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Abstract—People-centric sensing is a research topic that aims
to obtain and analyze urban data from crowdsourcing, such
as participatory and opportunistic sensing. Data provided by
these sources increase our knowledge about different aspects of
our lives in urban scenarios, which can help us to understand
and address issues that cities face. Thus, the sustainable people
participation is crucial to the development of this sensing
paradigm. In this direction, we focus on a central element for
the deployment of people-centric sensing applications: guaran-
tee sustainable participation of users. For this, we discuss the
existing challenges at the main components of an architecture
to support people-centric sensing. In order to enrich this
discussion, we also evaluate the incentive mechanisms used
by Foursquare, mechanisms that could be used, with proper
adaptation, in several types of sensing systems. Among the
results, we found evidence that a specific type of incentive
(mayorship-based) could be very effective to increase users’
engagement. Moreover, we present a set of policies to be
incorporated into an existing or new people-centric sensing
architecture to complement traditional incentive mechanisms.

1. Introduction

A clear tendency in the mobile computing paradigm is
the use of a plethora of mobile devices to access social net-
works. Moreover, all sorts of sensing elements are becoming
ubiquitous in these mobile devices, allowing them to offer
location-based services, among others. Given this scenario, a
clear path is the coalescence of social networks and sensing
technology available in mobile devices, leading to people-
centric sensing [1]. People-centric sensing paradigm, also
known as mobile crowdsensing, is being used to enable a
broad range of applications, such as environmental monitor-
ing [2], identification of cultural boundaries [3] and public
safety [4], all of them aim to reduce problems faced by
urban centers and provide sophisticated applications.

People-centric sensing has the potential of sensing vast
areas and has less energy constraints than traditional Wire-
less Sensor Networks (WSNSs), because it relies on the
participation of people carrying their portable devices (e.g.,
smart phones), which can be recharged regularly, to collect
data and collaborate among themselves [1]. Due to a strong
dependence of people’s participation on sensing activities,
the paradigm can be categorized according to the degree of
users’ engagement [5]: active involvement of people, act-
ing as social sensors sharing contextual information and/or
making available their sensed data (i.e., participatory sens-
ing) [6]; and minimal involvement, where data is collected
autonomously, thus, while users use their applications in the

foreground, the sensing is performed in the background (i.e.,
opportunistic sensing) [7].

As people’s engagement is the foundation for any
people-centric sensing application, keeping them motivated
is a central element for sustainability. To achieve this goal,
it is common sense that incentive mechanisms must be
incorporated into people-centric sensing architectures.

In this work, we discuss some of the challenges and
key factors that must be present at the core components of
an architecture to offer sustainable people-centric sensing.
For that, we present a set of policies to be incorporated
into existing or new people-centric sensing architectures
to complement traditional incentive mechanisms. To enrich
this discussion, we also evaluate the effectiveness of non-
monetary incentive mechanisms used by Foursquare, which
is a popular platform, to gather social contexts about users
(e.g., preferences) [3]. Foursquare uses incentive mecha-
nisms based on mayorships and badges to keep its users
motivated. Our evaluation of 901 new users shows evidences
that mayorship-based incentive could very effective to in-
crease users’ engagement.

The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 discusses the research
issues faced by people-centric sensing paradigm, and also
some possible solutions to provide sustainability beyond
traditional incentive mechanisms. Section 4 investigates the
efficiency of Foursquare’s incentive mechanisms. Finally,
Section 5 summarizes our contributions.

2. Related Work

There are several incentive mechanisms proposals to
increase user contribution or participation in people-centric
sensing systems. In this direction, Yang et al. [8] proposed
two incentive mechanisms, both based on money. In the con-
text of people-centric sensing, other money-based incentive
mechanisms are also common, such examples include [9],
[10]. Since the total amount of rewards paid by the client can
quickly rise in money-based incentive mechanisms, there
are also proposals on alternative methods. For example,
Ueyama et al. [11] proposed an incentive mechanism based
on gamification, exploring a point system and a badge
scheme. Typically, the evaluation of an incentive mechanism
for people-centric sensing is based on simulation or small
scale data of real-world application, especially those created
for this purpose. In fact, this is the case of all studies
mentioned above.

