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ABSTRACT

Smart cities emerge in computer science as a topic to cover how
the technology of information and communication can be used in
the urban centers to monitor its dynamics and allow the improve-
ment of services for the citizens. In these urban centers, different
methodologies are used in order to collect data and provide them to
applications. These data come from several heterogeneous sources,
thus there is an effort to integrate and standardize them before their
use. Also, a significant amount of this data has spatio-temporal an-
notations, which may be used to analyze the city dynamics, such as
the mobility flow. Due to these characteristics of the data generated
in urban centers, and also the possibilities brought by their use and
analyses, this work presents a novel approach to collect, integrate
and perform some analysis tasks in mobility data from smart cities.
Thus, the SMAFramework can analyze mobility patterns based on
a Multi-Aspect Graph (MAG) data structure. To show the potential
of the framework, it is proposed a method to analyze the saptio-
temporal correlation between data from two different data sources
in the same city. Real data collected from social media and a taxi
system of the city of New York are used to evaluate this method. The
obtained results allowed to understand some of the applicabilities of
the framework and also provided some insights on how to use the
framework to resolve specific problems when analyzing mobility in
urban environments.
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1 INTRODUCTION

Recently, the complexity of cities has increased considerably due
to several factors such as the bigger number of inhabitants living in
urban environments [12]. With that, urban computing has emerged
as a topic in computer science envisioning the application of infor-
mation and communication technology to improve services provided
to city dwellers [12, 16, 26]. Through the improvement of city ser-
vices, the new cities, also called smart cities, have the opportunity to
offer a better quality of life to their inhabitants in different aspects,
ranging from more efficient city mobility and less bureaucratic and
transparent governmental processes.

In order to achieve that, it is fundamental to obtain data to better
understand the city functioning. Data generated by cities can be
originated from different sources. For example, one typical approach
is to use the traditional sensor networks that can be seen as a sens-
ing layer of a particular phenomenon. There are several types of
sensors available nowadays, and the combination of different sen-
sor networks may allow the understanding of complex phenomena.
However, building sensor networks may not be scalable in certain
circumstances, for instance, to cover a metropolitan area [19]. Thus,
a useful alternative is to consider user participation in the sensing
process, where users with their mobile devices act as sensors in the
city. This approach has become practical due to the decrease of the
prices of mobile devices (e.g., smartphones) and the popularization
of location-based social networks, such as Twitter, Instagram, and
Foursquare [6, 19].

Several approaches have been used to analyze data collected from
single urban data sources and led to remarkable results. However,
methodologies to explore data from multiple sources still need to
be further investigated [14, 20]. Particularly, to combine urban data
to obtain more precise insights about the city impose several issues,
among them data integration [14, 20, 27]. This issue is especially
critical for spatio-temporal data, data of a phenomenon containing
geographic coordinates and annotations about the time when it hap-
pened.

Knowing that representing and integrating different sources of
spatio-temporal data is a challenge [7, 25], the goal of this study
is to propose a novel framework, called SMAFramework, to help
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city planners and others on these issues. The framework eases the
process of dealing with multiple heterogeneous sources providing an
approach to standardize these data in order to facilitate information
extraction regarding urban mobility. This framework envisions to pro-
vide different tools to help professionals as city planners, researchers,
and engineers to extract insights about urban mobility dynamics to
better plan the city to its citizens. In this paper, we propose one of
these tools and, to show the potential of the framework, we design
an algorithm based on fuzzy-logic scores to evaluate spatio-temporal
correlations between entries from different sensing layers of an area.
The approach, entitled Fuzzy Matcher, aims to provide a tool for
evaluating urban areas in space and time — rather than performing
an aggregated analysis not aware of the time variance — where data
collected from different sources are highly correlated; or evaluate
areas where this correlation does not exist but could be stimulated.
We use real data from New York City using two distinct data sources:
(i) spatio-temporal annotated tweets (i.e., short messages shared in
the Twitter platform); and (ii) trips performed in the New York City
using yellow taxis. We demonstrate how to explore the proposed
framework using our datasets to establish a better positioning of the
taxis, which could, potentially, improve taxi services to users and
increase revenue for taxi drivers.

This work is organized as follows. Section 2 presents the related
work. Section 3 describes how data is collected and represented.
Section 4 presents and explains the framework architecture. Sections
5 and 6 present the algorithm developed to demonstrate the applica-
bility of the proposed framework. Section 7 presents the results of
mobility analysis exploring our framework in our studied real-world
urban datasets, showing the potential for new services and applica-
tions. Finally, Section 8 summarizes the contributions obtained with
the proposed methods and presents some future directions.

