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ABSTRACT
A fundamental step to achieve the Ubiquitous Computing
vision is to sense the environment. The research in Wire-
less Sensor Networks has provided several tools, techniques
and algorithms to solve the problem of sensing in limited
size areas, such as forests or volcanoes. However, sensing
large scale areas, such as large metropolises, countries, or
even the entire planet, brings many challenges. For instance,
consider the high cost associated with building and manag-
ing such large scale systems. Thus, sensing those areas be-
comes more feasible when people collaborate among them-
selves using their portable devices (e.g., sensor-enabled cell
phones). Systems that enable the user participation with
sensed data are named participatory sensing systems. This
work analyzes a new type of network derived from this type
of system. In this network, nodes are autonomous mobile
entities and the sensing depends on whether they want to
participate in the sensing process. Based on two datasets
of participatory sensing systems, we show that this type of
network has many advantages and fascinating opportunities,
such as planetary scale sensing at small cost, but also has
many challenges, such as the highly skewed spatial-temporal
sensing frequency.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences; C.2 [Computer-Communication Networks]: Dis-
tributed Systems; G.3 [Mathematics of Computing]: Prob-
ability and Statistics—Statistical computing

General Terms
Measurement
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1. INTRODUCTION
The future world envisioned by Weiser, called Ubiquitous

Computing (ubicomp or pervasive computing), consider a
computing environment in which each person is continually
interacting with many wirelessly interconnected devices [16].
Weiser believed that the most powerful things are those that
are effectively invisible in use. The essence of this vision is
make everything easier to do, with fewer mental gymnas-
tics [15, 17].

A fundamental step to achieve Weiser’s vision [15] is to
sense the environment. The research in Wireless Sensor Net-
works has provided several tools, techniques and algorithms
to solve the problem of sensing in limited size areas, such
as forests or volcanoes [18]. However, sensing large scale ar-
eas, such as large metropolises, countries, or even the entire
planet, brings many challenges. For instance, consider the
high cost associated with building and managing such large
scale systems.

Sensing large areas becomes more feasible when people
carrying their portable devices (e.g., smart phones) collect
data and collaborate among themselves. Smart phones are
taking center stage as the most widely adopted and ubiqui-
tous computer [7]. It is also worth noting that smart phones
are increasingly coming with a rich set of embedded sensors,
such as GPS, accelerometer, microphone, camera, gyroscope
and digital compass [8].

Systems that enable sensed data in this way are named
participatory sensing systems [2]. We consider that the
shared data is not limited to sensor readings passively gen-
erated by the device, but also includes proactively user ob-
servations. It is possible to find several examples of par-
ticipatory sensing systems already deployed, such as Waze1

and Weddar2. Waze allows users to report real-time traf-
fic conditions. For its part, Weddar allows users to share
weather conditions in a particular location. Moreover, there

1http://www.waze.com
2http://www.weddar.com/



are the city location tagging applications, such as Gowalla3

and Foursquare4. This kind of application allows users to
share their actual location associated with a specific place
(e.g., restaurant).

Based on participatory sensing systems, a new type of
network is derived, namely Participatory Sensor Network
(PSN). In this type of network, nodes are autonomous mo-
bile entities (users) and the sensing activity depends on
whether they want to participate in the sensing process.
PSNs have particular properties that differ them from tra-
ditional Wireless Sensor Networks (WSNs). The objective
of this work is to characterize and analyze these properties
using two datasets of participatory sensing systems. We
show that this type of network has many advantages and
fascinating opportunities, such as planetary scale sensing at
small cost, but also has many challenges, such as the highly
skewed spatial-temporal sensing frequency.

The rest of the work is organized as follows. In Section
2 we present some related proposals. In Section 3, we fur-
ther discuss participatory sensing systems. In Section 4, we
present participatory sensor networks, including their partic-
ularities and advantages. In Section 5, based on two datasets
of participatory sensing systems, we discuss in details the
pros and cons of participatory sensor networks. Finally, in
Section 6, we present some concluding remarks and discuss
some future steps.

2. RELATED WORK
In the literature there are different studies dedicated to

the participatory sensing. Several of them propose partic-
ipatory sensing systems, including traffic monitoring [5, 6]
and noise level monitoring [11]. In order to guarantee the
success of participatory sensing systems, it is necessary to
ensure that the participation is sustained over time. Thus,
there are research groups dedicated to study incentive mech-
anisms [12] and the quality of the shared data [10].

There are also proposals dedicated to the study of so-
cial and spatial properties of data shared in location sharing
services [3, 4, 13]. All of them aim to study user mobil-
ity patterns and their implications. For example, Cho et
al. [4] were interested in answering where and how often
users move, and how social ties interact with movement.
Our work differs from the aforementioned studies since we
are interested in analyzing PSN properties. In particular, we
analyze a participatory sensing system as a sensor network.

3. PARTICIPATORY SENSING
Participatory sensing is the process where individuals use

mobile devices and cloud services to share sensed data [2].
Usually participatory sensing systems consider that the shared
data is generated automatically (passively) by sensor read-
ings from the device, but in this work we consider also man-
ually (proactively) user-generated observations. Sometimes,
participatory sensing with this characteristic is called ubiq-
uitous crowdsourcing [10]. Figure 1 shows an overview of the
essential components of a participatory sensing application:
sensing, processing, and application analysis.