Since there several proposals of incentive mechanisms
for people-centric sensing systems, many studies have fo-



cused on categorizing them. For instance, Malone et al. [12]
consider that there are three basic incentives to motivate
people: money, love or glory. Money is the financial reward
for participants who performed some task. Love can be
the intrinsic interest of people in some activity, collective
incentives of a common good, or opportunities to interact
among participants. Glory is the recognition by the com-
munity for a certain performed activity. Similarly, Jaimes
et al. [13] proposed a classification based on two large
branches: monetary and non-monetary.

Non-monetary incentives explore social aspects, such as
collective interest, intrinsic motivation or social-reward, to
allow participants of people-centric sensing motivate each
other to participate efficiently.

Our study differs from all other studies because we
present a set of policies to be incorporated into existing
or new people-centric sensing architectures to complement
other incentive mechanisms. Besides that, we also evaluate
the effectiveness of game-based incentive mechanisms used
by a large-scale application of the real world: Foursquare.

3. Sustainable People-Centric Sensing

In this section, we discuss an important challenge for the
deployment of people-centric sensing applications: ensure
sustainable participation of people. This task is crucial to
achieve the coverage and reliability needed for these appli-
cations. For this, we discuss the challenges and key factors
that must be present at main components of an architecture
to support people-centric sensing (Section 3.1). Moreover,
we propose a set of efficient policies to complement existing
incentive mechanisms (Section 3.2). Finally, we discuss the
difficulty finding the best way to maintain users motivated
across different contexts (Section 3.3).

3.1. Architectures for people-centric sensing

Architecture proposals such as MetroSense [1], reference
architecture [14] and mobile ecosystem [15] support large-
scale people-centric sensing applications. In common, these
architectures address the requirements for transforming raw
data collected from heterogeneous sources into contextual
information that could be used to provide customized ser-
vices to citizens. To enable that, we identified three main
“layers” present in all architectures: sensing, networking
and processing layers. We believe that these layers should
be present somehow in other architectures with the same
purpose. More details about these layers are discussed in
the following:

Sensing layer. Explores people’s participation (either
participatory or opportunistic) to sense events in urban areas
through mobile devices [1]. The data collected in a partic-
ipatory fashion could have several formats, ranging from
medias/tags (e.g., audio, tweets and checkins) to hardware
sensors (e.g., GPS, gyroscope, compass and accelerometer),
and they could be shared on Web applications, including
social networks [6]. Data can also be collected opportunis-
tically, where devices collect, process and disseminate data
with minimal user participation [1]. Ensuring significant
autonomous sampling to achieve the quality of sensing and
produce the desired data to people-centric applications is a
complex problem in this layer [13]. For instance, Thebault-
Spieker et al. [16] show that areas with low socioeconomic

status and suburban/rural areas have access to significantly
fewer participants, which can affect the sensing performance
in these areas.

Networking layer. The collected data of each participant
is disseminated/shared through a wireless communication
channel using either an infrastructure or an opportunistic
communication. In the former case, participants of people-
centric sensing leverage pre-existing infrastructure in the
city (e.g., 3G/4G mobile networks and WLANSs), and can
establish a “direct” communication with a server (e.g., Twit-
ter) to share their data in a centralized manner [14]. In the
latter case, opportunistic communication is used to forward
messages among participants with infrastructure-free tech-
niques to build decentralized networks (e.g., Bluetooth and
WiFi Direct) [7]. Opportunistic networks (ONs) [17], which
are an evolution of mobile ad hoc networks (MANETS), are
suitable for communication in pervasive environments that
are saturated by mobile devices, such as urban centers. The
combination of these communication paradigms creates the
hybrid mobile networks, which might meet the needs for
the reliable communication paradigm that is scalable and
resilient [14]. However, several challenges arise from this
combinations. For instance, a potentially huge growth of
data traffic in cellular networks, caused by people-centric
sensing applications, will probably overload infrastructure-
based networks, requiring new management and communi-
cation algorithms [18]. Another important aspect to consider
is that significant progress has been made separately for
both communication paradigms. However, further efforts are
needed to interlink the two forms of communication [14].