2 RELATED WORK

The use of graphs to represent mobility data is recurring in the
literature. This recurrence allied to the need of representing the time
variance of this data has resulted in different graph-based models
with time representation support. The most common examples of
these models are: (i) Snapshot based [5, 21], where the graph is
formulated as N disconnected graphs where each graph represents a
moment in time, with all its connections and nodes; (ii) Continuous
Time Intervals [2], where the links between the nodes are described
as functions in a certain fashion that allows to identify whether the
edge exists or not given a specific moment in time; (iii) Spatio-
Temporal Edges [10, 13], which use two kinds of links to represent
the interactions between the nodes (spatial edges and temporal edges);
(iv) Time Mixed Edges [8], similar to the Spatio-Temporal Edges,
however, in this model the existence of mixed edges (i.e., edges that
connect nodes in different moments of time and locations in space)
are allowed; and finally (v) the Multi Aspect Graphs [9, 23]. One of
the advantages of selecting the MAG to represent the smart city data
is its capability of representing all kinds of connections present in
the other graphs. Table 1, extended from the paper of Wehmuth, et
al. [23], shows a representation map indicating for each model the
other models that can be represented with its definition. Also, the
last column was added to emphasize that only the MAG has native
support for multilayer.
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Table 1: Representation map for the different models used to
extend the graphs with time variance data

Snapshots CTI STE TME MAG iuldlaer
Support
Snapshots X X
CTI X X X
STE X X X
TME X X
MAG X X X X X X

Furthermore, other frameworks for mobility analysis, based on
different models, have emerged in the literature. These frameworks
were developed focusing not only on mobility in the cities, but also
other scenarios as discussed below. Thakur & Helmy [22] investigate
how current mobility models are adequate to represent the human
mobility. Also, the authors propose a framework, namely COBRA,
which extends the mobility model metrics to match with real traces.
The framework aims to create a model for mobility to allow simula-
tion of network protocols dependent on that mobility. To evaluate
their framework, the authors use some network protocols, combined
with other mobility models and also traces from real world in specific
environments within the city (e.g., university campus, parks). This
framework uses archived data collected from the scenarios when
using real world data, this data also can be combined from different
sources or scenarios in order to create more complex models. Their
framework was not built with the purpose of analyzing mobility,
but, instead, model it, thus it lacks some of the needed features to
perform analysis tasks, such as the layer-based structure (i.e., all data
collected are mixed together), and the possibility to use real time
data.

Patroumpas [15] propose a methodology to model traces of generic
positional information. That model introduces a sliding window
operator that allows an incremental examination of streamed motion
traces. On top of this model, there is a query language able to express
spatio-temporal queries to retrieve data stored in the sliding window
format. That work presents the approach as a tool to analyze online
streamed data, but does not show how it can be used to stored data,
which is an important source of mobility data. For example, some
of the mobility data cannot be published in real time due to privacy
constraints and/or other issues (e.g., the New York Yellow Taxis Trip
dataset used in this paper), thus the unique way to work with this
data is by collecting it from archived sources. These two ways of
accessing data, streamed and archived approaches, may be used to
ensure the exploration of the data available, and, thus, frameworks
that can handle both formats have extra advantages, such as the ones
following.

Silva et al. [20] discuss the concept of sensing layer division
for different types of data available in geographical regions. The
authors focus on analyzing data about urban regions provided by users
using their portable devices through location-based social networks
platforms (e.g., Twitter). They provide a generic way of structuring
data for analyses, however, the abstract model is not specialized, i.e.,
does not contain functions to help for instance in mobility analysis.
Besides, the time dimension in that model presents some limitations.
In our work, the focus is on creating a tool to analyze mobility
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patterns, thus the structure of the data is well defined and all the
sensing layers can be standardized in a common data structure (i.e.,
the MAG structure).

In order to perform maritime traffic analysis, Salmon & Ray [17]
introduce a spatio-temporal framework capable of analyzing archived
and streamed data sources. The proposed architecture is oriented to
receive data in real time as data streams. The authors explore also a
query specification standard, which allows the creation of persistent
and one-time queries, reflecting respectively queries that will stay
listening to new incoming data, or queries that will run over the data
already stored. That study is focused on maritime traffic, where the
data comes from sensors, but it is not shown how data from different
sources can be used in that model.

The SMAFramework, proposed in this paper, is focused on ana-
lyzing data generated in cities observing their characteristics, such as
the high heterogeneity of the data sources, which may be archived or
streamed in several different standards. The architecture is extensible,
allowing to collect data from data sources not currently present in
the framework in a plug-and-play fashion. Its focus is on mobility,
allowing defining more specifically details for this purpose. Table 2
summarizes the contents of this section and indicates the differences
from the models and frameworks discussed and our proposed model.
Also in Table 2, it is possible to identify the number of different
sensing layers supported by the model.

Table 2: Summary of related work emphasizing the differences
from other studies and the SMAFramework

Archived Streammed Unified Data Combination of Number of
Independent
Data Data Structure Data Sources
Layers

Thakur & Helmy
(2013) X X !
Patroumpas et. al.
(2013) X X X !
Silva et. al.
(2014) X X X N
Salmon & Ray
2016) X X X 1
SMAFramework
(2017) X X X X N

3 URBAN SENSING LAYERS AND ITS
REPRESENTATION

One way to classify data generated in a city is to use sensing layers.
Silva et al. [20] define sensing layers as datasets describing specific
aspects of a given geographical location. The raw data in these layers
must be collected and processed in order to be used for analysis
purposes. An example of sensing layer is data collected from the
Twitter platform, which provides rweets that may be spatio-temporal
annotated. These annotations can be used to identify the position
of the person by the time of sharing a message. This is done using
the latitude, longitude and time fields of the tweet. Also, more
sophisticated analysis can extract other information from the content
field of the message.

