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Abstract—Cities are not identical and evolve over time, and
sensing in large scale can be used to capture these differences.
Research in Wireless Sensor Networks has provided several tools,
techniques and algorithms to solve the problem of sensing in
restricted scenarios (e.g., factory). However, sensing large scale
areas, such as big cities, brings many challenges and incurshigh
costs related to system building and management. Thus, sensing
those areas becomes more feasible when people collaborate
among themselves using their portable devices, and building
what has been namedparticipatory sensing systems. This work
analyzes an emerging type of network derived from this type of
system, the Participatory Sensor Network (PSN), where nodes are
autonomous mobile entities and the sensing depends on whether
they want to participate in the sensing process. Based on four
datasets of participatory sensing systems (27 million of records),
we show that this type of network brings many challenges related
to structural problems, e.g. instant coverage very limited, and
also because of big data issues, which may restrict the use ofthis
emerging type of network. However, it presents also, as shown
here, many advantages and open opportunities, mainly related
to large scale study of cities dynamics.

Keywords-Participatory sensing; big data; location sharing
services; social networks; smart cities

I. I NTRODUCTION

It is known that cities are not identical and evolve over time,
and also that habits and routines of inhabitants are typically
distinct. Given this, how can we measure those differences in
large scale? Certainly, it is possible use sensing to achieve this
goal.

Research in wireless sensor networks (WSN) has provided
several tools, techniques and algorithms to solve the problem
of sensing in restricted scenarios, such as forests or volca-
noes [1]. However, sensing extensive areas (e.g., large cities)
brings many challenges and incurs high costs associated with
system development and management.

Sensing vast areas becomes more feasible when people
carrying their portable devices (e.g., smartphones) collect data
and collaborate among themselves. Smart phones are taking
center stage as the most widely adopted and ubiquitous com-
puting device. They are also increasingly coming with various
embedded sensors, such as GPS and accelerometer. Systems
that enable sensed data in this way are named participatory
sensing systems (PSSs) [2]. In such systems, the shared data
is not limited to sensor readings passively generated by the
device, but also includes proactive user observations. There are

several examples of PSSs already deployed, such as Waze1, for
reporting real-time traffic conditions, and Weddar2, for report-
ing weather conditions. Moreover, location sharing services,
such as Foursquare3, can be seen as location categorizing
applications, which allow users to share their actual location
associated with a specific category of place (e.g., restaurant).

We use the concept of a Participatory Sensor Network
(PSN) [2], a network derived from participatory sensing sys-
tems, where nodes are autonomous mobile entities (typically
users) and the sensing activity depends on whether they want
to participate in the sensing process. Although the term PSN
has been previously defined [2], an analysis and discussion
of this emerging type of network as performed in this paper
remains untackled, as far as we know. Many applications
and services to support smart cities can potentially benefit
from participatory sensor networks. For that it is crucial the
understating of their limitations and potential.

The main contributions of this paper are: (1) a charac-
terization and analysis of participatory sensor networks that
emerge from four real-world web-scale datasets of location
sharing services, encompassing more than 27 million user
check-ins; (2) a discussion of challenges when considering
PSNs to support applications; (3) the presentation of promising
opportunities in the use of PSNs for the large scale study of
city dynamics, that could be base for tools for city planners
to provide a new means to see the city, or for end users who
are looking for new ways to explore the city.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III discusses the participa-
tion of humans in the sensing process, covering particularities
of participatory sensing systems and participatory sensornet-
works. Section IV analyzes the main characteristics of PSNs
derived from popular online sharing services, and discusses the
challenges that emerge from them. We then present concrete
opportunities that explore PSNs for the large scale study of
city dynamics in Section V. Section VI concludes the paper.

II. RELATED WORK

Often, humans are the target in the sensing process [3],
or responsible for data sharing [4]. We here focus on the
latter case. More specifically, we consider systems that utilize
everyday mobile devices, for instance smartphones, to form

1http://www.waze.com
2http://www.weddar.com
3http://www.foursquare.com



interactive participatory sensor networks (see Section III-B).
Participatory sensing is related to crowdsourced projects[4],
but differs from studies such as [5] since they do not require
participation of individuals carrying mobile devices to sense
the environment and make observations at a personal level.

The term participatory sensing systems (PSS) has been
used to define systems that enable the contribution of sensed
data by users, including traffic monitoring [6] and noise level
monitoring [7] applications. Other studies focus on issuesof
participatory sensing systems, such as the sustainabilityof
contribution [8].

