|   | // Cellular Automata 1, Conway's Game of Life 
// by Mike Davis <http://www.lifecycle.org> 
int sx, sy; 
float density = 0.5; 
int[][][] world; 
 
void setup() 
{ 
  size(200, 200); 
  framerate(12); 
  sx = width; 
  sy = height; 
  world = new int[sx][sy][2]; 
  stroke(255); 
   
  // Set random cells to 'on' 
  for (int i = 0; i < sx * sy * density; i++) { 
    world[(int)random(sx)][(int)random(sy)][1] = 1; 
  } 
} 
 
void draw() 
{ 
  background(0); 
  
  // Drawing and update cycle 
  for (int x = 0; x < sx; x=x+1) { 
    for (int y = 0; y < sy; y=y+1) { 
      //if (world[x][y][1] == 1) 
      // Change recommended by The.Lucky.Mutt 
      if ((world[x][y][1] == 1) || (world[x][y][1] == 0 && world[x][y][0] == 1)) 
      { 
        world[x][y][0] = 1; 
        point(x, y); 
      } 
      if (world[x][y][1] == -1) 
      { 
        world[x][y][0] = 0; 
      } 
      world[x][y][1] = 0; 
    } 
  } 
  // Birth and death cycle 
  for (int x = 0; x < sx; x=x+1) { 
    for (int y = 0; y < sy; y=y+1) { 
      int count = neighbors(x, y); 
      if (count == 3 && world[x][y][0] == 0) 
      { 
        world[x][y][1] = 1; 
      } 
      if ((count < 2 || count > 3) && world[x][y][0] == 1) 
     { 
        world[x][y][1] = -1; 
      } 
    } 
  } 
} 
 
// Count the number of adjacent cells 'on' 
int neighbors(int x, int y) 
{ 
  return world[(x + 1) % sx][y][0] + 
         world[x][(y + 1) % sy][0] + 
         world[(x + sx - 1) % sx][y][0] + 
         world[x][(y + sy - 1) % sy][0] + 
         world[(x + 1) % sx][(y + 1) % sy][0] + 
         world[(x + sx - 1) % sx][(y + 1) % sy][0] + 
         world[(x + sx - 1) % sx][(y + sy - 1) % sy][0] + 
         world[(x + 1) % sx][(y + sy - 1) % sy][0]; 
} 
 |