Each sample of data in the sensing layer includes a time interval
when the data was generated, a location where it was produced, a
specialty data and one or more IDs (or UIDs — user ids) to represent
the entity who created the data. The specialty data could be the
message in the tweet, or the photo itself shared in a photo sharing

service. In this work, we consider the data location itself as the
specialty data. This division of sensing layers brings a series of
advantages in different applications of urban computing because it
helps to extract useful information [20]. Currently, many approaches
explore data from single sensing layers and get useful results. How-
ever, data combination of different sources, as complementary data,
to improve results is an emerging research topic when studying data
in urban areas. The unification of these datasets is not a trivial task,
thus resulting in different efforts proposing models and frameworks
capable of representing and aiding the use of these datasets.

Zheng [27] identifies some features that may facilitate the success
of a framework to represent and analyze urban data. That model must
be able to (i) integrate data from heterogeneous sources: organizing
the data in an efficient way for retrieval and mining, while keeping
the consistency of the data for each independent source; (ii) allow
cross-domain data combination to allow knowledge extraction that
cannot be extracted from single data sources; and (iii) be able to
manipulate sequences of time-stamped locations coordinates.

Inspired by the concept of sensing layers and by features needed
to facilitate the success of a model to represent data from urban
centers, we propose the use of a Multi Aspect Graph (MAG) [9, 23]
to represent the data inside the framework. The MAG is an extension
of the Graph model that allows the representation of different data
features by using the so-called aspects. In the literature, there are
different descriptions of the model, but the models proposed by
Kivela et al. [9] and Wehmuth et al. [23] are the most well accepted
by the academic community. Both models are equivalent with a
few peculiarities distinguishing them. In the proposed framework,
the model presented by Kivela et al. [9] was used because of its
simpler and clearer mathematical definition, what reflects in being
better referenced in the literature. Figure 1 shows a representation
of a MAG indicating how some of the real-world characteristics
are mapped to the structure in the framework. Specifically, as for
example, Twitter and Taxi Trips are shown as data sources mapped
as layers in the MAG.

data source

Figure 1: Sample representation of a MAG structure

In Figure 1, it is shown a MAG with two aspects. An aspect is one
axis where layers can be created, each of these layers is represented
as a square in Figure 1. The first aspect, represented vertically, is
the data source aspect, thus every surface (i.e., elementary layer, or
row of layers) contains data from a different source. It is important
to mention that even the same source can produce information for
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different layers when the source produces entries that represent dif-
ferent specialties (e.g., an entry from a taxi trip can represent either
the presence of a person or the presence of a vehicle in a given lo-
cation). The second aspect, represented horizontally, is the time.
In the model, the time is discretized, so every elementary layer in
the temporal axis represents a moment in time when the data was
generated. Every node in the graph is a piece of collected data and
the links connecting them represent their relationships. The model
allows the representation of any kind of relationship, which is able
to adapt to different analysis cases, what is accomplished by using
labels to identify the links.

In the example, two kinds of relationships are shown. The thick
dashed line represents a movement of the data producer, thus two
nodes connected by a thick dashed line have the same UID. The thin
dashed lines represent nodes in different layers, which were created
by the same entity. Since the data was collected in different sources,
their UID may not be the same, thus this kind of connection must
be created through analysis tasks. These links can be created when
the UIDs in different layers are the same, or when the map of UIDs
in different layers is known, however, it is not clear yet how these
connections can be created when this information is not present (i.e.,
it is an open question, especially when studying user-based sensors
[20]). Yet, our work shows initial insights on possibilities of creating
these connections. We call this mapping of sensors/users in different
layers as the Cross-layer sensor/user mapping problem.

According to Kivela et al. [9], the MAG is a model that uses
a composition of aspects and layers to add information to graphs.
The aspects are the dimensions (i.e., axis) in which the layers are
in. Every aspect a has a family of elementary layers L,, which
represent a unique value of one aspect of the data (e.g., one moment
in time in the temporal axis permeating all the data sources). This
way, if we have d aspects, we can define all the elementary layers as
L={L, }(da:l). Thus, the set of all layers in the graph is the Cartesian
product of all elementary layers L1 X Ly X - - - X L. Since any of the
nodes in V can be in any layer, the set of nodes that are present in
the graphis V,;, €V X Ly X Ly X --- X Lz. Any of the edges in the
graph can connect two different nodes in any layer or aspect. Thus,
the set of edges is E;; € Vi X V. Using this information, we can
define a MAG as M = (Vi,, Em, V, L).