Location sharing services have been used to study human
mobility pattern as well as social relations [9]–[11]. Other
studies use location sharing services to understand bettercities
dynamics. In this direction, Cranshaw et al. [12] present
a model to extract distinct regions of a city according to
current collective activity patterns. Similarly, Noulas et al. [13]
propose an approach to classify areas and users of a city by
using venues’ categories of Foursquare. In [14] we propose
a new technique to visualize the dynamics of cities based
on habits and routines of people collected from check-ins
on Foursquare. This present work differs from our previous
work [14], because the focus of that work was the presentation
of an specific technique. In another previous work [15], we
consider location sharing services as a participatory sensing
system, presenting initial characteristics of a participatory
sensor network derived from Brightkite and Gowalla. This
present work also differs from [15], because besides presenting
more characteristics of Brightkite and Gowalla as a PSN, we
also present characteristics from two different PSNs derived
from Foursquare. This enabled, for example, the verification of
similar properties among all those networks. Unlike other pre-
vious studies, we discuss the challenges and implications when
dealing with participatory sensor networks. The present work
also envision the presentation of opportunities of research in
this direction.

III. H UMANS IN THE SENSING PROCESS

We here focus on systems where humans are responsible
for data sharing, particularly participatory sensing systems.

A. Participatory Sensing Systems

The concept of participatory sensing systems originally
considers that the shared data is generated automatically,
or passively, by sensor readings from portable devices [2].
However, in this work we also consider manually, or proac-
tively, user-generated data, that has been called ubiquitous
crowdsourcing [16]. The popularity of participatory sensing
systems grew rapidly with the widespread adoption of sensor-
embedded and Internet-enabled cell phones. These devices
have become a powerful platform that encompasses sensing,
computing and communication capabilities, being able to
generate both manual and pre-programmed data.

Location sharing services, such as Gowalla and Foursquare,
are examples of participatory sensing systems. The sensed data
is a check-in of a particular place that indicates, for instance, a

TABLE I
DATASET INFORMATION

System # of check-ins Interval # of Venues Cat.
Foursquare-Year 11,743,781 2/2010 - 1/2011 490,079 no

Foursquare-Crawled 4,672,841 4/2012 (1 week) 1,929,237 yes
Gowalla 6,442,890 2/2009 - 10/2010 1,280,969 no

Brightkite 4,491,143 4/2008 - 10/2010 772,966 no
Total 27,350,655

restaurant in a specific location, and also a signal from a user
expressing his/her preference. In the rest of this work we will
use the term “check-in” to refer to an event when time and
location of a particular user is recorded or, in a participatory
sensor network context, sensed.

B. Participatory Sensor Networks

PSN is a simple concept, which has user’s portable device
as a fundamental building block. Individuals carrying these
devices are able to sense the environment and to make relevant
observations at a personal level. Thus, each node in a PSN
consists of the user plus his/her mobile device. Nodes send
data/information to participatory sensing systems, whichcan
be crawled throughout services APIs. In this present work we
consider a participatory sensor network from location sharing
services. More details about PSNs can be found in [15].
Despite PSNs be a simple concept it has many challenges,
and they are presented in Section IV.

IV. CHARACTERIZATION OF PSNS DERIVED FROM ONLINE

SHARING SERVICES

In this section we analyze the characteristics of participatory
sensor networks (PSNs) derived from three location sharing
services, namely Foursquare, Gowalla and Brightkite.

A. Data Description

We analyze data from four real-world web-scale datasets
collected from three systems. Three of these datasets, one for
each system, are publicly available [9], [10]. The fourth was
collected by us because we are interested in an extra piece of
information: the categories of the venues people have checked-
in. We collected this dataset directly from Twitter4, since
Foursquare check-ins are not publicly available by default.
Approximately 4.7 million tweets containing check-ins were
extracted from Twitter, each one providing a URL to the
Foursquare website, where information about the geographic
location of the venue was acquired. This new dataset is useful
for some of the opportunities presented in Section V. To
differentiate the two datasets from Foursquare we refer to the
one obtained from [9] asFoursquare-Year, and to the one
we crawled asFoursquare-Crawled.

In all four datasets, each check-in contains the venue’s id,
its latitude and longitude, and the time the check-in was per-
formed. As we mentioned, our collected dataset (Foursquare-
Crawled) also includes the venue category. Table I summarizes
the four datasets.

