN LONDON.

Category Number of Check-in
Pub 357

Train Station 266
Bar 161

Home (private) 155
Hotel 124

Coffee Shop 121
Park 105

Airport 92
Stadium 84

Supermarket 79

the behavior of users in certain places of the world, inspiring
further investigation on these findings.

Next, we investigated the transition (movements) between
venue categories performed by each user. This is important
because the extraction of urban user movements can help to
understand the dynamics of each city [10]. To accomplish this
analysis, we followed the steps to generate the mobility pattern
MP described in Section V.

The total number of transitions extracted in Tokyo is
17, 206. Table IV presents the most popular transitions be-
tween pairs of categories, which are Train Station to Train Sta-
tion (3, 038 transitions), Subway to Subway (317 transitions),
and Train Station to Subway (225 transitions). Transitions
involving the same categories were considered because they
represent different venues (with distinct idvenue). There are
more than 600 different train stations in Tokyo, each one
identified with a unique idvenue, and all of them are in
the same category “Train Station”. Since these transitions
represent valid ones, they are important to be accounted.



TABLE IV
MOST POPULAR TRANSITIONS BETWEEN CATEGORIES IN TOKYO.

From To # of Transitions
Train Station Train Station 3,038

Subway Subway 317
Train Station Subway 225

Subway Train Station 204
Train Station Ramen or Noodle House 120
Train Station Electronics Store 107
Train Station Japanese Restaurant 105
Train Station Convenience Store 100
Train Station Mall 98

Ramen or Noodle House Train Station 90

As expected, the categories with the highest number of
transitions are correlated with the most popular categories in
Tokyo, shown in Table I.

The most popular transitions between categories for New
York City and London are available in Table V. Although the
rank of transitions for New York and London is different, there
are more similar transitions between New York and London
than between these two cities and Tokyo.

TABLE V
MOST POPULAR TRANSITIONS BETWEEN CATEGORIES IN NEW YORK

CITY AND LONDON.

New York City London
From To From To
Bar Bar Train Station Train Station

Train Station Trains Station Pub Pub
Home (private) Home (private) Pub Bar

Park Park Subway Subway
Subway Subway Pub Train Station

Art Gallery Art Gallery Train Station Pub
Highway-Road Highway-Road Pub Stadium

Supermarket Home (private) Subway Train Station
Beer Garden Bar Home (private) Home (private)
Playground Playground Park Park

B. Accuracy Evaluation

The accuracy5 evaluation of the proposed classifier is made
on two different synthetic datasets of unlabeled check-ins Uc.
Synthetic-Dataset1 is built from the original venues of SMc

by adding into their coordinates a uniformly random generated
noise of a maximum of 15 meters. Similarly, Synthetic-
Dataset2 is built by adding a uniformly random generated
noise of a maximum of 50 meters. These values try to simulate
typical errors expected in urban scenarios and semi-urban
scenarios, respectively [26]

In addition, we use a 5-fold cross-validation approach [27].
It means that five sets are created from each dataset Synthetic-
Dataset1 and Synthetic-Dataset2. Each set corresponds to 1/5
of the respective datasets. The accuracy of the classifier is
then given by the average over five accuracy values obtained
for each set. The average is also characterized by a confidence
interval using t-Student distribution with a significance level
of α = 5%.

5Accuracy is the most intuitive performance measure and it is simply a
ratio of correctly predicted observation to the total observations.

Fig. 2. Accuracy results (average, and confidence intervals) for the clas-
sification of unlabeled check-ins of Synthetic-Dataset1 using our proposed
approach for all cities and different values of k. Each value in the legend
refers to results using a particular value of k.

C. Results for Unlabeled Check-ins Classification

As described in Section V, our classification approach
explores the mobility pattern expressed by the transitions
between different venues. In this section, we present the results
for the mechanisms discussed in Sections V-A and V-B. Thus,
the classification tests were performed in different scenarios.

Figure 2 shows the accuracy for the classification of un-
labeled check-ins of Synthetic-Dataset1 (15 meters) using
our proposed approach for all cities and different values of
k. According to Fig. 2, there is no statistically significant
differences between different values of k for the same city.
This means that k-FN may be less sensitive to different values
of k ≥ 2, although further experiments should be done. In this
case, we have chosen k = 3 with the highest average accuracy
for all cities.

Figure 3 shows the accuracy for the classification of unla-
beled check-ins of Synthetic-Dataset2 (50 meters) using our
proposed approach for all cities and different values of k.
Similarly to Fig. 2, Fig. 3 shows no statistically significant
differences between different values of k for the same city.
However, k = 3 provides the highest average accuracy for all
cities. In this case, the k-FN algorithm obtained a slightly
better performance with more neighbors when considering
higher noise. Nevertheless, k-FN may be still less sensitive
to different values of k ≥ 2.