One advantage of using the MAG model is because it keeps some
of the characteristics of the traditional static graphs. The traditional
graphs were used to represent static information, and also some-
times to do analytical tasks over aggregated area over time (i.e., not
time-aware analysis), but some peculiarities of the mobility data,
for example, cannot be expressed in a timeless fashion. Since these
graphs have been used to represent mobility data before the advance
of time-varying graphs, some of the techniques and methodologies
already available may be reused. This model is also adequate to rep-
resent the division of the sensing layers to facilitate the development
of the proposed framework and enables the execution of analysis
tasks over the data.

4 SMAFRAMEWORK: SMART CITIES
MOBILITY ANALYSIS FRAMEWORK

In this section, we introduce the framework to aid developers, re-
searchers and city planners to analyze mobility data generated in the
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city environment. In order to accomplish that, the framework helps
gathering data from the different sources available in the city and
standardize them to facilitate data management and analysis. Further-
more, the framework also provides a base structure to perform trivial
and common tasks to deal with any data, including mobility (e.g.,
clean invalid data, remove duplicates and filter data). Nowadays,
every data scientist working with mobility data tends to build his/her
own solution, which raises a challenge on data standardization among
others, preventing its reuse in an easy way. Providing a tool that al-
lows users to avoid rebuilding these procedures and also perform
them in an optimized way can, potentially, help to save time to work
on more specific details of their analysis. Finally, the framework also
envisions to provide ways to deal with some challenges regarding
mobility data analysis tasks. More specifically, matching traces in
different sensing layers and analyzing the correlation of layers from

different perspectives.
— iR
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Figure 2: The SMAFramework architecture

Figure 2 shows the framework architecture. At the top, it is shown
the city generating data through different sources. Every icon inside
the cloud represents a different source of raw data that is being col-
lected to be analyzed, using Data Extractors. These Data Extractors
are pieces of software that collect the raw data from its source and
adequate it in a basic initial format called Entries. For example, a
Data Extractor can use an API to collect data from a social media
platform and put it in the Entry format. This data may also be pro-
vided in different ways rather than through APIs. The objective of the
Data Extractors consists in looking at these peculiarities of each data
source and performing the initial data extraction step. In the example
shown in Figure 2, the Twitter source is been explored by two Data
Extractors that can, for instance, be a stream extractor, collecting
real-time data, and another archived extractor, collecting stored data
in other formats.
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Every entry represents sample data, space and time annotated that
will be stored in the framework. These samples consist of geolocation
(i.e., latitude and longitude), time, data source and user ids, i.e.,
represent the entity, which generated the sample. In the absence of
information indicating the UID, the framework will generate values
assuming that every entry was created by different entities. Also,
these samples may contain additional data that might help eventual
analysis cases. These entries are initially stored in the database,
as shown in Figure 2. Once in database, there are common tasks
that read the entries and organize them into the MAG structure and
perform data enrichment both according to the users’ configurations.
These tasks can add more data samples that were not initially in the
entries, but can be inferred. For example, Mahrsi et al. [11] present
two ways of enriching data from bus system traces. In those scenarios,
it is known when the users take a bus, but it is not known when they
leave it. Thus, in order to infer this information, the authors raise two
assumptions: (i) closest-stop — for a given transaction, the passenger
arrives in the closest station of the one where the next transaction
starts; and (ii) daily-symmetry — for the last transaction of the day,
the passengers arrive in the closest station of the one they used to do
the first departure of the day.

After the Data Organizer and Data Enrichment steps, the data
can be structured on the MAG model. This structure will be stored
by the framework in a so-called MAG database. At this point, the
data can be checked by the users of the framework, for example,
using a visualization tool. On top of the MAG structure, the Data
Analyzers run tasks that help the extraction of knowledge from the
mobility collected data. Similar to the Data Extractors, the data
analyzers can be conveniently added to extend the framework and
adequate it to the user needs. The framework is based on a two-step
organization of the data, i.e., first entries, then the MAG, to reduce
the amount of work needed to add a new module. Thus, if users need
to use the Data Analyzers that already exist in a new data source,
they can only deploy the Data Extractor to be able to do it. A similar
situation occurs in the case where the user is going to use the already
supported data sources, but with a new Data Analyzer. This division
also organizes the framework in a layer-based design, making easier
to add new layers between the existing ones to improve metrics as
performance and/or scalability, such as adding a caching system to
enhance the data access.

The MAG structure and the Data Analyzers are the core of the
framework. These modules allow the framework users to explore
the data and extract knowledge. The Data Analyzers can perform
two types of tasks: they can change the MAG structure to allow
the visualization of certain patterns, or also can output summarized
results to a result database. Since these analyzers are a key part of
the framework, the present paper shows a use case with a proposed
Data Analyzer called Fuzzy Matcher. This analyzer aims to create
spatio-temporal matches between two different sensing layers, and
its full description appears in the next section.

5 FUZZY MATCHER

The analysis provided by the SMAFramework can provide important
insights for different city stakeholders. For instance, citizens helping
other people to better use the resources available in the city; or city
managers, aiding themselves to build the policies to manage the

city. To show a use case exploring the framework, we propose a
Data Analyzer, called Fuzzy Matcher, to investigate spatio-temporal
correlation of data from different sensing layers.

