|
// The Mandelbrot Set
// Daniel Shiffman <http://www.shiffman.net>
// Establish a range of values on the complex plane
double xmin = -2.5; double ymin = -2; double wh = 4;
// A different range will allow us to "zoom" in or out on the fractal
// double xmin = -1.5; double ymin = -.1; double wh = 0.15;
void setup() {
size(200,200,P2D);
}
void draw() {
loadPixels();
// Maximum number of iterations for each point on the complex plane
int maxiterations = 200;
// x goes from xmin to xmax
double xmax = xmin + wh;
// y goes from ymin to ymax
double ymax = ymin + wh;
// Calculate amount we increment x,y for each pixel
double dx = (xmax - xmin) / (width);
double dy = (ymax - ymin) / (height);
// Start y
double y = ymin;
for(int j = 0; j < height; j++) {
// Start x
double x = xmin;
for(int i = 0; i < width; i++) {
// Now we test, as we iterate z = z^2 + cm does z tend towards infinity?
double a = x;
double b = y;
int n = 0;
while (n < maxiterations) {
double aa = a * a;
double bb = b * b;
double twoab = 2.0 * a * b;
a = aa - bb + x;
b = twoab + y;
// Infinty in our finite world is simple, let's just consider it 16
if(aa + bb > 16.0f) {
break; // Bail
}
n++;
}
// We color each pixel based on how long it takes to get to infinity
// If we never got there, let's pick the color black
if (n == maxiterations) pixels[i+j*width] = 0;
else pixels[i+j*width] = color(n*16 % 255); // Gosh, we could make fancy colors here if we wanted
x += dx;
}
y += dy;
}
updatePixels();
noLoop();
}
|