4http://www.twitter.com



B. Coverage of the Network

Given the planetary scale coverage of the PSN in the long
term observed our previous study [15], now we ask: what
places are effectively covered in the short term? In Figure 1
we answer this question by showing the number of venues
that were active in a given time interval. The Foursquare-
Year, Foursquare-Crawled, Gowalla, and Brightkite datasets
have, respectively, approximately 490 thousands, 1,9 million,
1,3 million, and 773 thousands distinct venues. Considering
the total number of distinct venues in each dataset, we find
that the maximum number of active venues per day, or per
hour, for Foursquare-Crawled, corresponds to only 6%5, 2%,
3.3% and 0.7% of the total for Foursquare-Year, Foursquare-
Crawled, Gowalla and Brightkite, respectively. This indicates
that, despite the long-term global scale coverage, the instant
coverage observed is very limited considering all locations
they can reach, i.e., the probability of a random location be
active in a given day is very small.
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Fig. 1. The average percentage of locations that were activein a given day

In fact, observe in Figure 2 the complementary cumulative
distribution function (CCDF) of the number of check-ins
per venue. It is not surprising that a power law fitting is
appropriate to explain this distribution, where the majority of
locations have only a handful of check-ins, while there are
few locations with hundreds of them. Since we are analyzing
location sharing systems, it is natural that some locationsare
shared more than others. For example, restaurant or pub venues
are more likely to be shared than a post or bank offices, despite
the fact that these places are often visited as well.

We now turn our attention to four large and populous
cities located in four continents: New York City (USA),
Tokyo (Japan), Sydney (Australia), and Cairo (Egypt). Figure
3 shows, for each city, the heat map of the sensing activity

5The percentage is the number of venues in the area that had at least one
check-in as a fraction of total venues in the area.
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(b) Foursquare-Crawled

10
0

10
1

10
2

10
3

10
4

10
−7

10
−5

10
−3

10
−1

P
r(

X
 ≥

 x
)

x [# of check−ins]

 

 

data
α=2.82

(c) Gowalla

10
0

10
2

10
4

10
6

10
−6

10
−4

10
−2

10
0

P
r(

X
 ≥

 x
)

x [# of check−ins]

 

 

data
α=1.98

(d) Brightkite

Fig. 2. The complementary cumulative distribution function of the number
of check-ins per venue

in these cities, where the darker the color6, the higher is the
number of check-ins in that area. First, observe that for the
cities of the first line (New York, and Tokyo) the PSN is able
to practically cover the whole territory. However, for the cities
of the second column (Sydney and Cairo), despite the fact they
have approximately the same population of the ones of the first
column, the PSN coverage is significantly lower.

These differences can be explained by several reasons.
Cairo, for instance, where the coverage was the lowest (about
only 10% of the whole territory), has significant cultural
differences compared to the other analyzed cities. This might
have a significant impact on the adoption and use of location
sharing systems. Moreover, we see that the coverage in Sydney
is very skewed, being not as homogeneous as in, Tokyo and
New York. This is probably because the geographic aspects,
i.e., large green and water areas, which limit the sensing
coverage. Moreover, this city has large residential areas with
few commercial venues, what also contribute for a low sensing
rate. All these aspects should be carefully considered when
designing participatory-based sensing applications.

C. Seasonal Behavior of Humans

First, we investigate the frequency that users perform data
sharing. Figures 4-a, 4-b, 4-c, and 4-d show the histograms
of the inter-event times∆t between consecutive check-ins of
one popular venue from the four analyzed datasets. Observe
the large number of check-ins separated by a few minutes and
also consecutive check-ins separated by several days. Thismay
suggest that most of the data sharing, even in these particular
popular places, happen in specific intervals of time, probably
related to the human circadian rhythm, e.g., in restaurants
people check-in for lunch and dinner mostly.

We now analyze how the seasonal behavior of humans
affects the data sharing. Figure 5 shows the weekly location

6Colors of the heat map for all subfigures are in the same scale.