Fuzzy Matcher is an algorithm that identifies spatio-temporal
matches between nodes of the MAG from different sensing layers of
the smart city. After the identification of the match, the algorithm
also evaluates a temporal and spatial score of the matches. This
score is evaluated based on the spatio-temporal distance between the
matching nodes and a dispersion function. While using this proce-
dure from the framework, the users are able to specify parameters
such as distance, time precision, and also distance and time depre-
ciation function. The change of this function can be used to adapt
the analysis for specific cases. For example, the way crowds move
in a city may vary according to a particular scenario. A crowd as a
parade, for instance, tends to walk longer distances to make its cause
more visible, whereas a crowd attending a concert does not move a
lot. The way that crowds, and other mobility flows, behave in the
city can be better described by different dispersion functions.

- 500m s=10}
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Figure 3: Fuzzy matching process

Figure 3 shows how the Fuzzy Matcher algorithm works and
also how its parameters are used. The distance precision D, time
precision T, and the temporal and spatial depreciation functions ¢d(t)
and sd(d), respectively, where d and t are the spatial and temporal
distances, are used to create a curve to evaluate the score of the match.
The spatial score is given by SS(d) = f(d)/D where f(d) = {D, if
d < D; sd(d — D), otherwise}, and similarly for the temporal score:
TS(t) = f(t)/T where f(t) = {T, if t < T; st(t — T), otherwise}.
For example, given the scenario in Figure 3, the match (SRC, B) has
spatial score $5(625) = 0.5, for D = 500, and the spatial depreciation
is a linear function (i.e., sd(d) = D — d). In the same scenario, since
the pair (SRC, C) has S5(800) = 0, this pair does not become a match.
The same is valid in case of TS(¢) = 0.

Considering the proposition of this method, this work aims to add
a few possibilities to aid researchers and developers in analyzing
mobility data when compared to other methodologies. For instance,
geographical databases offer a variety of tools to match spatial data,
such as geo-located queries, that allow searching a specific area; or
even observer functions that make possible to watch for changes in the
database within a region. However, many of these approaches lack
temporal awareness, not performing any analysis over time. Also,
despite only matching samples, the Fuzzy Matcher provides scores to
represent how strong/weak is a given match. By using these scores,
thresholds can be identified to allow classification of the matches, for
instance. Finally, Fuzzy Matcher introduces a way of using different
depreciation functions to analyze datasets that might have different
dispersion behaviors.
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One of the issues related to finding matches in datasets is the
algorithmic complexity. If the algorithm is built in a naive manner, its
complexity can become O(n?). This complexity might be a barrier to
use the Fuzzy Matcher algorithm when it comes to huge datasets with
dozens of millions of samples. To reduce the algorithmic complexity,
we propose a method of walk through the dataset comparing samples
to their neighbors. This method was built inspired in the Bucket Sort
[3] algorithm, leading to the so-called Bucket Walk. The method is
described as a three-dimensional walk in the section 6, but it can be
extended to any number of dimensions.

6 BUCKET WALK

In this paper, to reduce the O(n?) complexity of the Fuzzy Matcher
algorithm, it is introduced the Bucket Walk approach to visit samples
in the datasets and compare them with their neighborhood. In this
section, the Bucket Walk is described as a three-dimensional method
to walk through a dataset, however, the method can be extended to
work with any number of dimensions. Also, this method is not bound
to work only in the Fuzzy Matcher algorithm, rather it can be used
with any algorithm that aims to compare dataset samples against their
neighbors. The use of this walking method reduces significantly the
time and memory usage to run the Fuzzy Matcher. This section
shows some results collected from experiments using the Bucket
Walk and the naive approach. The same experiments could not be
obtained from the complete datasets since the naive experiments
were taking much time to run and exhausting the memory even if
some of the best servers are available to be used (i.e., 24 cores, 40Gb
RAM). By using the Bucket Walk to execute Fuzzy Matcher, the
server was able to perform the task saving significant resources (i.e.,
using 16 cores and 8Gb RAM) and time.

As mentioned, the Bucket Walk was built using as inspiration the
Bucket Sort algorithm [3]. The Bucket Sort consists in splitting the
samples to be sorted into smaller groups called buckets (or bins),
sort the samples within the bins and then sort the bins themselves.
In order to split the original dataset, the Bucket Sort creates hashes
of the samples. For example, a hash function, when sorting strings,
could be to get the very first character; each character would be
mapped to one bin, so every string starting with the same character
would be placed in the same bin. We argue that this approach can
be extended to organize multi-dimensional data by creating buckets
and hashes at each data dimension in the samples. For instance, the
data analyzed in the Fuzzy Matcher is spatio-temporal aware, thus
resulting in a 3D data model, with the latitude, longitude and time
dimension — two spatial dimensions and one temporal.