The sensing component is the element that exhibits more
particularities. Given the widespread adoption of sensor and

3http://www.gowalla.com
4http://www.foursquare.com/
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Figure 1: Overview of typical components of partic-

ipatory sensing systems

Internet-enabled cellphones, these devices create an impor-
tant tool for this component. They have become a power-
ful platform that encompasses sensing, computing and com-
munication capabilities able to capture both manual (on-
demand) and pre-programmed data. As depicted in Fig-
ure 1, a sensed data in a participatory sensing application
is:

• obtained from physical sensors (e.g, accelerometer) or
human observations (e.g., accident in the road);

• defined in time and space;

• acquired automatically or manually;

• structured or unstructured;

• shared voluntarily or not.

To illustrate this type of system, consider an application
for transit monitoring, like Waze. Users can share observa-
tions about accidents or potholes manually. Additionally,
an application can calculate and share automatically a car
speed based on GPS data (several portable devices are capa-
ble of being programmed for automatic data capture). With
the speed of different cars at the same time and area, it is
possible to infer, for instance, congestions. Since users use
an application designed for a specific purpose the sensed
data is structured. Instead, if a user uses a microblog (e.g,
Twitter), the sensed data would be unstructured (e.g., mes-
sage sent by user X: “traffic now is too slow near the main
entrance of campus”)

Location sharing services, such as Gowalla and Foursquare,
are also examples of participatory sensing applications. The
sensed data is an observation (check-in) of a particular place
that indicates, for instance, a restaurant in a specific place.
Analyzing a dataset from this service, it is possible to dis-
cover what is around you, or receive recommendations of
places to visit.

4. PARTICIPATORY SENSOR NETWORKS
In a participatory sensor network (PSN) (Figure 2), a con-

sumer portable device forms a fundamental building block.
In this scenario, users carry these devices that can help them
to make important observations at a personal level. The
sensed data is, then, sent to a server, which we could also
call the “sink node”. This leads to particular characteristics
of a participatory sensor network:



• nodes are autonomous mobile entities;

• sensing depends on the nodes that will participate in
the sensing process;

• nodes transmit the sensed data directly to the sink;

• sink only receives the data and does not have control
over the nodes; and

• there is no communication between nodes.

To analyze this type of network we consider two location
sharing services: Gowalla and Brightkite. The main reasons
for choosing this kind of service are due to their popularity,
and the availability of public datasets [4]. Associated with
a check-in we can track the user coverage in specific areas,
and also their sharing patterns. Since other data could be
aggregated into the check-in data (e.g., temperature), the
obtained results upon analyzing these systems are relevant
for other participatory sensing applications.

To explain the network analyzed in this work, consider
Figure 3. This figure represents four users and their actu-
ation in three different times. Locations shared by users
at each time are pointed with dashed arrows. Note that
users not necessarily participate all time. We can represent
all shared locations in the samples as a graph, where nodes
represent shared location, and edges connect shared loca-
tions by the same user (this is represented in the figure with
the label “Total Time”). With this graph we can extract
many valuable information, such as the user trajectory.

Time 1 Time 2

Time 3 Total time

Users

Locations

Trajectory

Figure 3: PSN analyzed: location sharing services

Given the ubiquity of cellphones, it is possible to include
people with different interests, providing a remarkably scal-
able and affordable infrastructure, as we can see in Figure 4
that shows the plot of all shared locations in Gowalla, and
Brightkite. In Section 5, we present and discuss more details
of the PSN properties.

5. PSN CHARACTERISTICS
In this section we discuss pros and cons of participatory

sensor networks. Figure 4 depicts the coverage in PSNs,
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Figure 4: All sensed locations. The number of loca-

tions n per pixel is given by the value of φ displayed

in the colormap, where n = 2φ − 1.

which can be very comprehensive in a planetary scale. De-
spite the global magnitude of the coverage, it is important to
analyze the total number of sharing data per region as shown
in Figure 5. Observe that for the Gowalla network, the vast
majority of the participation is concentrated in North Amer-
ica and in european locations. Note that Brightkite had its
popularity decreasing after a certain period, but we can still
see that most of the contributions come from a single region:
North America.

Participatory sensor networks are very scalable because
their nodes are autonomous, i.e., users are fully responsi-
ble for their own functioning. Since the cost of the net-
work infrastructure is distributed among the participants,
this enormous scalability and coverage are achieved without
significant costs. The key challenge to the success of this
type of network is to have sustained and high quality par-
ticipation. In other words, the sensing is efficient as long as
users are kept motivated to share their resources and sensed
data frequently.