(a) New York city (b) Tokyo

(c) Sydney (d) Cairo

Fig. 3. All sensed locations in six international cities (Foursquare datasets).
The number of check-ins in each area is represented by a heat map. The color
range from yellow to red (high intensity).
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(a) Foursquare-Year, Histogram
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(b) Foursquare-Crawled,
Histogram
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(c) Gowalla, Histogram
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(d) Brightkite, Histogram

Fig. 4. The distribution of the inter-event times between consecutive check-
ins of one popular venue of each dataset

sharing pattern for all analyzed datasets7. As expected, the
network actuation presents a diurnal pattern, meaning that
during the dawn the sensing activity is very low. We can
also observe that there are two classes of behavior: weekdays
and weekends. Considering weekdays, we can note, in all
datasets, an increase in the activity from Monday to Friday.It
is also possible to observe three peaks during the day, around
breakfast, lunch, and dinner times. These peaks occur on every
weekday, and are less evident on Friday during breakfast time.
This might be due to specific behavior patterns, e.g., going
out on Thursday night and waking up late on Friday morning.

7The server timestamps where converted to the local time of the check-in.

Observe the potential to study urban social behavior.
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Fig. 5. Weekly location sharing patterns

We further analyze the different behavioral patterns on
weekdays and weekends, focusing now on the Foursquare-
Year dataset8. Figure 6-a shows the average number of check-
ins of each hour from Monday to Friday. Figure 6b shows the
same information for Saturday and Sunday. As we observe,
the peaks during weekdays happens on 8:00AM (breakfast),
12:00PM (lunch), and 6:00PM (dinner). On weekends, there is
no peak activity in the morning, the lunch peak happens around
1:00PM, and the dinner peak is flatter (comprising 6:00PM to
7:00PM). We can also observe that the activity is more intense
on weekends.
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Fig. 6. Weekdays and weekend location sharing patterns

D. Discussion of Challenges

We now discuss the challenging issues when dealing with
PSNs. By the characterization we can summarize the most
important structural issues found in:

• Instant coverage is very limited;
• very unequal distribution of check-ins in venues;
• coverage is not comprehensive in all cities;
• long periods of inactivity.

All these issues suggest that not every type of applications
is suitable to be built in PSNs. For example, PSN to monitor

8Similar characteristics were observed for all the other analyzed systems.



city problems, such as noise and air pollution, or potholes
on the streets might follow the same structural challenges
(because a fundamental piece still a human, with his/routines
and preferences), which might not meet the requirements
of coverage and frequency of sensing demanded by such
applications. Thus, if one wishes to design a participatory-
based application with a more comprehensive contribution per
area, one should incentive users to participate in places that
usually they would not. A punctuation or reward system is one
of many types of incentive that might work in this case.

PSNs are very scalable because their nodes are autonomous,
i.e., users are fully responsible for their own functioning. Since
the cost of the network infrastructure is distributed among
the participants, this enormous scalability and coverage are
achieved without significant costs. The key challenge to the
success of this type of network is to have sustained and high
quality participation. In other words, the sensing is efficient
as long as users are kept motivated to share their resources,
sensing data frequently.

Besides these structural problems, the construction of ap-
plications in this type of network face challenges also in
data quality, data collection, data storage, data processing and
indexing. The quality of the shared data is a challenge that has
been relatively well tackled in the web domain, however there
are unique challenges for controlling the quality of shareddata
when dealing with ubiquitous user contributions [16]. For in-
stance, since users can produce sensor readings with relatively
little effort, data integrity is not always guaranteed [17].

Data collection is a challenging issue especially when is
used web-based services from third-parties, such as Foursquare
or Waze. By default, data shared in those systems are usually
private, unless users decide to make them public somehow, for
example sharing it on Twitter. This means that, in this case,
no public data can be available at all.

Another important issue is how to deal with a huge volume
of data that location-based systems can offer, because it tend
to be large and complex being difficult to process and index
using traditional database management tools or data processing
applications. This imposes challenging issues to offer real-time
services using a PSN.

V. OPPORTUNITIES FOR THESTUDY OF CITY DYNAMICS

In Section IV, we show that all PSNs studied share common
characteristics, which may restrict some kind of application.
We now present some promising opportunities for the large
scale study of cities dynamics using the studied PSNs, con-
sidering all the aforementioned characteristics9.

Unlike traditional mobile Wireless Sensor Networks, the
nodes in a PSN move according to their routines or local
preferences, which generate the skewed behavior in the sensing
activity that we have seen so far. This may be a problem for
certain kinds of applications, but it is not the case for those
that want to capture city dynamics, especially the ones that
do not present severe timing constraints. In this directionwe

9For simplicity, we consider only the Foursquare-Crawled dataset.

present several opportunities, grouped in two categories:Area
semantics; and transitions in the city.