Processing layer. Users share their sensed data that are
aggregated and processed to extract useful information for
representing knowledge of crowds on different aspects of
cities (e.g., security, traffic and weather). For this, several
techniques, such as stochastic modeling, data mining and
machine learning, are used to transform raw data into in-
formation that supports decision making [18]. Having this
information, users may choose to change their behavior,
for instance, to avoid areas with heavy traffic. Performing
aggregate analysis of large volumes of heterogeneous data
to extract context information and make them available in
real/quasi-real time is a major challenge in this layer [19].

All these points give an idea of how dynamic a people-
centric sensing platform could be and the challenges that
emerge when dealing with this dynamism in terms of data
collection, transmission, dissemination and prediction. The
existing architectures for people-centric sensing are impor-
tant frameworks, despite the open challenges mentioned.
Additionally, little attention is given to challenges inherent
specifically to incentive mechanisms in the people-centric
sensing architecture. Thus, it is fundamental to incorporate
incentive mechanisms to keep participants motivated to en-
sure coverage and quality in sensing tasks.

3.2. Policies for sustainability

Despite the existence of several proposals of incentive
mechanisms to increase/sustain user participation, as we
discussed in Section 2, we emphasise here the importance of
having “efficient policies” as an additional motivator to help
the achievement of a sustainable people-centric sensing plat-
form. An efficiency policy makes sure that a certain task in a
people-centric sensing architecture is as efficient as possible.



These policies could help to avoid user discouragement in
the participation of the sensing process, aiming to minimize
waste of essential resources (e.g., battery and bandwidth)
with sensing tasks. To better illustrate this idea, we discuss
below some efficient policies that could be provided by a
people-centric sensing architecture.

Energy-efficiency. A critical challenge to people-centric
sensing applications is introducing low energy costs for
users’ devices. As energy is consumed in all aspects of
people-centric sensing, ranging from data collection, pro-
cessing and transmission, it is important to make use of
these aspects in a conservative manner. For instance, request
sensing tasks, e.g., make GPS sensor readings, take photos
or perform long-range transmissions, exhaustively for the
same set of users can affect significantly their portable
devices’ battery, which could prevent users to perform their
usual (private) tasks. Therefore, it is important that people-
centric sensing applications are efficient on the management
of energy consumption.

Reliable communication. Due to the intermittent na-
ture of networks and highly dynamic topologies of hy-
brid mobile networks, it is important to provide resilient
communication in both ways: user to server and server
to user, even in large scale. One possible aid in this is-
sue is to enable data forwarding among mobile users. To
handle different scenarios that might emerge in people-
centric sensing, new management and communication al-
gorithms for each scenario are needed. For instance, users
could share data in an opportunistic fashion to avoid the
costs related to infrastructure-based networks, and still con-
tinue to receive spatio-temporal information available on
infrastructure-based servers through opportunistic networks.

Privacy and security. Ensuring users’ privacy in many
people-centric sensing applications is an important aspect
for several reasons. For instance, GPS sensor readings can
be used to infer private information about the user, such as
the most common places and routes he/she typically visits
during daily routines. This information could be used to
improve recommendation systems and better understand the
dynamics of the city. On the other hand, it could threaten
the security of users, because a malicious user could use
this information, for instance, to rob someone. In this way,
sensitive data should be encrypted before being shared by
users to avoid that a malicious user obtains it. The challenge
then is to find the right threshold that enables the use of the
sensed data to extract useful information for the application
while preserving user’s privacy and security. A lack of this
factor in a people-centric sensing platform may impact the
user’s willingness to contribute to the system.