It is important to emphasize that the proposed approach uses
only the distance to make its decision for k = 1, i.e., the k-
FN algorithm ignores the mobility pattern when k = 1, as
there is no tie in the voting process and the query label is the
one associated with the closest neighbor. This result is used
as a reference value (baseline) to compare the performance
of our experiments. When k ≥ 2, the algorithm uses both
distance and mobility pattern (expressed in terms of transition
probability) of k-neighbors according to subsection V-A. The
results for k = 1 are thus omitted in Figures 2 and 3 and
showed only in Table VI for comparison.

In order to better understand the influence of transitions on



Fig. 3. Accuracy results (average and confidence interval) for the classification
of unlabeled check-ins of Synthetic-Dataset2 using our proposed approach for
all cities and different values of k. Each value in the legend refers to results
using a particular value of k.

the performance of our k-FN algorithm, we summarize the
main results of classification in Table VI (average accuracy
and the respective confidence interval in subscript as in xy
which means x ± y). The results of Table VI are presented
for both Synthetic-Dataset1 and Synthetic-Dataset2 (column
SD) using the baseline and taking into account distances and
transitions (dist+trans in column Approach). It is possible to
observe that there are improvements for all cities using both
datasets. Precision, recall and F1-score6 reflect the message
given by accuracy in all cases. Because of space limitation
they were omitted in the text for this analysis.

TABLE VI
ACCURACY (%) OF k-FN. SD STANDS FOR SYNTHETIC DATASET.

Approach SD Tokyo New York London
baseline (k = 1) 1 88.630.55 87.320.33 94.821.36

dist+trans (k = 3) 1 93.860.37 91.280.43 96.181.19
baseline (k = 1) 2 77.560.72 55.740.55 76.481.27

dist+trans (k = 3) 2 87.210.57 65.230.53 82.491.19

Although the main contribution of our results came from
the addition of transition information, it is important to point
out the use of synthetic datasets. The Synthetic-Dataset1
was tested to simulate problems with GPS coordinates in
an urban setting. For this case the accuracy is considerably
high, indicating that this strategy could work well in practice.
Since the performance results were good for this scenario, we
decided to increase the noise, trying to simulate a semi-urban
scenario to evaluate how the accuracy would be impacted.
As expected using Synthetic-Dataset2, this scenario is more
affected, decreasing the accuracy from around 90% to 70%.

Additional experiments were done trying to understand the
influence of mobility patterns in different cities. To evaluate
these experiments we tested London MP in New York City
(and vice-versa), London MP in Tokyo (and vice-versa) and

6A model that produces no false positives has a precision of 1.0, while the
absence of false negatives means recall 1.0. F1 Score is the weighted average
of precision and recall.

Tokyo MP in New York City (and vice-versa). Table VII
compares the results using the original MP and the MP taken
from another city. As expected, all metrics are better for
SD1 than for SD2, i.e., high noise level in GPS coordinates
imposes additional challenge into the classification process.
Precision and accuracy metrics have better results when using
the original MP for all cities but London. Results for London
are not affected by any of the MP considered (rows in light
blue). The recall metric is affected by using the original MP
only for NYC in SD2. It means that positive predictive values
(precision and accuracy) are benefited by using the original
MP, but false negatives (recall) are not in general.

VII. CONCLUSION AND FUTURE WORK

This study tackled the problem of classifying venue cat-
egories from unlabeled check-ins with geographic location.
We introduced a novel classification algorithm, k-FN to deal
with the particular characteristics of our problem. In our new
approach, we explored mobility patterns that were observed
through a mobile crowdsensing fashion with LBSN data. It is
important to point out that the proposed classification method
is based on an unexplored feature (probability of transition)
and its simplicity allows straightforward update processes
whenever new correctly labeled information tuns out available
(ie. retraining is not necessary). To evaluate k-FN performance
we used a large scale real-world dataset representing three
different cities of different continents. The results using k-
FN were satisfactory for all considered cities, reaching, in
some cases, around 96% accuracy (in more realistic simulated
scenarios). It suggests that users’ mobility is relevant to be
taken into consideration for the studied problem, and also that
our proposed approach could be an interesting alternative in
practice. Another important conclusion is that the proposed
approach presents a low sensibility to its main parameter (k),
what is an important achievement for any machine learning-
based approach. Future work could address the investigation
of other types of users’ mobility data in the decision process
and also the inclusion of weights based on the time stamp for
the transition values.
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