The Bucket Walk consists in creating hashes to split the original
dataset in a 3D space (i.e., latitude, longitude and time). Given
this division, while walking through the dataset, it is possible to
compare samples in neighbor buckets, rather than the whole dataset.
We need to choose a hash function to use this approach, and its
choice will affect the performance of the walk, and consequently,
the algorithm that uses it (e.g., Fuzzy Matcher). One possibility of
choosing the hash function is to define a base sample, which may or
may not be in the dataset, and compute the distance of every sample
to this base sample, and then get the integer part of the division
of this distance by a factor K. This has to be done for the three
dimensions of the data separately. If the base sample has the lowest
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(or highest) values for every dimension the result of the hash and split
tasks will be a cube of data buckets. Every bucket will contain the
samples that obtained the same result from the hash function. Once
identified the base sample, the hash procedure has to be performed
for every data sample, which means it is O(n) ¢ O(n?) operation,
then we do not have the complexity problems to run the hash over all
data. Furthermore, if the base sample is not known initially, all data
samples will have to be visited before performing the walk to identify
it, resulting in a O(n) C O(n?) procedure, which also does not imply
in any complexity increase compared to the naive approach.

The factor K, mentioned in the hash function, has also to be de-
fined. To do so, it is necessary to look at how the neighborhood of a
data sample is defined. In the Fuzzy Matcher algorithm, the neighbor-
hood is defined by a custom function f(x) = {SS(x), TS(x)}, where
the factor can be defined as K = x when f(x) = 0. Conveniently,
for the sample presented in Section 5, with the linear depreciation
function and a precision P = {D, T}, K = 2P. Defining K this way
allows the algorithm, for a given sample, to only compare data in
adjacent buckets in the cube. It is important to note that two K values
were obtained, one for spatial hash and another one for the temporal
hash. This approach allows to have one different K value for each
dimension.

Once obtained the hash function, the K factor splits the dataset
samples into the cube of data buckets. The worst-case scenario
would still result in a O(n?) complexity. This is the scenario where
all data samples would be allocated to the same bucket. However, it
is known that the usual distribution of the studied data has no such
trend. To show this distribution, the proposed hash function was used
to split the data samples in the experiments. These data samples were
collected from the Twitter platform and the Yellow Taxis from the
New York City, as previously mentioned, and contain respectively
399,024 and 10, 580, 378 samples. More details about the datasets
are provided in Section 7.

10 Twitter: (200610 buckets, max: 399)

Yellow Taxis: (1996165 buckets, max: 912)
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Figure 4: Distribution of the buckets usage

Figure 4 shows the distribution curve of data samples in buckets.
In that figure, the horizontal axis represents the buckets while the
vertical one represents the number of samples in the buckets. The
buckets were sorted according to the number of samples in it. Also,
to facilitate the visualization, a number of samples per bucket were
normalized to the [0, 1] interval. The legends of Figure 4 show a
number of buckets with at least one sample and the number of samples
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in the most popular bucket. It is visible that the datasets have a quite
sparse distribution where most of the samples are centralized in a
few buckets, but not all in the same bucket as described in the worst-
case scenario. Indeed, the Twitter and Yellow Taxi curves can be
approximated by an equation of the form: D(x) = p /§”+ 7. as shown
in Figure 4, where the factors « and f will define the shape of the
curve, also the +1 was ripped without loss of generality. By using
this approximation we can estimate n =~ } . ;Lﬁ, resulting in:

lesf-siEps) o

x X i>x

This way, the equivalent complexity will be:

2 (&) 2 @) |2 ()

i>x

on*) =0 . @

The last step in Equation 2 is only possible because of the big
O notation, where only the higher order factors in a sum affect the
algorithmic complexity. In Equation 2, there is still a quadratic term,
as predicted in the worst-case scenario, however, this quadratic term
is attenuated according to the samples distribution. For the specific
datasets studied in this work, some upper bounds of the values of f
were identified as § < 0.3 for Twitter, and f < 0.2 for the Yellow
Taxis. These bounds were simply defined by observing the behaviors
of the # and ﬁ curves. The obtained equation represents the ex-
pected result, where the full complexity of the algorithm is evaluated
according to the sum of the complexity contained at each bucket. In
this case, the value of « is the maximum number of samples in a
single bucket. In the case that & = n, i.e., the worst scenario, only
one bucket exists, thus x € {1} and the complexity becomes again,
as predicted, quadratic, as follows:

n? n? 9
0 Z (xTﬁ) _O(lz_ﬁ) = 0(n?). (3)
xe{1}

Another advantage of using the Bucket Walk is the fact that it
does not require all the data to be loaded into the memory of a
server. Only chunks of data containing the buckets of a region to be
analyzed need to be loaded, making it more convenient to run in low
memory environments. Also, when running the algorithm over the
whole dataset, the nodes within the same bucket can be analyzed in
sequence, which facilitates the usage of a caching hierarchy. This
works resembles the Iteration Space Tiling optimization [24].