Information quality. The quality of the information
(e.g., precision, trustworthiness and up-to-dateness) gene-
rated by the application has a direct impact on the user’s
behavior, being an important motivation for users. If the
quality of the information generated is low, users might not
see value of the system and stop contributing to it, thus
reducing the number of sensed data to work with, and,
consequently, may harm the people-centric sensing system.
To keep the quality of the information high, one important
challenge to be addressed is deal with low-quality sensed
data created by users. Since users in the people-centric
sensing context can produce sensor readings with relatively
little effort, data integrity is not always guaranteed. Some
people-centric sensing systems might allow users to post

whatever, even incorrect, information in different formats.
This demands new mechanisms for data filtering and strate-
gies to select data from certain participants, for instance a
reputation system.

3.3. Right incentive mechanisms

It is common sense that incentive mechanisms are funda-
mental to keep a people-centric sensing system sustainable.
However, the first problem is that we do not have guarantees
that using the same successful incentive mechanism for one
system, it will produce the same performance in a different
people-centric sensing system. For instance, it is not possi-
ble to predict whether a people-centric sensing application
based on intrinsic motivation, like CROWDSAFE [4], could
improve contribution using another incentive mechanism,
for instance badges, which are incentives widely used in
successful systems (e.g., Foursquare and Waze). In the case
of CROWDSAFE users could consider badges not attractive,
scenario that could actually decrease contribution. To over-
come this challenge, a possible direction is to model key
aspects of different real-world systems, and user’s behavior
on those systems to enable simulations about the effect of
different strategies of incentive mechanisms. In this way, a
developer might test new incentive mechanisms and try to
find the most suitable one for a particular system based on
people-centric sensing.

In addition to that, a spatio-temporal evaluation of incen-
tive mechanisms is still needed. Typically, the effectiveness
of incentive mechanism is not demonstrated using large-
scale experiments. Instead, they are designed for particular
application and do not scale when many different applica-
tions coexist [5]. Thus, some incentive mechanism might
work well only for some specific regions. Similarly, if
we consider an incentive based on micro-payments, this
incentive might have an acceptable performance only in
certain periods of the day. This might bring an opportunity
to develop a new approach to dynamically select different
incentive mechanisms considering specific spatio-temporal
information. In this sense, we conduct an evaluation of the
effect of Foursquare’s incentive mechanisms to increase user
engagement.

4. Foursquare’s Incentive Mechanism: A Case
Study

In this section, we use the layers presented in Section 3.1
to analyze the functioning of Foursquare. We also study the
efficient policies that are met by such system. Finally, we
assess the performance of incentive mechanisms used by
Foursquare to motivate new users (called newbies).
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Figure 1. Illustration of Foursquare’s framework.



To understand the dynamism of Foursquare, we built
the framework with the main steps described above as
shown in Figure 1. Foursquare allows users to share their
current location (checkins) and knows where their friends
are. Besides, users can register information about a place
they visited (e.g., tips about meals in some restaurant)
and they also can label a place with a category (e.g.,
airport). All these activities require active participation of
users and therefore the data are collected in a participa-
tory fashion. The sensed data are transmitted/received di-
rectly to/from Foursquare’s servers via infrastructure-based
networks. Foursquare’s servers can aggregate and process
large amounts of data sensed by users to extract context
information that makes it useful, for example, guide about
the city.