Area Semantics: Semantic location services will be critical
for the next wave of killer applications [18], and there are
many opportunities to design them. The opportunities listed
here exploit the information about category of the venues10

present in the Foursquare-Crawled dataset.
Together with geographic neighborhoods, cities can be

divided into semantic neighborhoods. To illustrate this idea,
consider Figure 7-a. This figure shows a heat map for two
categories of venues: Arts & Entertainment, ranging from
yellow to red, and Great Outdoors, ranging from light to dark
blue. Again, darker colors represent larger numbers of check-
ins. Note that it is possible to distinguish popular areas of
venues related to the Arts & Entertainment and Great Outdoors
categories. Using simple clustering algorithms to classify these
regions, such as the one in [12], it may be possible to offer to
a tourist, for instance, an intuitive and automatic visualization
of the points of interest in a given city.

Moreover, datasets collected from application accessed
mostly by smartphones represent the social network topology
and dynamics of entire cities, enabling the analysis of the
social, economic, and cultural aspects of particular areas.
For instance, regions that provide a small amount of data to
the PSN might indicate a lack of technology access by the
population, since the frequent use of location sharing services
often relies on smartphones and 3G or 4G data plans, which,
usually, are expensive. The preliminary results in the use of
PSN in these scenarios demonstrate good opportunities to
enable the visualization of interesting facts, some of them
discussed in Section IV-B. For instance, analyzing carefully
the data for the particular case of Rio de Janeiro, illustrated
in Figure 7-b, we observe that it is common to find very poor
areas next to wealthy ones. Note the small sensing activity in
the circle areas indicated as poor. This information may be
useful to guide better public politics in those areas. The same
information can be obtained using traditional methods, such
as surveys, but in this new way we may be able to obtain the
same results more quickly and cheaply.

Other opportunities to classify areas emerge when jointly
considering the time and venue where the check-ins are per-
formed. It may be possible to visualize crowds in a city in near
real-time. Besides that, we observed in Section IV-C that the
seasonal patterns may be due to the circadian rhythm present
in human routines. This seasonality has a great potential for
prediction applications, since it is very likely that people repeat
their activities in a periodic manner. We do believe that there
are fruitful opportunities for prediction given by the circadian
rhythm of people, enabling the prediction, for instance, ofhow
crowded a place will be. This type of information is valuable
in many scenarios, such as services for smart cities to avoid
traffic in certain areas and offer alternative routes for users.

The following scenario illustrates another opportunity that
exploits the same data. For that, we created a simple method

10A complete list with examples is available in [14].



(a) Classification by categories

(b)Classification by lack of sensing

Fig. 7. Examples of possible area classifications

to estimate the number of check-ins in certain time and
space. This method average the number of check-ins for
the area of interest at a given time, taking into account
every category separated. Figures 8-a, 8-b, and 8-c show the
check-ins estimation for “Food” places at 7:00PM, “Nightlife”
category at 11:00PM, and “Nightlife” category at 1:00AM for
the same area respectively. Consider that Bob and Alice have
tickets to watch their favorite rock band at Madison Square
Garden, located in the area depicted, on Saturday at 8:30 PM
to 10:30 PM. They want to have dinner in a popular place
before the concert, and after that go clubbing nearby the arena.
Since they do not know New York, they decide to use the
information provided by an imaginary application represented
on Figures 8-a, 8-b, and 8-c. A candidate area to have dinner
is marked by a blue rectangle in the Figure 8-a. Regarding
to where to go clubbing after the concert, the result shown in
Figure 8-b indicates at least two potentially good areas (blue
rectangles). Since the couple plan to club until late at night,
a tiebreaker criterion could be the estimation of the number
of check-ins late at night for the same category, as shown in
Figure 8-c. The result indicates one of the two areas as the
best choice.

(a) Food, Sat. 7PM (b) Nightlife, Sat.
11PM

(c)Nightlife, Sun. 1AM

Fig. 8. Check-ins estimation for different times and type ofplaces

Transitions in the City: We present now another range
of opportunities that rise from transition graphs. The location
transition graph maps the movements of users in a PSN. It is
a directed weighted graphG(V,E), where a nodevi ∈ V is a
specific location (e.g., Eiffel Tower) and a direct edge(i, j) ∈
E marks a transition between locations. That is, an edge exists
from nodevi to nodevj if at least one user performed a check-
in in the location represented byvj just after performing a
check-in in the location represented byvi. The weightw(i, j)
of an edge is the total number of transitions that occurred from
vi to vj .