Figure 6 presents the complementary cumulative distribu-
tion function (CCDF) of the number of check-ins per area.
First, observe that a power law fitting is appropriate to ex-
plain this distribution. Second, note that for both datasets
most of the locations have only a handful of check-ins and
there are few locations with thousands of them. As we are
analyzing location sharing systems it is natural that some
locations are shared more than others. For example, loca-
tions representing a restaurant or a coffee shop are more
likely to be shared than a post office, despite the fact that
post offices are usually very popular as well. If our appli-
cation needs a homogeneous contribution per area, we have
to incentive users to participate in places that usually they
would not. A punctuation system is one of many types of
incentive that might work in this case. Thus, it would be
interesting to compare the characteristics of the systems we
analyze in this paper to systems that give a “reward” for
those who share their locations no matter where they are.

We have seen that PSNs can cover a planetary scale area.
On the other hand, we have also seen that most of the check-



Figure 2: Participatory sensor network
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Figure 5: Number of check-ins per region

ins are concentrated in North America and in Europe. Now
we verify, in Figure 7, the percentage of locations that are
active in a given time window tw. For instance, when tw = 1
day, we verify the percentage of locations that were active
at each day of the analysis. Naturally, observe that as we
increase tw, the coverage also increases. However, even when
tw = 1 week, the percentage of locations that were shared
by users is still small, maximum of ≈ 12% for Gowalla and
≈ 3% for Brightkite. This shows that the instant coverage
of PSNs is very limited considering all locations they can
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Figure 6: The complementary cumulative distribu-

tion function of the number of check-ins per area

reach, i.e., the probability of a random location to be active
in a given day is very small.

Now we look at individual locations of our datasets and
observe the frequency in which users perform check-ins in
them. Figures 8-a and 8-c show the histogram of the inter-
event times ∆t between consecutive check-ins. Observe the
bursts of activity and the long periods of inactivity in both
areas, i.e., a large number of check-ins separated by a few
minutes and also consecutive check-ins separated by several
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Figure 7: The average percentage of locations that

were active in a given day and their standard devi-

ation

days. This may suggest that most of the data sharing, in
these particular places, happens in specific intervals of time,
probably related to the time that people usually visit them
(e.g., in restaurants people check-in for lunch and dinner
mostly). If, for instance, an application depends on sensed
data from a beach area (e.g., real-time weather), it has to
be aware that very few people go to the beach at night, so
the sensing data will be rare.

Another interesting observation related to the inter-event
times ∆t can be drawn from Figures 8-b and 8-d. In these
figures, we show the Odds Ratio (OR) function of the inter-
event times ∆t. The OR is a cumulative function where
we can clearly see the distribution behavior either in the
head or in the tail, and its formula is given by OR(x) =
CDF (x)

1−CDF (x)
, where CDF (x) is the cumulative density func-

tion. As in [14], the OR of the inter-event times between
check-ins also show a power law behavior with slope ρ ≈ 1.
This is fascinating, since it suggests that the mechanisms
behind human activity dynamics may be more simple and
general than we know [1, 9].

An application that naturally arises from the analysis we
have shown in this section is area classification. Given the
large variety of places available and all the information we
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Figure 8: The distribution of the inter-event times

between consecutive check-ins in two popular areas

can extract from the check-ins, one can expect to see very
distinct sensing activities from location to location. For in-
stance, the check-in activity in a bar may be significantly
different from the check-in activity in a park. Thus, in or-
der to illustrate this idea, Figure 9 shows the heatmap of
locations considering two features. First, we consider the
median of the inter-event times ∆t of the location. Second,
we consider the ratio of the number of distinct users who
performed a check-in to the total number of check-ins in the
location.

In Figure 9 we can clearly see three different groups, or
clusters, of areas, named: A, B, and C. These groups repre-
sent different behavioral sharing patterns. Group A contains
popular locations, because the median ∆t is low, where most
of the users do not return frequently. An international air-
port could be in group A, for example. On the other hand,
group B contains locations that belong to the users’ routine,
like schools or gyms, since the users who perform check-ins
in these areas tend to repeat this activity. Finally, group C
contains most of the locations. It contains areas where it
is common to have a significant time between two consec-
utive check-ins. Moreover, users who already performed a
check-in are not likely to return and check-in again. Touris-
tic locations could be in group C, since they are very popular
and users usually go only once. We can see that these results
may indicate that the coverage of the network is linked to the
users’ social behavior, and this must be taken into account
when developing algorithms and techniques for PSNs.

6. CONCLUSIONS AND FUTURE WORK
In this paper we uncovered properties of participatory sen-

sor networks (PSNs), a new type of network comprised of
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autonomous mobile entities with sensing capability. One
of the main differences between PSNs and wireless sensor
networks is that in PSNs the sensing process depends on
whether nodes will participate. We analyzed two datasets
of a particular type of participatory sensing system, the lo-
cation sharing services Gowalla and Brightkite. We showed
that data from participatory sensor networks brings fasci-
nating opportunities for the problem of sensing large scale
areas. This is true mainly because it can achieve high cov-
erage (planetary scale) without significant costs. However,
we also showed many challenges of this emerging type of
network, such as the highly skewed spatial-temporal sensing
frequency.

At this time we are working in two main directions. First,
we are analyzing other types of participatory sensing sys-
tems to complement our analysis on location sharing ser-
vices. Second, we are studying actual incentive mechanisms
for participatory sensor systems and their implications on
the participation rate of the users.
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