To analyze the efficient policies of Foursquare, we con-
sider energy-efficiency, reliable communication, privacy and
security, and information quality, as defined in Section 3.2.
Regarding energy-efficiency, Foursquare users perform the
sensing occasionally and each sensing task demands little
computing resource, which implies low energy cost for
users. In terms of communication, merely infrastructure-
based networks are employed to allow data forwarding
among users and servers, which might be not enough to
ensure resilience and scalability of the network. However,
since Foursquare does not have strict real-time restrictions,
users tend to benefit from the service most times. Due to
the Foursquare is a location-based social network (LBSN),
that results in the lack of privacy and security of users.
Nevertheless, the users’ desire on sharing more about their
daily context is greater than the concern to preserve their
privacy to prevent potential threats to security, and, there-
fore, this factor is not critical to the system. Maintaining
high quality information is a critical aspect in Foursquare,
because malicious users may mistakenly label the categories
of places or assigning checkin intentionally to a wrong
activity, which causes the degradation of system quality.
To overcome this problem, Foursquare provides a set of
rules to avoid bad behavior. In addition, Foursquare has
mechanisms to avoid multiple checkins at the same place on
a day, to delete spam and inappropriate content, and detect
false checkins (e.g., checkins on places which are far away
from their actual physical location).

Turning our attention to incentive mechanisms in
Foursquare, we now study the efficiency of them. In the
following we present a brief description of the Foursquare
incentive mechanisms.

« Mayorships: users become mayor of a place by
checking in more than anyone else during the last
30 days. Mayorships allow users to compete among
them to get reputation at all of their local hangouts.

o Badges: users earn badges according to their lo-
cation, their frequency of checkins, some specific
events, or commemorative dates.

Foursquare allows users to share their activities in Twit-
ter. When a user gives the first checkin on Foursquare
he/she receives a badge named Newbie. Given that, we
built a dataset with data collected from users who received
a badge Newbie and announced it in Twitter at the same
day. Following this process, we discovered 901 newbies
and monitored them for 13 weeks. Our dataset contains
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Figure 2. Number of checkins performed by users along the observation
period.

information, collected once per week, from each user’s
profile on the Foursquare system: city, number of checkins,
number and location of mayorships, number and type of
badges. This dataset allows us to measure the level of user
participation according to the number of checkins given by
users, and also evaluates the efficiency of incentives users
receive.

Figure 2 shows the number of checkins performed for
each user along the observation period. Note that the number
is cumulative, i.e., the number of checkins either increases
or stays the same from one week to the next one. We
divided the users into three groups: Groupl (blue curves);
Group2 (yellow curves); and Group3 (green curves). To
make this division, we considered the total number of
checkins observed in the last week of our dataset. Groupl is
composed of users who performed up to 250 checkins in the
period of 13 weeks, i.e., it represents a group of users who
were conservative in sharing data, most of them might be
unmotivated. Similarly, Group2 is composed of users who
performed at least 250 and up to 500 checkins in the 13
weeks, i.e., it represents a group of users more motivated
than the first one. Finally, Group3 represents users with more
than 500 checkins at the end of our observation, representing
users who use the system more intensively.

We consider this division into groups an essential step to
perform the evaluation. Without this procedure, the effects
of incentives could be smoothed and harder to be studied.
Although we have adopted this grouping procedure, other
approaches could be applied to this task, and the evaluation
methodology would remain the same. In fact, we also ex-
perimented calculating the slope of the curve of each user,
and using this slope to calculate three ranges representing
the three groups and the results are similar. Furthermore, the
ranges considered in this work captures sets of curves with
few intersections, thus, slight variations in the choice of the
cutoffs do not significantly affect the result.

After separating the three groups of users, we can
study their characteristics individually. Firstly, we study the
average number of badges and mayorship throughout the
observation period. Figures 3(a) and 3(b) show these results
for badges and mayorships, respectively. For both badges
and mayorships we can see a strong correlation between the
number of checkins of group of users with the average num-
ber of badges and mayorships obtained by them. Note that
the average number of badges and mayorships received by
users from Groupl decreases along the time, different from
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Figure 3. Average number of badges and mayorships at each group of users
considered.

Group2 and, specially, Group3, which presents a growth
strictly increasing along the time. This suggests that the
incentive mechanisms used by Foursquare might be working
to motivate some users. In order to further investigate this
question, we studied more details about the badges received
by users of each group.