It is considered here the following requirements for a
transition to exist. First, the check-ins must be performed
consecutively and by the same individual. Moreover, they
must occur in the same “social day”. We define a “social
day” as the 24-hour interval starting as 6:00AM (instead of
0:00AM), since we are interested in capturing the nightlife
transitions as well. This type of transition graph is powerful,
because it helps to identify the major flows of people in a
city (e.g., people leaving from a restaurant to a club) and hub
venues, i.e., venues that receive people coming from or going
to diverse areas of the city. We illustrate the potential of this
opportunity by building the location transition graphs forlarge
big cities - New York (U.S.) and Tokyo (Japan) - considering
only check-ins performed on weekdays (i.e., from Monday
6:00AM to Friday 6:00PM11). A transition occurring between
two “social days” will still be considered if the time interval
between the check-ins is under4 hours. We tested several
different policies for characterizing transitions and theresults
are very similar, since only a small percentage of transitions
are discarded/considered when we vary the policy.

Figure 9 shows heavy weighted edges and hub nodes (top
50 edge weights and node degrees) for NY and Tokyo. Red
stars represent the hubs, black arrows represent the edges,and
black circles represent self-loops. The larger12 the symbol, the
larger the value. Note that the city flow is very concentrated
and skewed, as expected, with a small fraction of the city areas
having most of the heavy weighted edges and hubs. Note also
that, cities that are known for their fast public transportation
systems, as those analyzed, favor the existence of some long
distance heavy weighted edges along the public transport links.

The scheme shown in Figure 9 may be used to support
various other applications. Consider, for example, a public
information dissemination scheme, such as the public displays,
which usually show traditional advertising (e.g., short com-
mercials or fast news). If one knows where the city hubs are,
he/she could strategically put these displays in these locations.
Besides that, if one verifies an unusual and constant flow of
people between two independent business venues in a city, the
owners could sign a commercial agreement to increase their
revenues by, for instance, advertising each other’s businesses.

Transition graphs are useful also to display a visualization
of a city based on the transitions that are likely to occur,

11Friday nights are usually more similar to Saturday nights than other
weekday night.

12Numbers grow in logarithmic scale.



(a) New York City (b) Tokyo

Fig. 9. Top 50 edge weights and node degrees (hubs) for 2 cities. Red stars
represent hubs, black arrows edges, and black circles self-loops. The larger
the symbol, the higher the value.

as the demonstrated by the City Image technique presented
in our previous work [14]. In this technique the transition
graph is slightly modified, where the graphG(V,E), have
nodesvi ∈ V as the main categories of the locations (e.g.
“Food”), and an edge(i, j) exists from nodevi to nodevj
if at some point in time a user performed a check-in in a
location categorized byvj just after performing a check-in in
a location categorized byvi. The City Image technique builds
a square matrix that summarizes the city dynamics relying
on this transiting graph, as well as in a random graph that
simulates a random walk for individuals (for details see [14]).
The city image can be expanded to consider sub-categories
instead of main categories. Since PSN data is highly skewed,
few top transitions between sub-categories should be good
indicators of the city dynamics. This technique could be useful
as a way to measure the distance between two cities, enabling
cities comparison and clustering worldwide.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we characterize, discuss challenges and demon-
strate opportunities of participatory sensor networks (PSNs),
an emerging type of network comprised of autonomous mobile
entities with sensing capability. Unlike in wireless sensor net-
works, the sensing process in PSNs depends on whether nodes
want to participate. Using four different large scale datasets,
we analyzed the main characteristics of PSNs derived from
three location sharing services, namely Foursquare, Gowalla
and Brightkite. Our analysis pointed out several challenges of
this emerging type of network, which may restrict its use, but
also showed that there are good opportunities. In particular,
we demonstrate a range of fruitful opportunities that emerge
when using PSNs to the large scale study of city dynamics.

We envision two main directions of future work: extend our
analysis to include other types of participatory sensing systems
to build a more accurate mapping of the city dynamics; and
build applications and services for smart cities exploringsome
of the opportunities presented here, such as traffic monitoring,
information dissemination and recommendation systems.
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