There are in the literature some other access methods that can be
used to retrieve spatial and temporal data. For example, the R*-tree
model [1] is based on tree structures commonly used to query spatial
data samples. That method builds a tree with two types of nodes:
leaves and pages. Starting from the top page, which covers all the
samples, the search algorithm starts looking for a child page that
covers the desired query. Once the algorithm identifies this page, the
process will repeat recursively until the algorithm reaches a page
with the leaf children. At this point, the algorithm will look at the
leaf nodes to find the queried sample. In this model, the hierarchy
is used to organize the nodes, however, even for sibling pages, there
are no indications if they are from neighbor regions. The absence of
a notion of neighborhood in the R-tree may result in repeated visits
to the higher levels of the tree while performing the nearest neighbor

queries [18]. In the Bucket Walk, this information of neighborhood
is used to reduce the number of comparisons needed to execute the
Fuzzy Matcher. There are still different extensions of the R-tree
algorithm in the literature, which may improve its performance in
the nearest neighbor queries, however, they are not using all the
information of the search domain of the Fuzzy Matcher. For instance,
a depreciation function to estimate the maximum search area is not
used.

StreamCube [4] is another algorithm to search data samples that is
aware of the spatial and temporal variations. It consists in organizing
the data in a 3D cube, making it easier to access data querying over
latitude, longitude and time. The difference of this approach to ours
is that it queries items as continuous values. To quickly navigate
over the data, StreamCube creates some hierarchical divisions based
on temporal and spatial regions. Furthermore, data items can be
queried over week periods, and these periods can be accessed on a
daily basis. In our solution, we we a hash strategy, leading to indexes
that may result in a more efficient data access when compared with
a continuous representation. In fact, indexes allow Fuzzy Matcher to
have a better data access, retrieving less unneeded data.

7 EVALUATION

We use Fuzzy Matcher to analyze data collected from two different
data sources in the New York City. In order to analyze the corre-
lation of both datasets, we defined an area of interest that covers
the Manhattan region and also some near neighborhoods. The first
dataset consists of tweets collected during the month of January/2016.
During that month, we extracted 399,024 tweets geo-annotated (i.e.,
tweets that contain information about the geo-location where it was
shared). The second dataset is available on the NYC Open Data
portal. It has information about the New York Yellow Taxi trips. In
January/2016, there were 10,580,378 valid trips within the bound-
aries of our analysis.

The first experiment consists in using the Fuzzy Matcher scores
to check the spatio-temporal correlation of zones of the city. In this
experiment, we analyze if we can use Twitter data to better position
taxis within the city so these taxis will be more accessible for the
citizens, and also more trips will be requested. The Yellow Taxis
in New York only provide their services through street-hails, thus
they must be well positioned to have a better coverage of the city
area, which consequently results in a more intelligent transportation
system. Our hypothesis is that a region with a relevant number of
tweets may indicate a significant amount of possible taxi users. In
this way, Twitter data, collected in real time, may be used to indicate
regions where taxis could be positioned to serve citizens, or to quickly
identify changes in the city environment caused by events, such as
demonstrations and traffic jams.

We used the Fuzzy Matcher algorithm to analyze the correlation of
samples collected from Twitter and the Yellow Taxis sensing layers.
The algorithm identifies spatio-temporal matches with a distance
precision of 100 meters and a temporal precision of 2 hours. We use
linear functions as depreciation functions in the Fuzzy Matcher!.
The scores of the identified matches were evaluated and used to
build a heatmap of the matches, shown in the left part of Figure

I'Note that other functions could be used, however, the investigations of better configura-
tions are out of the scope of the current study.
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Figure 5: Heatmap of the twitter data distribution (left) and matches distribution (right)

5. We used the Twitter data to build the heatmap shown in the
right part of Figure 5. It is important to notice that the matches in
the Fuzzy Matcher heatmap reflect the amount and scores of the
identified matches, rather than only a given amount in the Twitter
heatmap. This correlation does not exclude the possibility of having
the same Twitter sample matching different Yellow Taxis samples.
These two factors may lead to greater values in the Fuzzy Matcher
heatmap than in the Twitter one, which is expected. Furthermore,
the Fuzzy Matcher heatmap considers the time variation, i.e., the
scores of a region only increase if this region has matches closer in
time and space, rather than an aggregated analysis where the time is
not considered.

Looking at the heatmaps in Figure 5, it is possible to identify that
regions with higher volumes of tweets resulted in regions with higher
volumes of matches. This information by itself is not enough to prove
the initial hypothesis, however, it acts as an indicator of its validity.
After looking over all the heatmap, there are some specific regions
that may be highlighted, identified with circles in Figure 5. In these
regions, there is a significant amount of tweets, however, the scores
of the matches are not relevant. The first region to observe is the one
indicated by the red circle A (top of left image). This represents the
Central Park area and it is clear that taxis will not be available there
since they cannot access the park area. In the other two red circles
B and C of the left image, it is possible to notice a smaller amount
of tweets that are not reflected in matches, and, apparently, there is
no reason for this lack of matches. In this case, we require a more
elaborated analysis of the datasets, complemented by other sources,
to ensure that assigning more taxis to those regions may increase the
number of requested trips.