Figures 4(a), 4(b) and 4(c) show word clouds for all
badges received by users of Groupl, Group2 and Group3,
respectively. In these figures, the size of the word rep-
resents the frequency of its occurrence, i.e., the higher
frequency of the word, the bigger it is drawn in the word
cloud. As we can observe, some badges, such as “Newbie”
and “4sqDay2012”, are very common in all user’s groups
because they were given to the newbies, and, therefore,
these badges are negligible to motivate users. Some specific
badges, such as “Adventurer”’, “SuperUser”, “Local”, and
“Explorer”, begin to be significantly frequent among users
of Group2 and are the most common ones among users of
Group3, indicating that they might be associated in keeping
users motivated. Additionally, the types of badges vary more
according to the level of user’s involvement, i.e., users from
Group3, apparently are more motivated and have a wider
variety of badges, whereas users from Groupl, the most
unmotivated ones in our classification, have fewer types of
badges.

Some specific types of badges seem to be more associ-
ated with the more intense use of the system, while others
badges do not seem to have the same efficiency. We also
studied the efficiency of the mechanism of incentive based
on mayorship. Mayorship has a direct effect on checkin,
because after some checkins a user becomes a mayor of
a place, he/she should continue doing checkins more often
than anyone else to keep his/her reputation as mayor of this

place. This type of incentive seems to make sense because,
as we can see in Figure 3b, the difference between the
average number of mayorships of users from Groupl and
Group2 is more significant than for badges. Among users
from Groupl only 2.86% became mayor. This number is
37.35% and 88.83% for Group2 and Group3, respectively.
Only users who won mayorships along the observation are
considered.

To evaluate the effect of mayorship, we calculate a
score that measures the influence of the number of checkins
performed by users at each group. Let 7; be the number
of checkins in a certain week i. If during two consecutive
weeks a user does not earn a new mayorship, then the
score calculated is: scorenomayor = (I'j - T;) / T, where j
represents a week after i. When a user receives a mayorship,
the score is: scoremayor = (Ty - Te) I Te + (T, - Ty,) 1 Ty) / 2,
where T represents the number of checkins observed in the
week right before receiving a mayorship, 7, represents the
number of checkins observed in the week the user received
a mayorship, and T, represents the number of checkins
observed in the week subsequently after the user received a
mayorship. The gap between both scores reflects the effect
on growth of checkins when users get some mayorships
between consecutive weeks.

Figure 5 shows a cumulative distribution function of the
average SCOTenoMayor and SCOTemayor values for each user.
Figures 5(a), 5(b) and 5(c) show the results obtained for
users of Groupl, Group2 and Group3, respectively. As we
can see, in all categories the scores increased after users
won some mayorships. Looking at results for Groupl, 50%
of the observed scorepomayor 15 0, While for scoremayor this
value is up to 0.25. For Group2, we can see that 50%
of the observed scorejomayor is up to 0.1 and 0.25 for
SCOFemayor. Considering the same results for Group3, 50%
of the observed scorejoMayor is up to 0.1 and 0.22 for
SCOFemayor-

5. Conclusion

In this work, we discussed the existing challenges at
the main components of an architecture to support people-
centric sensing. From this, we emphasized the attention we
need to have regarding incentive mechanisms, fundamental
to keep participants motivated to support sustainable people-
centric sensing. To overcome this limitation, we presented a
set of policies to be incorporated to existing or new people-
centric sensing architectures to complement traditional in-
centive mechanisms. We also analyzed the dynamism of
Foursquare, verified the efficient policies that are met by
them, and evaluated the effectiveness of game-based incen-
tive mechanisms to motivate new users. Among the results,
we found evidence that incentives based on mayorship,
which motivates competition among users to become mayor
of some place, seems to be efficient to keep users motivated,
while incentives based on badges do not seem to have the
same efficiency, except for some specific types of badges.
Moreover, we noted that Foursquare is energy-efficient and
makes efforts to provide quality information. However,
Foursquare does not guarantee the privacy and security of
its users, despite their wish to share daily activities. We
believe that the use of a reliable communication paradigm
would make Foursquare even more popular.
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