|
// Cellular Automata 1, Conway's Game of Life
// by Mike Davis <http://www.lifecycle.org>
int sx, sy;
float density = 0.5;
int[][][] world;
void setup()
{
size(200, 200);
framerate(12);
sx = width;
sy = height;
world = new int[sx][sy][2];
stroke(255);
// Set random cells to 'on'
for (int i = 0; i < sx * sy * density; i++) {
world[(int)random(sx)][(int)random(sy)][1] = 1;
}
}
void draw()
{
background(0);
// Drawing and update cycle
for (int x = 0; x < sx; x=x+1) {
for (int y = 0; y < sy; y=y+1) {
//if (world[x][y][1] == 1)
// Change recommended by The.Lucky.Mutt
if ((world[x][y][1] == 1) || (world[x][y][1] == 0 && world[x][y][0] == 1))
{
world[x][y][0] = 1;
point(x, y);
}
if (world[x][y][1] == -1)
{
world[x][y][0] = 0;
}
world[x][y][1] = 0;
}
}
// Birth and death cycle
for (int x = 0; x < sx; x=x+1) {
for (int y = 0; y < sy; y=y+1) {
int count = neighbors(x, y);
if (count == 3 && world[x][y][0] == 0)
{
world[x][y][1] = 1;
}
if ((count < 2 || count > 3) && world[x][y][0] == 1)
{
world[x][y][1] = -1;
}
}
}
}
// Count the number of adjacent cells 'on'
int neighbors(int x, int y)
{
return world[(x + 1) % sx][y][0] +
world[x][(y + 1) % sy][0] +
world[(x + sx - 1) % sx][y][0] +
world[x][(y + sy - 1) % sy][0] +
world[(x + 1) % sx][(y + 1) % sy][0] +
world[(x + sx - 1) % sx][(y + 1) % sy][0] +
world[(x + sx - 1) % sx][(y + sy - 1) % sy][0] +
world[(x + 1) % sx][(y + sy - 1) % sy][0];
}
|