The second experiment aims to provide initial insights on the study
of the Cross-layer User Mapping problem, i.e., to map data generated
from the same entities in different sensing layers. The experiment
consists in finding trips of taxis that have fuzzy matches, with the
Twitter layer, in the beginning and at the end of the trip. We argue that
the algorithm may capture trips that were performed by the owner
of a given Twitter account. To check this hypothesis, we initially
generated data to simulate a scenario where users actually tweeted,

took a taxi and then tweet again. In this scenario, 500 Twitter users
sent 20,000 tweets in one day. Also, 5,000 taxi trips were generated.
We, then, executed a procedure on top of the results obtained by the
Fuzzy Matcher in the simulation scenario. We analyzed the user ids
contained in the matches in both layers. Thus, if we have a persistent
match generated by two fuzzy matches P = {(A, B), (C, D)}, where
A, B, C and D are nodes in the MAG structure, and also, without loss
of generality, A and C belong to the Twitter layer, and B and D to the
Yellow Taxis layer. Then, for P, it is valid that A.uid = C.uid and
B.uid = D.uid. Figure 6 shows the results obtained in the simulation.

Figure 6: Simulated scenario to evaluate hypothesis

The Fuzzy Matcher algorithm allows the same Twitter layer node
to match many Yellow Taxis nodes, and, thus, we can establish a lower
bound of the distance, as depicted in Figure 6. To consider a persistent
match and not only noise produced by the Fuzzy Matcher algorithm,
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the persistent match distance needs to be at least 500 meters. Also,
to ensure that the data has no noise, we defined a max speed limit
used in the persistent matches to be 27.8 meters/second, or 100 Km/h,
which may still be high. We discarded trips leading to a taxi or a
Twitter user moving faster than this speed. These distance and speed
limits are based on usual speeds and distances practiced by taxis in
big cities, however, these values were only meant to waive the noise
in the data and may not have implications on the analysis. As it can
be observed, the algorithm identifies the persistent matches, showing
that it can be used to investigate this sort of correlation between the
sensing layers. There were identified 229 persistent matches in the
simulated scenario, where the top 10 most relevant matches (i.e.,
greater distance and match score) are shown. After the simulation,
the same method was applied to real data from New York City, and
the result is shown in Figure 7.

Figure 7: Persistent matches indicated by Fuzzy Matcher

In the Yellow Taxi layer, we only have the times of the beginning
and the end of each trip. After finishing a trip, there is no information
if the same taxi was, or was not, used in another trip. Due to this
limitation of the UID control in the Yellow Taxis dataset, every
link represents a trip assumed to be performed by a different taxi.
Also, colors of the lines represent the day when the trip happened.
Finally, the icons associated with the persistent matches represent the
Twitter user who created the data entry that resulted in that match. At
the end of the procedure, 20,368 persistent matches were identified
after filtering the noise. As in Figure 6, Figure 7 shows the top 10
most relevant matches. It is important to notice that the real data
shows patterns of mobility. For example, most of the data is from
a central region, which reflects the distribution shown in Figure
4. Furthermore, specific Twitter users are more likely to use the
platform, resulting in more persistent matches for the same users,
indicating their individual preferences.

Figure 7 shows evidence that the Twitter data may be used to
map trips in the Yellow Taxis sensing layer. Silva et al. [20] suggest

the use of the Twitter UIDs to work as a global identifier for data
generated by human entities in different sensing layers. We could
show that the Fuzzy Matcher algorithm can be one of the tools used
to help creating this map of entities in different sensing layers. The
information present in the experiment may not be enough to ensure all
the persistent matches that reflect a real person using a taxi. However,
due to the high amount of persistent matches and the alignment of
trips’ start and end locations with the user’s locations, we claim
that some initial analysis toward the solution of the cross-layer user
mapping problem can be obtained with the SMAFramework and
the use of the Fuzzy Matcher algorithm. As mentioned before, the
problem of mapping the same entities in different layers is still an
open issue in the literature [20].

8 CONCLUSIONS

Solutions for urban computing are enabling cities to provide better ser-
vices for their citizens and optimize the usage of city resources. This
work contributes in this direction, by introducing the SMAFrame-
work to analyze mobility data in smart cities. This framework fo-
cuses on collecting spatio-temporal annotated data from different
data sources, merge and standardize them to facilitate their analysis.
To show the applicability of the SMAFramework, we analyzed data
collected from two distinct sources in New York City. For that, we
proposed an algorithm for mobility analysis, called Fuzzy Matcher.
This algorithm allows its users to analyze spatio-temporal correlation
(i.e., alignment/closeness of data entries in space and time) between
data collected from different data sources. We argue that this al-
gorithm may have different use cases, such as helping to deal with
the cross-layer user/sensor mapping problem. There is still open op-
portunities to extend the framework, including more Data Extractor,
Data Analyzers and Data Enrichment tasks. Indeed, the architecture
of the SMAFramework was proposed to ease the addition of new
modules in a plug-and-play fashion to maintain its evolution.
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